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Abstract. Modern cloud applications consist of software components deployed
on multiple virtual machines. Deploying such applications is error prone and re-
quires detailed system expertise. The deployment optimization problem is about
how to configure and deploy applications correctly while at the same time min-
imizing resource cost on the cloud. This problem is addressed by tools such as
Zephyrus, which take a declarative specification of the components and their con-
figuration requirements as input and propose an optimal deployment. This paper
presents Zephyrus2, a new tool which addresses deployment optimization by ex-
ploiting modern SMT and CP technologies to handle larger and more complex
deployment scenarios. Compared to Zephyrus, Zephyrus2 can solve problems in-
volving hundreds of components to be deployed on hundreds of virtual machines
in a matter of seconds instead of minutes. This significant speed-up, combined
with an improved specification format, enables Zephyrus2 to interactively sup-
port on the fly decision making.

1 Introduction

Modern software systems are often developed to be highly configurable both in the
functionality they offer and in their deployment architecture. Applications targeting the
cloud need to adapt their deployment to the virtual machines (VMs) that the cloud
makes available. Cloud applications typically consist of a large number of intercon-
nected software components (such as packages or services) that must be deployed on
VMs that can be created on-the-fly by means of cloud computing technologies. The
correct deployment and configuration of cloud applications is a challenging task and
a major source of errors. In fact, inappropriate deployment and configuration are the
second cause of errors in Google data centers, only after software bugs [5]. The deploy-
ment flexibility of cloud applications is further restricted by the availability and price
of resources offered by the cloud. The deployment optimization problem is the problem
of how to correctly deploy all the software components needed by a cloud application
on suitable VMs on the cloud at minimal cost.

The deployment and on-the-fly configuration of systems on the cloud are han-
dled by so-called DevOps teams, which address efficient system delivery and frequent
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infrastructure changes by combining development and operations experts. Different
tools and technologies have been developed to support the work of DevOps teams.
The mainstream approach restricts solutions to a fixed set of pre-configured VM im-
ages, which offers all the needed software packages and services, and which can be
launched directly on the VMs of the targeted cloud system (e.g., Bento Boxes [23],
Cloud Blueprints [11], or AWS CloudFormation [3]). The main drawback of this ap-
proach is that, as the deployment may use only the pre-configured VM images, it might
use more resources than necessary or force the software to only run on specific cloud
providers (resulting in vendor lock-in). More advanced techniques allow application ar-
chitects to design their own software architectures using high-level description languag-
es such as the graphical drag-and-drop approach of Juju [30] or the TOSCA (Topology
and Orchestration Specification for Cloud Applications) standard [40]. Unfortunately,
the use of these languages is knowledge-intensive since they require the architect to
design the entire architecture and have a deep understanding of all the components to
deploy. Furthermore, these languages do not address deployment optimization.

To overcome these limitations and address the deployment optimization problem,
declarative approaches have recently been proposed which enable the DevOps teams to
automatically generate optimal VM configurations from high-level specifications [22,
29]. In particular, the automatic configuration generator tool Zephyrus [16] has been
applied in a number of industrial settings [14,18,25]. Starting from a description of the
available VMs and the components that need to be deployed, the architect can specify
requirements in the form of constraints and use the tool to generate optimal machine
configurations and deployment at minimal cost. The application architect can exploit
the expressiveness of the constraints to focus on the most important aspects of the ap-
plication, leaving to the tool the task of deducing other components that are needed to
obtain a correct configuration and where to deploy them.

The contribution of this paper is to present Zephyrus2, a new tool to tackle the
deployment optimization problem, inspired by Zephyrus. Zephyrus2 overcomes some
limitations of Zephyrus by using different solving approaches, which enables us to solve
problems involving hundreds of components to be deployed on hundreds of VMs in a
matter of seconds instead of minutes. We report on the obtained performance gains with
different solving approaches. Based on industrial experiences with declarative deploy-
ment optimization [14, 18, 25], Zephyrus2 allows a more direct and concise specifica-
tion of deployment scenarios and user requirements than Zephyrus. The simplified input
format combined with a significant speed-up (i.e., seconds instead of minutes) allows
Zephyrus2 to be used by DevOps teams in a more interactive way for on the fly decision
making [19].

Paper Structure. Section 2 gives a brief overview of the declarative deployment opti-
mization problem. Section 3 introduces Zephyrus2 and Section 4 evaluates its perfor-
mance on a set of industry inspired instances. Section 5 discusses the main differences
between Zephyrus2 and Zephyrus and Section 6 discusses other related work. Section 7
concludes the paper, indicating directions for future research.
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Fig. 1: The deployment problem.

2 Preliminaries

We give an overview of the declarative deployment optimization problem [10, 16]. The
basic deployment problem is illustrated by Figure 1; we assume three different inputs:

(i) a description of the components that can be deployed,
(ii) a description of the virtual machines where the components can run, and

(iii) the constraints that capture the specific requirements of the DevOps teams.

We specify components in the Aeolus [17] modeling language as black-boxes that
expose require- and provide-ports to capture required and provided functionalities re-
spectively. Connections (bindings) from require- to provide-ports model the usage of
services. Capacity constraints associated to the ports might constrain those connections:
i) for provide-ports they can specify how many require-ports might be connected (max-
imal number of served components), or impose that no other component can provide
the same functionality (used to model the notion of conflicts among components), ii) for
require-ports multiple providers offering the given functionality can be required (used to
model replication requirements). Every component instance consumes resources such
as memory or processing power when deployed, which is also captured in the model.
Some examples for component descriptions are graphically illustrated in Figure 1 (top
left). For instance, the open-source content management system WordPress is repre-
sented by a component named WordPress which provides, if installed, the function-
ality wp backend via a provide-port and which requires the functionality mysql via a
require-port. By associating the∞ symbol to the provide-port wp backend we model
that the functionality can be provided to an unbounded number of other components.



The WordPress component requires to be connected to at least two different compo-
nents providing the mysql functionality (e.g., to provide fault tolerance). This is ex-
pressed by associating the capacity constraint “≥ 2” to the mysql require-port. In our
example only the resource RAM is modeled: a WordPress instance is associated with
the consumption of 2000 MB of RAM.

The virtual machines are modeled as locations. Each location has a name, a list of
resources that it can provide, and an associated cost. Figure 1 (top right) shows four
locations named c3 large 1, c3 large 2, c3 large 3, and c3 xlarge 1. They rep-
resent four different machines inspired by Amazon EC2, three of them are c3 large,
providing 3.75 GB of RAM, and one of them is c3 xlarge, providing 7 GB of RAM.
The instances of type c3 large have an associated cost of 105 to indicate that their
cost is 0.105 dollars per hour.

The user can specify (deployment) constraints in an ad-hoc declarative language
powerful enough to express, e.g., the presence of a given number of components and
their co-installation requirements or conflicts. For the example in Figure 1, the user
might require the presence of at least one HTTP Load Balancer and impose that, for
fault tolerance reasons, no two WordPress or MySQL instances should be installed on
the same virtual machine.

The goal of the declarative deployment optimization problem is to find a configura-
tion distributing components on a set of locations such that:

(i) the constraints reflecting the user requirements are satisfied,
(ii) every functionality required by a deployed component is provided,

(iii) in each location, the available resources are sufficient to cover the resource needs
of all components deployed on it, and

(iv) the values of some user-defined (prioritized) objective functions are minimized.

3 Zephyrus2

Zephyrus2 is a tool to solve the declarative deployment optimization problem. It offers a
concise language to specify deployment optimization problems, and it can use different
technologies to solve them. Zephyrus2 is written in Python (∼ 3k lines of code) and is
open source and freely available [33]. In order to increase portability, Zephyrus2 can be
installed using Docker containers [21].

3.1 Problem Specification Language

The use of Zephyrus in an industrial environment [14, 18, 25] has emphasized the need
to have (i) a simpler way to define components and locations, and (ii) a more concise
specification language to describe deployment constraints.

To tackle the first concern, Zephyrus2 supports for component and location speci-
fications the JavaScript Object Notation (JSON) format. Due to the lack of space, here
we only show some examples; the formal JSON Schema of the input is available at [33].
The following JSON snippet defines the WordPress component in Figure 1:



"WordPress": {
"resources": { "RAM": 2000 },
"requires": { "mysql": 2 },
"provides": [ { "ports": [ "wp_backend" ], "num": -1 } ]

}

In the second line, with the keyword resources, it is declared that WordPress con-
sumes 2000 MB of RAM. The keyword requires defines that the component has a
require-port requiring the service mysql with a capacity constraint “≥ 2”. Similarly,
the provides keyword declares that WordPress provides wp backend to a possibly
unbounded number of components (represented by −1).

The definition of locations is also done in JSON. For instance, the JSON input to
define 10 c3 large Amazon virtual machines is the following:

"c3_large": {
"num": 10,
"resources": { "RAM": 3750 },
"cost": 105

}

To tackle the second concern, Zephyrus2 introduces a new specification language
for deployment constraints. This language is a key factor for the usability of the tool:
while users who want to deploy their applications on a cloud usually need rather simple
deployment constraints (requiring, e.g., that one instance of the main application com-
ponent should be deployed), the language allows DevOps teams to express also more
complex cloud- and application-specific constraints. In the following we describe some
main features of the language by means of simple examples, referring the interested
reader to [33] for the formal grammar of the language and more examples.

A deployment constraint is a logical combination of comparisons between arith-
metic expressions. Besides integers, expressions may refer to component names repre-
senting the total number of deployed instances of a component. Location instances are
identified by a location name followed by the instance index (starting at zero) in square
brackets. A component name prefixed by a location instance stays for the number of
component instances deployed on the given location instance. For example, the follow-
ing formula requires the presence of at least one HTTP Load Balancer instance, and
exactly one WordPress server instance on the second c3 large location instance:

HTTP_Load_Balancer > 0 and c3_large[1].WordPress = 1

For quantification and for building sum expressions, we use identifiers prefixed with
a question mark as variables. Quantification and sum building can range over compo-
nents, locations, or over components/locations whose names match a given regular ex-
pression. Using such constraints, it is possible to express more elaborate properties such
as the co-location or distribution of components, or limit the amount of components de-
ployed on a given location. For example, the constraint

forall ?x in locations: ( ?x.WordPress > 0 impl ?x.MySQL > 0)

states that the presence of an instance of WordPress deployed on any location x implies
the presence of an instance of MySQL deployed on the same location x. As another



example, requiring the HTTP Load Balancer to be installed alone on a virtual machine
can be done by requiring that if a Load Balancer is installed on a given location then
the sum of the components installed on that location should be exactly 1.

forall ?x in locations: ( ?x.HTTP_Load_Balancer > 0 impl
(sum ?y in components: ?x.?y) = 1 )

For optimization, Zephyrus2 allows the user to express her preferences over valid con-
figurations in the form of a list of arithmetic expressions whose values should be min-
imized in the given priority order. The keyword cost can be used to require the min-
imization of the total cost of the application. The following list specifies the metric to
minimize first the total cost of the application and then the total number of components:

cost; ( sum ?x in components: ?x )

This is also the default metric used if the user does not specify her own preferences.

3.2 Solving Technologies

Zephyrus2 solves deployment optimization problems, specified in the above-described
languages, by translating them into Constraint Optimization Problems (COP) encoded
in MiniZinc [38].3 By default, Zephyrus2 solves the resulting multi-objective optimiza-
tion problems by optimizing the first objective function value and then optimizing the
other objective function values sequentially following their order after substituting the
previously determined optimal values. We believe that this solution is particularly effec-
tive since usually minimizing the first objective (e.g., the cost) has a significant impact
on the performance when reducing the second objective (e.g., the number of compo-
nents). However, this solution has the drawback that we need to restart the solver.

In order to exploit the capabilities of further multi-objective optimization tech-
niques, Zephyrus2 also supports MiniSearch [45], a meta-search language for Mini-
Zinc that allows to solve MiniZinc models with (heuristic) meta-searches, such as large
neighborhood search (LNS), lexicographic branch-and-bound, and And/Or search. Cur-
rently, Zephyrus2 uses MiniSearch to execute a lexicographic branch-and-bound search
procedure. Unfortunately, for the time being, there is a limited amount of solvers sup-
porting the programmatic APIs of the version 2.0 of MiniZinc that eliminates the need
to communicate through text files and enables the addition of constraints at runtime
without restarting the solvers. However, from an engineering point of view, we believe
that the support of MiniSearch is important since it allows to explore and try differ-
ent search procedures and improve the current performance as soon as more constraint
programming solvers will adopt the MiniZinc 2.0 APIs.

Zephyrus2 also supports the use of satisfiability-modulo-theories (SMT) solvers.
SMT solving extends and improves upon SAT solving by introducing the possibility
of stating constraints in some expressive theories, e.g., arithmetic or bit-vector expres-
sions. For our application, we need a solver that supports integer arithmetic and also
features optimization. One that is capable of doing that is Z3 [6, 20], one of the most
prominent SMT solvers. The last version of Z3 (4.4.2) has introduced some optimiza-
tion features as an extension of the SMT-LIBv2 input language [4], i.e., the standard

3 The MiniZinc encoding used by Zephyrus2 is reported in Appendix B.



format to define SMT instances. This is very suitable for our purpose since Z3 can
solve the multi-objective optimization problems directly, and we do not need to develop
search strategies on top of it. To use Z3, the optimization problems were translated into
the SMT-LIB format using fzn2smt [7] and further processed to simplify equations and
reduce the number of variables. For more details we refer the reader to [33]. Note that
optimization of SMT formulas is a very recent feature and still subject to a lot of re-
search. Though it makes use of optimization techniques known from linear program-
ming, significant progress can be expected in the future from which Zephyrus2 will
directly benefit.

4 Experimental Results

In this section we describe the performance of Zephyrus2 while using different settings
and solving engines.

To the best of our knowledge, due to the novelty of these approaches, there are no
established benchmarks for application deployment. Moreover, the first industrial prob-
lems solved by Zephyrus in [14,18,25] were not challenging, taking only a few seconds
to be solved. For this reason, to compare Zephyrus2 with Zephyrus, in this work we rely
on the synthetic benchmark proposed in [16, 49]. The instances of the benchmark are
derived from a parametrized variant of the WordPress deployment scenario presented
in [14] and partially depicted in Figure 1. This scenario was parametrized in three
dimensions to allow the analysis of scalability issues: (1) the parameter mysql req

encodes the number of MySQL instances a WordPress requires, (2) the parameter
wp req encodes the number of WordPress instances the HTTP Load Balancer requires
and (3) the parameter vm amount represents the amount of the four different types of
Amazon EC2 virtual machines that can be used to deploy the application. The bench-
mark instances are obtained by varying the parameters mysql req and wp req within
{6, ..., 12}, and vm amountwithin {6, ..., 25} (this corresponds to considering up to one
hundred virtual machines). The goal for all the instances is to deploy an HTTP Load
Balancer with the additional requirement that it is not possible to install two MySQL
instances or two WordPress instances on the same machine.

We compare several different configurations of Zephyrus2 against the original ap-
proach of Zephyrus denoted as zephyrus. As solver backends for Zephyrus2 we use
the lexicographic minimization approach with restarts using the solvers Chuffed [12]
(lex-chuffed), Gecode [26] (lex-gecode), and Or-tools [27] (lex-ortools),
as well as the SMT solver Z3 [20] (smt). We run all approaches using AMD Opteron
6172 processors and a timeout of 300 seconds (per problem instance), which is usually
the time it takes to require and obtain a virtual machine from a cloud provider.

We remark that the times of zephyrus should just be used as an indicative mea-
sure of the original performance of the Zephyrus approach. Indeed, these times include
also the time taken to generate the connections (bindings) between the components that,
as better explained in Section 5, in Zephyrus2 is a task that by design is deferred to an
external utility. However, the times of zephyrus are still significant for a comparison
since the generation of the bindings in Zephyrus takes just few milliseconds and the



Solver Solved Timeout Seconds
zephyrus 261 27% 719 67.81
lex-chuffed 980 100% 0 4.45
lex-gecode 980 100% 0 2.25
lex-ortools 975 99% 5 7.13
smt 960 98% 20 50.23

Table 1: Experimental results for all the approaches.

runtimes of zephyrus, especially for big problem instances, are greatly dominated
by the time needed to prove that a found configuration, if any, is optimal.

We also performed experiments using MiniSearch with the aforementioned CP
solvers as backends. However, due to a bug in MiniSearch,4 it often returns a subop-
timal solution. As Zephyrus2 and Zephyrus are supposed to provide optimal solutions
only, we have excluded the MiniSearch approach in the following comparison.

A summary of the results is presented in Table 1. The columns Solved and Timeout
denote the number of instances that were solved correctly and the number of instances
where the solver was terminated due to a timeout, respectively. The last column gives
the average time needed to solve the instances that could be solved within the timeout.

As can be seen, all approaches based on Zephyrus2 can solve almost all the bench-
marks. While lex-chuffed and lex-gecode solve all, lex-ortools and smt
lack only five and twenty, respectively, of the 980 benchmarks. As for the compar-
ison with the original Zephyrus approach zephyrus, it is immediately visible that
Zephyrus2 is faster and able to solve more instances, whatever solver is used as back-
end. While zephyrus is able to solve only 27% of the benchmarks in less than 5
minutes, lex-gecode which resulted as the best solver in average, is able to solve
all benchmarks in at most 25 seconds (with only 10 benchmarks taking more than 10
seconds to be solved). Surprisingly, Gecode is more efficient than both Chuffed and
Or-tools which, based on the results of the last MiniZinc Challenge [39] – an annual
competition of constraint programming solvers – are among the best CP solvers avail-
able today. We believe that this is probably due to the nature of the deployment problem
that favors the pure propagation and search approach used by Gecode. As we will see
later, although smt does not manage to solve all the benchmarks and it is much slower
than the other approaches of Zephyrus2, it is not dominated by lex-chuffed or
lex-gecode and for a few hard instances it is faster than both of them.

Figure 2 shows for varying timeout values (x axis) the percentage of the problem
instances that could be solved within that timeout (y axis) by the different approaches.

In Figure 3 we compare the individual results of the best approach lex-gecode
with the other approaches. Each plot relates the benchmark results of two approaches
on a logarithmic scale where every cross represents a single problem instance. Firstly
we can see that lex-chuffed is almost dominated by lex-gecode as there are
no examples that took more than 2 seconds in which lex-chuffed performs sig-
nificantly better. The same conclusion can be drawn also for lex-ortools that is

4 MiniSearch is a very recent framework, only available in a beta version.
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Fig. 2: Percentage of the instances that could be solved within a given timeout.

sometimes faster than lex-gecode, but only on comparably easy instances that are
quickly solved by both solvers. In contrast to that, we believe that smt can be a valu-
able complement to lex-gecode, as it performs better on exactly those benchmarks
that lex-gecode struggles to solve. For every benchmark that takes lex-gecode
more than 10 seconds to be solved, smt is faster than lex-gecode. We conjecture
that this is due to the fact that the dynamic search heuristics of the smt approach are
more robust than the ones used by the lex-gecode for this problem type. A deeper
comparison between these two approaches on harder instances is left as future work.
Surprisingly, some of the instances that took lex-gecode more than 10 seconds to
be solved are instead solved by Zephyrus in a shorter time. We conjecture that for these
instances the search heuristics used by Zephyrus lead to a good solution faster, thus
allowing to prove the optimality in shorter time.

5 Discussion

Zephyrus was the first tool to tackle the deployment optimization problem as defined
in Section 2. The development of Zephyrus2 was triggered by experiences in applying
Zephyrus in industrial case studies [14, 18, 25]. In this section, we discuss in detail the
technical differences between Zephyrus2 and Zephyrus [16].

Modeling. Whereas Zephyrus directly uses the Aeolus [17] component model for the
cloud, this component model has been extended for Zephyrus2 in order to model lo-
cations and components more naturally. A concern that arose in industrial case studies
was that components may expose different interfaces at the same time. In Aeolus this
is modeled by one provide-port for every interface. However, this encoding leads to
an exponential blow-up in the number of components when capacity constraints are
associated to the provide-port. To avoid this exponential blow-up, Zephyrus2 allows
provide-ports to have one or more provided functionalities. For instance, assuming that
a new version of a server is able to provide its functionalities to at most two clients via a
protocol a or b, in Zephyrus2 we can specify this by adding only one provide-port offer-
ing concurrently the possibility to use both protocols to at most 2 clients. Conversely,
Zephyrus requires the introduction of different components: a component offering to
two clients the functionality using protocol a, a component offering to two clients the
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Fig. 3: Comparison of lex-gecode to the other approaches.

functionality with protocol b, and a component offering to one client the functionality
with protocol a and to another client the functionality with protocol b.

In the deployment constraint language, support for quantifiers and sum terms (cf.
Section 3) allows Zephyrus2 to express properties in a more concise way. In addition,
Zephyrus2 supports user-defined metric functions to better customize the optimization,
whereas users of Zephyrus are restricted to a predefined set of metrics.
Constraint solving. Zephyrus solves deployment optimization problems by translating
them into a COP encoded in MiniZinc [38] and then uses standard CP solvers (such
as the Gecode [26] and G12 solvers [47]) to iteratively minimize a number of cost
functions through sequential invocations of an optimizing solver. Zephyrus2 offers more
possibilities for the choice of solving technologies, as discussed in Section 4.

Another major difference between the tools is that Zephyrus2 relies on a completely
new MiniZinc model5, which enables Zephyrus2 to better exploit the symmetries of the
deployment problem. Zephyrus initially has to consider a large number of locations to
ensure that there are enough inexpensive virtual machines available. Every additional
location extends the search space considerably. To cope with this problem, Zephyrus
relies on ad-hoc location trimming heuristics [49] which tries to reduce the number of
locations. Instead of relying on ad-hoc heuristics, it is also possible to use symmetry
breaking constraints [46] to reduce the search space by removing some symmetric so-
lutions (unless a user has machine-specific constraints on where to deploy components
such as, for example, that WordPress needs to be installed on c3 large 2 but not on

5 The MiniZinc model, available from [33], was submitted to the MiniZinc Challenge 2016.



the similar VM c3 large 1). For this purpose, Zephyrus2 uses well-known symmetry
breaking constraints for the bin packing problem [44]. In particular, Zephyrus2 estab-
lishes an order between locations with the same resources and enforces the deployment
of the components in the cheapest location available, following the pre-determined or-
der on these locations. This removes some of the symmetries between the locations.

Zephyrus2 supports similar constraints to break symmetries between the compo-
nents, which establish an order between components and then enforce the deployment
in the location following the lexicographic order. Compared to Zephyrus2, Zephyrus
only uses symmetry breaking constraints for locations, but not for the components. The
effectiveness of the symmetry breaking constraints in Zephyrus2 allows the tool to reach
better performance than Zephyrus, even without the use of location trimming heuristics
that are effective only in a limited number of deploying scenarios. 6

Zephyrus2 simplifies the non-linear constraints used in Zephyrus into a conjunction
of linear implications, by means of encoding techniques [15]. These techniques have
proven effective to increase the performance of SMT solvers and allows the use of
Chuffed, which does not support the non-linear constraints of the original formalization.

We would like to emphasize that the performance of the different solvers heavily
depends on the encoding of the constraints, and the addition of redundant or symmetry
breaking constraints. For instance, we noticed that without the so-called Ralf’s redun-
dant constraints [49], the performance of the CP solvers degrades considerably while
for SMT solving they do not have any strong impact. Conversely, the simplification of
the non-linear constraints allows the use of Chuffed and improves the performance of
the SMT approach, but it has no impact on the performance of Gecode or Or-tools.
Symmetry breaking constraints have a huge impact on the performances of both the CP
and SMT approaches. More details on these are presented in Appendix A.

Based on the use of Zephyrus in [14, 18, 25], we noticed that users often have pref-
erences over the bindings between the components. For instance, it is often better to
have bindings between co-located components and avoid configurations in which, e.g.,
a WordPress uses the functionalities of a MySQL deployed on another location while
it could have used the functionalities of a MySQL deployed in its own location. In
Zephyrus, the resolution of the deployment problem is tied to the generation of the bind-
ings performed by means of an ad-hoc polynomial algorithm. Unfortunately, Zephyrus
does not take into account preferences between bindings. For this reason, as a design
choice, Zephyrus2 separates the task of computing the distribution of the components in
the various locations from the task of connecting the components. Contrary to Zephyrus,
the generation of the connections between the components is therefore not part of the
core of Zephyrus2 and is instead deferred to an external utility. In particular, Zephyrus2
comes with a default simple bindings generation utility that maximizes the number of
local bindings in few seconds (for further details, see [33]).

6 Zephyrus2 supports machine-specific constraints by removing symmetry breaking constraints.



6 Related Work

Whereas in Section 5 we discussed the differences between Zephyrus and Zephyrus2,
this section considers the deployment optimization problem addressed by these tools in
a broader context.

With the increasing popularity of cloud computing, the problem of automating
application deployment has recently attracted a lot of attention. Many system man-
agement tools have been developed for this purpose, including popular tools such as
CFEngine [8], Puppet [31], MCollective [42], and Chef [41]. Despite their differences,
such tools allow to declare the components that should be installed on each machine,
together with their configuration parameters. In order to use such tools, the DevOps
architect needs to know how components should be distributed and configured.

Some tools aim to compute an (optimal) configuration of a distributed system with-
out computing the deployment steps needed to reach it. CP appears to be one of the
best methods today for solving different configuration problems [46]. The structure of a
configured system depends on the application domain and this knowledge is exploited
to speed up the search for valid configurations. CP techniques have already been applied
with success to the problem of deciding the allocation of resources in data centers and
clouds [9,28,32,35,36]. Zephyrus2 relies on solver techniques similar to those adopted
by these tools. Indeed, the COP problems solved by Zephyrus can be seen as an ex-
tension of the well-known bin packing problem [13] where some items, corresponding
to components, have to be included into bins, corresponding to locations. However, in
contrast to these approaches, Zephyrus2 not only computes the optimal allocation but
also identifies the additional components that are needed to form a valid configuration.
Formally, even without considering the allocation of components, the problem of de-
ciding if there is a correct configuration is already NP-hard [15]. To the best of our
knowledge, no trivial encoding exists that allows the reuse of [9, 28, 32, 35, 36] to solve
the deployment optimization problem tackled by Zephyrus2.

Perhaps the most similar to our approach is ConfSolve [29], which uses a formula-
tion based on constraints to propose an optimal allocation of virtual machines to servers
and of applications to virtual machines. Similar to Aeolus [17], a declarative language is
used to describe the entities (e.g., machines and services), and the deployment problem
is then solved by translating the declarative specification into MiniZinc. However, in
contrast to Zephyrus2, ConfSolve does not handle capacity and replication constraints,
so there is no obvious representation of our benchmarks for ConfSolve. Another inter-
esting related work is Saloon [43], where a deployment problem is described by means
of a feature model extended with feature cardinalities. Saloon applies CP technologies
to determine a deployment. While Saloon is able to automatically detect inconsistencies
between components, it does not address the optimization problem; i.e., the solutions
proposed by Saloon do not minimize the number of resources and virtual machines to
be used.

Other approaches rely on a range of techniques to compute optimal component
allocation. For instance, SAT solvers are used to solve network configuration prob-
lems [37], a prediction-based online approach [34] is proposed to find optimal recon-
figuration policies, a genetic-based algorithm [24] is used to support the migration and
deployment of enterprise software with their reconfiguration policies, and integer linear



programming has been used to find energy-efficient VM configurations [48]. However,
none of the tools that we are aware of allows capacity and replication constraints to be
expressed, which are essential non-functional constraints for any non-trivial, scalable
application. Furthermore, most of them give no optimality guarantee on the solution.

7 Conclusions

In this paper we presented Zephyrus2, a tool that is advancing the state-of-the-art by
computing the cheapest way to deploy complex cloud applications based on declara-
tive specifications. Optimal deployments involving up to a hundred components and
virtual machines can be generated within seconds. This allows Zephyrus2 to be used in
a more interactive way by the DevOps architect, who does not need to wait for minutes
to inspect the proposed optimal solution and restart the computation in case she has
forgotten to elicit one constraint or preference.

Zephyrus2 has already been tested in an industrial environment to check the cost
optimality of currently deployed solutions and to devise the optimal allocation for de-
ploying new components. The feedback obtained so far is positive both for the tool’s
usability and for its running time. As witnessed in [19], the support of a more concise
language to specify user constraints and the improved performance makes Zephyrus2 a
better alternative to the original version of Zephyrus.

To further improve the performance of Zephyrus2 in future work, we plan to study
whether the SMT encoding can be improved and especially to consider whether SMT
solvers can be extended with modules that perform propagation similar to those im-
plemented by CP solvers. Moreover, exploiting the flexibility of MiniSearch, we plan
to study local search procedures, which could be extremely useful in scenarios where
the user is not interested in the optimal solution but just in finding a sufficiently good
solution very quickly (e.g., in a second or less).

Based on the good results obtained by the Sunny portfolio approach [1] on the
last MiniZinc Challenge, we also plan to study how the different search procedures
can be combined to obtain a globally better solver. In particular, we are interested in
combining the strengths of the different solvers by using, e.g., the bound sharing with
restarts approach of the parallel version of the Sunny solver [2].

Finally, we are also interested in enriching the formal model behind Zephyrus2 to
allow constraints on the bindings between components. This will allow configurations
with more complex properties to be generated, such as the non-transferability of data
between borders or the load balancing of traffic between parts of the system deployed
on different data centers.
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A Performances for Varying MiniZinc Formalizations

In this section, for the interested reader, we present the performances of the aforemen-
tioned approaches lex-gecode, lex-ortools, lex-chuffed, and smt when
using different variants of the COP model. In particular we show the results for the
benchmarks described in Section 4

1. without the so called Ralf’s redundant constraints [49],
2. without symmetry breaking constraints, and
3. if we use non-linear constraints in the encoding.

The model is changed only for Zephyrus2, i.e. for lex-chuffed, lex-gecode,
lex-ortools and smt, but we also report zephyrus results as a baseline.

Redundant constraints [46] are constraints that are implied by other constraints.
Strictly speaking they are not needed but sometimes they help a solver to prune the
search space faster. For example, Ralf’s redundant constraints state that when a com-
ponent is present that requires a port p with capacity x then there should be at least x
other components providing the port p. Figure 4a presents results when Ralf’s redundant
constraints are not added to the encoding. In comparison to Figure 2, Figure 4a shows
that the presence of these constraints makes a huge difference for lex-ortools and
lex-gecode while it has no significant effect on lex-chuffed and smt. We be-
lieve that this is due to the fact that the latter are able to learn these constraints by them-
selves during the search while the former lack learning abilities. Thus, lex-gecode
and lex-ortools can only benefit from this additional pruning if they are provided
with these constraints explicitly.

Figure 4b shows that all the approaches worsen their performances, becoming even
worse than the original Zephyrus approach7, when we do not add symmetry break-
ing constraints. Thus it seems that symmetry breaking constraints are highly beneficial
for all tested solvers. Albeit there are heuristics to mitigate symmetries automatically,
symmetry breaking constraints tailored to the specific problem prove to be much more
effective.

In the previous experiments the encodings were linear. However, there are also nat-
ural and concise non-linear formulations. For example, given two components x and y,
the fact that there could not be two bindings connecting the port p between an instance
of x and an instance of y has the necessary non-linear condition that bind(p, x, y) ≤
comp(x)× comp(y). As proven in [15], this constraint can also be stated as

comp(x) ≥ r → bind(p, x, y) ≤ r × comp(y)∧
i<r

(i = comp(x)→ (bind(p, x, y) ≤ i× comp(y))

where r is the number associated to the required port p of the component y. Figure 4c
shows that the occurrence of non-linear constraints does not tamper with the perfor-
mances of the standard CP solvers Or-tools and Gecode but it hinders the SMT solver.

7 Even when the user have machine-specific constraints, it is still possible via a simple encoding
to exploit symmetry breaking for locations without any machine-specific constraints.
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(c) Non-linear encoding.

Fig. 4: Percentage of the instances that could be solved within a given timeout for dif-
ferent encodings.

We conjecture that this is due to the fact that while the CP solver can deal with the
non-linear constraints natively, the SMT solver instead has to linearize them as it does
not support non-linear optimization yet. It seems that our direct encoding that exploits
some domain knowledge is better than the more general translation performed by the
SMT solver. Please note that in Figure 4c we do not present lex-chuffed because it
does not support non-linear optimization.

B Excerpt of the MiniZinc encoding

For Zephyrus2, the problem specification is divided in two parts. The first part, shared
by all the backends for all problem instances, defines the constraints that enforce the



consistence of the configuration, the symmetry breaking constraints and the redundant
constraints. The second part instead adds the constraints to specify what to optimize and
the user constraints. This part of the specification depends on the instance to be solved
and also from the chosen backend. Additionally, Minizinc data files are used to specify
the locations and the components.

In the following we show the first part of the specification. An example of the second
part of the specification for an instance of the WordPress scenario described in Section
4 and the lex-gecode is shown at the end of this section.

1 include "lex_greatereq.mzn";
2 include "lex_less.mzn";
3
4 int: MAX_INT = 1024;
5
6 %%%%%%%%%%%%%%%%
7 % Input parameters
8 %%%%%%%%%%%%%%%%
9

10 % components
11 set of int: comps;
12 % ports
13 set of int: ports;
14 % multiple provide port
15 set of int: multi_provide_ports;
16
17 % locations
18 set of int: locations;
19 % resources
20 set of int: resources;
21
22 % map of components with their requirements number
23 array[ comps, ports] of int: requirement_port_nums;
24 % map of components with their provided multi-ports
25 % -1 means infinite multi-port provider
26 array[ comps, multi_provide_ports] of int: provide_port_nums;
27 % map of components with their conflicts
28 array[ comps, ports] of bool: conflicts;
29 % map of multi-ports with their ports
30 array[ multi_provide_ports, ports] of bool: multi_provides;
31
32 % map of location with their costs
33 array[ locations ] of int: costs;
34 % map of locations with the resouces they provide
35 array[ locations, resources ] of int: resource_provisions;
36 % map of components with the resources they consume
37 array[ comps, resources ] of int: resource_consumptions;
38
39 %%%%%%%%%%%%%%%%
40 % variables
41 %%%%%%%%%%%%%%%%



42
43 % bindings number
44 array[ multi_provide_ports, ports, comps, comps] of var 0..

MAX_INT: bindings;
45 % components number
46 array[ comps ] of var 0..MAX_INT: comps_num;
47 % location to number of component map
48 array[ locations, comps] of var 0..MAX_INT: comp_locations;
49
50 % total number of components
51 var 0..MAX_INT: sum_comp;
52
53 %%%%%%%%%%%%%%%%
54 % constraints (no location)
55 %%%%%%%%%%%%%%%%
56
57 % bind the total number of components
58 constraint sum_comp = sum( i in comps)(comps_num[i]);
59
60 % bindings 0 if the multiprovide does not provide port
61 constraint forall(mport in multi_provide_ports, port in ports) (
62 if multi_provides[mport,port]
63 then true
64 else forall(i in comps, j in comps) ( bindings[mport,port,i,j]

= 0)
65 endif
66 );
67
68 % provides must be greater or equal to bindings & infinite

provide port constraints
69 constraint forall(mport in multi_provide_ports, pcomp in comps)

(
70 if provide_port_nums[pcomp,mport]=0
71 then forall(port in ports, rcomp in comps) (
72 bindings[mport,port,pcomp,rcomp] = 0
73 )
74 else
75 if (provide_port_nums[pcomp,mport] = -1)
76 then forall(port in ports, rcomp in comps) (
77 (comps_num[pcomp] = 0) -> (bindings[mport,port,pcomp,rcomp

]=0))
78 else sum( port in ports, rcomp in comps)(
79 bindings[mport,port,pcomp,rcomp] ) <= comps_num[pcomp] *
80 provide_port_nums[pcomp,mport]
81 endif
82 endif
83 );
84
85 % requires must be equal to bindings
86 constraint forall(port in ports, rcomp in comps) (



87 sum( mport in multi_provide_ports, pcomp in comps)(
88 bindings[mport,port,pcomp,rcomp] ) = comps_num[rcomp] *
89 requirement_port_nums[rcomp,port]
90 );
91
92
93 % conflict constraints if component provide same port
94 constraint forall(port in ports, pcomp in comps) (
95 if (conflicts[pcomp,port] /\ exists(mport in

multi_provide_ports) (
96 (multi_provides[mport,port]) /\ provide_port_nums[pcomp,

mport] != 0))
97 then comps_num[pcomp] <= 1
98 else true
99 endif

100 );
101
102 % conflict constraints
103 constraint forall(port in ports, pcomp in comps, rcomp in comps)

(
104 if (conflicts[rcomp,port] /\ exists(mport in

multi_provide_ports) (
105 (multi_provides[mport,port]) /\ provide_port_nums[pcomp,

mport] != 0))
106 then comps_num[pcomp] > 0 -> comps_num[rcomp] = 0
107 else true
108 endif
109 );
110
111 % unicity constraint
112 % note that we require that a component does not
113 % require more than one port provided by a
114 % multiple provide port
115 constraint forall(mport in multi_provide_ports, pcomp in comps,

rcomp in comps)
116 (
117 let
118 { int: max_req = sum(port in ports) (
119 if multi_provides[mport,port]
120 then requirement_port_nums[rcomp,port]
121 else 0
122 endif
123 )
124 } in
125 if pcomp = rcomp
126 then
127 ( comps_num[pcomp] >= max_req ->
128 sum(port in ports)(bindings[mport,port,pcomp,rcomp])
129 <= max_req * (comps_num[rcomp] - 1))
130 /\



131 ( comps_num[pcomp] < max_req ->
132 forall (i in 1..max_req)( comps_num[pcomp] = i ->
133 sum(port in ports)(bindings[mport,port,pcomp,rcomp])

<= i * (i-1) ))
134 else
135 ( comps_num[pcomp] >= max_req ->
136 sum(port in ports)(bindings[mport,port,pcomp,rcomp])
137 <= max_req * comps_num[rcomp] )
138 /\
139 ( comps_num[pcomp] < max_req ->
140 forall (i in 0..max_req)( comps_num[pcomp] = i ->
141 sum(port in ports)(bindings[mport,port,pcomp,rcomp])

<= i * comps_num[rcomp] ) )
142 endif
143 );
144
145 %%%%%%%%%%%%%%%%
146 % constraints for deciding locations
147 %%%%%%%%%%%%%%%%
148
149 % map location used or not used
150 array[ locations ] of var 0..1: used_locations;
151 constraint forall( l in locations)(
152 sum(c in comps)(comp_locations[l,c]) = 0 <-> used_locations[l]

= 0
153 );
154
155 constraint forall( c in comps) (
156 sum( l in locations) ( comp_locations[l,c]) = comps_num[c]
157 );
158
159 constraint forall( res in resources, loc in locations) (
160 sum( comp in comps)( comp_locations[loc,comp] *
161 resource_consumptions[comp,res] )
162 <= resource_provisions[loc,res]
163 );
164
165 % the number of locations can not be greater than the number of

components
166 % i.e, one component per location in the worst case
167 constraint sum(i in locations) (used_locations[i]) <= sum_comp;
168
169 %%%%%%%%%%%%%%%%
170 % symmetry constraints (wrap in a unique predicate following

minizinc specs)
171 %%%%%%%%%%%%%%%%
172
173 predicate symmetry_breaking_constraints( bool: b) =
174 %if location are equal then first location has more comps than

the second



175 %in lexicographically order (based on the cost)
176 forall( l1 in locations, l2 in locations)(
177 if l1 < l2 /\ forall ( r in resources)(resource_provisions[l

1,r] = resource_provisions[l2,r] )
178 then
179 if costs[l1] > costs[l2]
180 then lex_greatereq(
181 [comp_locations[l2,c] | c in comps],
182 [comp_locations[l1,c] | c in comps])
183 /\
184 (used_locations[l1] = 1 -> used_locations[l2] = 1)
185 else
186 lex_greatereq(
187 [comp_locations[l1,c] | c in comps],
188 [comp_locations[l2,c] | c in comps])
189 /\
190 (used_locations[l2] = 1 -> used_locations[l1] = 1)
191 endif
192 else
193 true
194 endif
195 );
196
197 %%%%%%%%%%%%%%%%
198 % redundant constraints
199 %%%%%%%%%%%%%%%%
200
201 predicate redundant_constraints(bool: b) =
202 % Ralf constraints
203 forall (rcomp in comps, port in ports)(
204 if requirement_port_nums[rcomp,port]!=0
205 then
206 comps_num[rcomp] > 0 -> sum( mport in multi_provide_ports,

pcomp in comps)(
207 if provide_port_nums[pcomp,mport] != 0 /\ multi_provides[

mport,port]
208 then comps_num[pcomp]
209 else 0
210 endif ) >= requirement_port_nums[rcomp,port]
211 else
212 true
213 endif
214 );
215
216 constraint redundant_constraints(true);
217
218 %%%%%%%%%%%%%%%%
219 % solved items
220 %%%%%%%%%%%%%%%%
221



222 int: obj_min = sum(l in locations)(if costs[l] < 0 then costs[l]
else 0 endif);

223 int: obj_max = sum(l in locations)(if costs[l] > 0 then costs[l]
else 0 endif);

224 var obj_min..obj_max: total_cost;
225 constraint total_cost = sum(l in locations)(used_locations[l] *

costs[l]);
226
227 array [locations] of locations: costs_asc = arg_sort(costs);
228 array [locations] of locations: costs_desc = reverse(costs_asc);

In the following we show the second part of the specification defining the user con-
straints, and the search strategy used by lex-gecode to minimize the cost of deploy-
ing one WordPress scenario as defined in Section 4.

1 constraint (sum ( l in locations) ( comp_locations[l,3])>0 \/
2 sum ( l in locations) (
3 comp_locations[l,2])>0)
4 /\ (forall(x in locations )(comp_locations[x,1]<2 ))
5 /\ (forall(x in locations )(comp_locations[x,4]<2 ));
6
7 constraint symmetry_breaking_constraints(true);
8
9 array[1..2] of var int: obj_array;

10 constraint obj_array[1] = total_cost;
11 constraint obj_array[2] = (sum(y in comps )
12 (sum(l in locations)(comp_locations[l,y]) ));
13 solve :: seq_search([
14 int_search([used_locations[costs_desc[i]] | i in

locations],
15 input_order, indomain_min, complete),
16 int_search([comp_locations[l, i] | l in locations,

i in comps],
17 first_fail, indomain_max, complete),
18 int_search(comps_num, first_fail, indomain_max,

complete),
19 int_search([bindings[m,p,i,j] | m in

multi_provide_ports,
20 p in ports, i,j in comps],
21 first_fail, indomain_max, complete)
22 ]) minimize obj_array[1];


