Recent trends in SMT solving

and what to expect from the next generation

Gereon Kremer

RWTH Aachen University, Germany LuFG Theory of Hybrid Systems

July 17, 2016

What is this talk about?

Satisfiability problem

Decide whether an existentially quantified formula $\varphi(x)$ is satisfiable.

$$
\exists x . \varphi(x) \equiv \text { true }
$$

What is this talk about?

Satisfiability problem

Decide whether an existentially quantified formula $\varphi(x)$ is satisfiable.

$$
\exists x . \varphi(x) \equiv \text { true }
$$

Satisfiability modulo theories

φ is from an existentially quantified first-order logic.
■ Fully automated solving
■ Common theories: arithmetic (linear / nonlinear, real / integer), arrays, bitvectors, uninterpreted functions, ...

- Combinations of theories

Fundamental idea: SAT vs. Theory

(2) $\begin{aligned} & \text { Theory } \\ & \text { of Hybrid } \\ & \text { Systems } \\ & \text { Informatik 2 }\end{aligned}$

Digression: SAT solving

- φ is propositional

■ DPLL-style SAT solving

- Combines enumeration, propagation and conflict learning

Digression: SAT solving

- φ is propositional

■ DPLL-style SAT solving
■ Combines enumeration, propagation and conflict learning
■ Solves industrial problems with millions of variables

- Flagship application: digital circuit design and verification

Digression: SAT solving

- φ is propositional
- DPLL-style SAT solving

■ Combines enumeration, propagation and conflict learning

- Solves industrial problems with millions of variables
- Flagship application: digital circuit design and verification Community support:

■ Standardized input language, lots of benchmarks available
■ Competitions since 2002
2014 SAT Competition: 3 categories, 79 participants with 137 solvers.
SAT Live! forum as community platform, dedicated conferences, journals, etc.

SMT solving

■ Modelling is hard if restricted to propositional logic

- Theory constraints express applications more naturally

■ Theories must still be solvable

SMT solving

■ Modelling is hard if restricted to propositional logic
■ Theory constraints express applications more naturally
■ Theories must still be solvable
Applications: verification (model checking, static analysis, termination analysis); test case generation; controller synthesis; predicate abstraction; equivalence checking; scheduling; planning; product design automation and optimisation, ...

SMT solving

■ Modelling is hard if restricted to propositional logic

- Theory constraints express applications more naturally

■ Theories must still be solvable
Applications: verification (model checking, static analysis, termination analysis); test case generation; controller synthesis; predicate abstraction; equivalence checking; scheduling; planning; product design automation and optimisation, ...
Community support:
■ SMT-LIB as standard input language since 2004.
■ Competitions since 2005.

- SMT-COMP 2016 competition:

40 logical categories, 19 distinct solvers.
$154424(+41690)$ benchmark instances.

Common theories - Arithmetic

Linear arithmetic
$3 x-7 y \leq 8$Simplex, Fourier-Motzkin, B\&B, Bit-blasting, Gomory CutsCVC4, MathSAT 5, OpenSMT2, SMT-RAT, SMTInterpol, toysmt, veriT, Yices, Z3

Common theories - Arithmetic

Linear arithmetic

$3 x-7 y \leq 8$
Simplex, Fourier-Motzkin, B\&B, Bit-blasting, Gomory Cuts
CVC4, MathSAT 5, OpenSMT2, SMT-RAT, SMTInterpol, toysmt, veriT, Yices, Z3

Nonlinear arithmetic

$3 x^{2}-7 x y \leq 8$
CAD, VS, Gröbner Bases, ICP, Bit-blasting, B\&B
Real: CVC4, raSAT, SMT-RAT, Yices, Z3
Integer: AProVE, CVC4, ProB, raSAT, SMT-RAT, Yices, Z3

Common theories - Arithmetic

Linear arithmetic

$3 x-7 y \leq 8$
Simplex, Fourier-Motzkin, B\&B, Bit-blasting, Gomory Cuts
CVC4, MathSAT 5, OpenSMT2, SMT-RAT, SMTInterpol, toysmt, veriT, Yices, Z3

Nonlinear arithmetic

$3 x^{2}-7 x y \leq 8$
CAD, VS, Gröbner Bases, ICP, Bit-blasting, B\&B
Real: CVC4, raSAT, SMT-RAT, Yices, Z3
Integer: AProVE, CVC4, ProB, raSAT, SMT-RAT, Yices, Z3

Uninterpreted functions

$a=b \wedge \neg(f(b)=f(a))$
Congruence closure
CVC4, MathSAT 5, OpenSMT2, SMTInterpol, toysmt, veriTJyibes,

Common theories - Other

Arrays

$i=j \rightarrow \operatorname{read}(w r i t e(a, i, v), j)=v$
On-demand lemma generation / lazy atom instantiation CVC4, MathSAT 5, SMTInterpol, Yices, Z3

Common theories - Other

Arrays

$i=j \rightarrow \operatorname{read}(w r i t e(a, i, v), j)=v$
On-demand lemma generation / lazy atom instantiation CVC4, MathSAT 5, SMTInterpol, Yices, Z3

Bitvectors

$a \mid b \leq a \& b$
Bit-blasting
ABC, Boolector, CVC4, MapleSTP, MathSAT 5, Minkeyrink, Q3B, STP, Yices, Z3

Common theories - Other

Arrays

$i=j \rightarrow \operatorname{read}(w r i t e(a, i, v), j)=v$
On-demand lemma generation / lazy atom instantiation CVC4, MathSAT 5, SMTInterpol, Yices, Z3

Bitvectors

$a \mid b \leq a \& b$
Bit-blasting
ABC, Boolector, CVC4, MapleSTP, MathSAT 5, Minkeyrink, Q3B, STP, Yices, Z3

Floating point

$$
\operatorname{sub}_{R N E}(x, y)=z
$$

Bit-blasting
MathSAT 5

What about existing tools?

We have

- SAT solvers (MiniSAT, Glucose, Sat4j),

■ LP solvers (CPlex, Gurobi, SCIP),
■ CAS (Maple, Mathematica, Matlab) and many more.
Just plug them together! What is the problem?

What about existing tools?

We have

- SAT solvers (MiniSAT, Glucose, Sat4j),

■ LP solvers (CPlex, Gurobi, SCIP),

- CAS (Maple, Mathematica, Matlab) and many more.

Just plug them together! What is the problem?
■ Many theory calls that only differ slightly
■ Explanations for unsatisfiability

- Removal of constraints

What about existing tools?

We have

- SAT solvers (MiniSAT, Glucose, Sat4j),

■ LP solvers (CPlex, Gurobi, SCIP),
■ CAS (Maple, Mathematica, Matlab) and many more.
Just plug them together! What is the problem?

- Many theory calls that only differ slightly

■ Explanations for unsatisfiability
■ Removal of constraints
Incrementality, lemma generation, backtracking!

At Aachen: SMT-RAT

■ Toolbox for SMT solving
■ SAT solver, many theory modules, preprocessing
■ Basic datastructures: formulas, constraints, polynomials, ... https://github.com/smtrat/smtrat/wiki

Extension: Optimization

SMT with optimization

$$
\min f(x) \text { w.r.t. } \varphi(x)
$$

Extension: Optimization

SMT with optimization

$$
\min f(x) \text { w.r.t. } \varphi(x)
$$

- f and φ use same theory

■ Multiobjective: lexicographic ordering
■ Straightforward for linear arithmetic (νZ, SMT-RAT)

- More difficult for nonlinear arithmetic

■ How would f look like for uninterpreted functions?

Extension: Quantification

SMT with quantifiers

$$
\exists x_{1} . \forall x_{2} \ldots \exists x_{n} \cdot \varphi\left(x_{1}, \ldots, x_{n}\right)
$$

Extension: Quantification

SMT with quantifiers

$$
\exists x_{1} . \forall x_{2} \ldots \exists x_{n} \cdot \varphi\left(x_{1}, \ldots, x_{n}\right)
$$

- More expressive
- Easy case: small domain for \forall variables
- Most decision procedure are designed for \exists only

Extension: Parallelization

- Portfolio
- Run multiple solvers / configurations in parallel
- As many cores as there are solvers

Extension: Parallelization

- Portfolio
- Run multiple solvers / configurations in parallel
- As many cores as there are solvers
- Strategic parallelization
- If solver is modularized, run modules in parallel
- In SMT-RAT: multiple theory modules in parallel

Extension: Parallelization

- Portfolio
- Run multiple solvers / configurations in parallel
- As many cores as there are solvers

■ Strategic parallelization

- If solver is modularized, run modules in parallel
- In SMT-RAT: multiple theory modules in parallel
- Parallel algorithms

■ Parallelization in individual decision procedures

Extension: Unsat cores / Proofs

Unsat core

$$
\varphi^{\prime}(x) \equiv \text { False where } \varphi^{\prime} \subseteq \varphi
$$

Give proof that $\neg \exists x . \varphi(x)$.

Extension: Unsat cores / Proofs

Unsat core

$$
\varphi^{\prime}(x) \equiv \text { False where } \varphi^{\prime} \subseteq \varphi
$$

Give proof that $\neg \exists x . \varphi(x)$.

- Minimal vs. minimum

■ Meaningful measure: size? complexity?

- Proofs for humans or theorem provers?
- Proofs without encoding the whole algorithm?

Extension: Additional theories

■ Floating point
Philipp Rümmer and Thomas Wahl. An SMT-LIB theory of binary floating-point arithmetic. In SMT'10, 2010

- Recursive functions

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard Version 2.6. 2015

■ Infinitesimals
Leonardo De Moura and Grant Olney Passmore. Computation in real closed infinitesimal and transcendental extensions of the rationals. In CADE-24. 2013

- Trigonometric and exponential functions

Sicun Gao, Soonho Kong, and Edmund M Clarke. dReal: An SMT solver for nonlinear theories over the reals. In CADE-24. 2013

- ... ?

