Generalised Branch-and-Bound

and its Application in SAT Modulo Nonlinear Integer Arithmetic

Gereon Kremer
in cooperation with Florian Corzilius and Erika Ábrahám
RWTH Aachen University, Germany
LuFG Theory of Hybrid Systems

September 20, 2016

$\mathbf{S C}^{\mathbf{2}}$ (link to EU Project)

Satisfiability Checking and Symbolic Computation

Bridging Two Communities to Solve Real Problems

SUMMARY

The use of advanced methods to solve practical and industrially relevant problems by computers has a long history. Symbolic Computation is concerned with the algorithmic determination of exact solutions to complex mathematical problems; and more recent developments in the area of Satisfiability Checking are starting to tackle similar problems but with different algorithmic and technological solutions.

Though both communities have made remarkable progress in the last decades, they need to be further strengthened to tackle practical problems of ever increasing size and complexity. Their separate tools (computer algebra systems and SMT solvers) are urgently needed to address prevailing problems having a direct effect on our society. For example, Satisfiability Checking is an essential backend for assuring the security and the safety of computer systems. In various scientific areas, Symbolic Computation is able to deal with large mathematical problems far beyond the scope of pencil and paper solutions.

Currently the two communities are largely disjoint and unaware of the achievements of one another, despite there being strong reasons for them to discuss and collaborate, since they share many central interests. However, up to now, researchers from these two communities rarely interact, and also their tools lack common, mutual interfaces for unifying their strengths. Bridges between the communities in the form of common platforms and road-maps are necessary to initiate an exchange, and to support and direct their interaction. These are the main objectives of this CSA. We will initiate a wide range of activities to bring the two communities together, identify common challenges, propose joint standards, offer global events and bilateral visits, and so on. Besides the partners in our EU Project, these people have expressed an interest in these activities.

We believe that these activities will initiate cross-fertilization of both fields and bring mutual benefits. Combining the knowledge, experience and the technologies in these communities will enable the developmont of radically improved software tools.

On February 28th, 2016, the European Commission anounced an intention to fund ourbirst project: the SC-square

Contents

1 Preliminaries

2 Branch-and-Bound in DPLL

3 B\&B for Nonlinear Arithmetic

4 Existing approaches for NIA

5 Experimental results

Basic framework

Satisfiability problem

Decide whether an existentially quantified formula $\varphi(x)$ is satisfiable

$$
\exists x . \varphi(x) \equiv \text { true }
$$

Basic framework

Satisfiability problem

Decide whether an existentially quantified formula $\varphi(x)$ is satisfiable

$$
\exists x . \varphi(x) \equiv \text { true }
$$

Satisfiability modulo theories

φ is from an existentially quantified first-order logic
■ Fully automated solving
■ Our focus: nonlinear integer arithmetic

- Example:

$$
\exists x, y \cdot y \geq \frac{x^{2}-2}{2} \wedge y \leq \frac{x}{2} \quad \text { hybr } \quad \substack{\text { Theory } \\ \text { of tybrid } \\ \text { ofsems } \\ \text { intormatik } 2}
$$

Fundamental idea: SAT vs. Theory

(2) $\begin{aligned} & \text { Theory } \\ & \text { of Hybrid } \\ & \text { Systems } \\ & \text { Informatik 2 }\end{aligned}$

Branch-and-Bound [Land, Doig 1960] [Dutertre, de Moura 2006]

Fundamental idea: use a solver for \mathbb{R} on problems from \mathbb{Z}

Branch-and-Bound [Land, Doig 1960] [Dutertre, de Moura 2006]

Fundamental idea: use a solver for \mathbb{R} on problems from \mathbb{Z}

- Theory solver searches a solution for $C=\left\{c_{1}, \ldots, c_{k}\right\}$

Branch-anc-BOunO [Land, Doig 1960] [Dutertre, de Moura 2006]

Fundamental idea: use a solver for \mathbb{R} on problems from \mathbb{Z}

- Theory solver searches a solution for $C=\left\{c_{1}, \ldots, c_{k}\right\}$
- If no solution exists: return unsat

Branch-anc-BOunO [Land, Doig 1960] [Dutertre, de Moura 2006]

Fundamental idea: use a solver for \mathbb{R} on problems from \mathbb{Z}

- Theory solver searches a solution for $C=\left\{c_{1}, \ldots, c_{k}\right\}$
- If no solution exists: return unsat
- If solution is integral: return sat

Branch-anc-BOunO [Land, Doig 1960] [Dutertre, de Moura 2006]

Fundamental idea: use a solver for \mathbb{R} on problems from \mathbb{Z}

- Theory solver searches a solution for $C=\left\{c_{1}, \ldots, c_{k}\right\}$
- If no solution exists: return unsat
- If solution is integral: return sat
- If solution is fractional: return unknown and generate a lemma

Fundamental idea: use a solver for \mathbb{R} on problems from \mathbb{Z}
■ Theory solver searches a solution for $C=\left\{c_{1}, \ldots, c_{k}\right\}$
■ If no solution exists: return unsat
■ If solution is integral: return sat
■ If solution is fractional: return unknown and generate a lemma

What kind of lemma?

Branch-and-Bound [Land, Doig 1960] [Dutertre, de Moura 2006]

Fundamental idea: use a solver for \mathbb{R} on problems from \mathbb{Z}

- Theory solver searches a solution for $C=\left\{c_{1}, \ldots, c_{k}\right\}$
- If no solution exists: return unsat
- If solution is integral: return sat
- If solution is fractional: return unknown and generate a lemma

What kind of lemma?
■ Must be a tautology in the theory
■ Excludes only non-integral solutions

Branch-and-Bound [Land, Doig 1960] [Dutertre, de Moura 2006]

Fundamental idea: use a solver for \mathbb{R} on problems from \mathbb{Z}

- Theory solver searches a solution for $C=\left\{c_{1}, \ldots, c_{k}\right\}$
- If no solution exists: return unsat
- If solution is integral: return sat
- If solution is fractional: return unknown and generate a lemma

What kind of lemma?
■ Must be a tautology in the theory
■ Excludes only non-integral solutions
■ $x \rightarrow \alpha_{x}:\left(c_{1} \wedge \ldots \wedge c_{k}\right) \Rightarrow\left(x \leq\left\lfloor\alpha_{x}\right\rfloor \vee x \geq\left\lceil\alpha_{x}\right\rceil\right)$

Branch-and-Bound - Example

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

Branch-and-Bound - Example

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

- Generate solution $x=-1, y=-\frac{1}{2}$

Branch-and-Bound - Example

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

- Generate solution $x=-1, y=-\frac{1}{2}$
- Not integral, generate $\left(c_{1} \wedge c_{2}\right) \Rightarrow(y \leq-1 \vee y \geq 0)$

Branch-and-Bound - Example

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

- Generate solution $x=-1, y=-\frac{1}{2}$

■ Not integral, generate $\left(c_{1} \wedge c_{2}\right) \Rightarrow(y \leq-1 \vee y \geq 0)$
■ Pass lemma to SAT solver which selects one part

Branch-and-Bound - Example

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

- Generate solution $x=0, y=0$

Branch-and-Bound - Example

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

- Generate solution $x=0, y=0$
- Integral, return sat

SMT solving with $\mathrm{B} \& B$

SMT solving with $\mathrm{B} \& \mathrm{~B}$

Theory of Hybrid Systems Informatik 2

SMT solving with B\&B

SMT solving with B\&B

SMT solving with B\&B

SMT solving with $\mathrm{B} \& \mathrm{~B}$

SMT solving with $B \& B$

Solution strategy for Nonlinear Arithmetic

- Eliminate one variable at a time
- Separate solution space into satisfiability equivalent regions

■ Check a single representative for each region

Solution strategy for Nonlinear Arithmetic

■ Eliminate one variable at a time

- Separate solution space into satisfiability equivalent regions

■ Check a single representative for each region

1-dimensional case

Solution strategy for Nonlinear Arithmetic

■ Eliminate one variable at a time
■ Separate solution space into satisfiability equivalent regions
■ Check a single representative for each region

1-dimensional case

Solution strategy for Nonlinear Arithmetic

■ Eliminate one variable at a time
■ Separate solution space into satisfiability equivalent regions
■ Check a single representative for each region

1-dimensional case

Solution strategy for Nonlinear Arithmetic

■ Eliminate one variable at a time
■ Separate solution space into satisfiability equivalent regions
■ Check a single representative for each region

1-dimensional case

Solution strategy for Nonlinear Arithmetic

- Eliminate one variable at a time
- Separate solution space into satisfiability equivalent regions

■ Check a single representative for each region

Solution strategy for Nonlinear Arithmetic

■ Eliminate one variable at a time

- Separate solution space into satisfiability equivalent regions

■ Check a single representative for each region

2-dimensional case

Solution strategy for Nonlinear Arithmetic

■ Eliminate one variable at a time

- Separate solution space into satisfiability equivalent regions

■ Check a single representative for each region

2-dimensional case

Solution strategy for Nonlinear Arithmetic

■ Eliminate one variable at a time

- Separate solution space into satisfiability equivalent regions

■ Check a single representative for each region

2-dimensional case

Solution strategy for Nonlinear Arithmetic

■ Eliminate one variable at a time

- Separate solution space into satisfiability equivalent regions

■ Check a single representative for each region

2-dimensional case

Solution strategy for Nonlinear Arithmetic

■ Eliminate one variable at a time

- Separate solution space into satisfiability equivalent regions

■ Check a single representative for each region

2-dimensional case

Solution strategy for Nonlinear Arithmetic

- Eliminate one variable at a time
- Separate solution space into satisfiability equivalent regions

■ Check a single representative for each region

Open questions:
■ How to generate roots and samples for 1-dimensional case?

- How to create k-dimensional points from $(k-1)$-dimensional points?

■ How to make sure, that $(k-1)$-dimensional samples properly separate k-dimensional regions?

Virtual Substitution weisifenivis 10801099] [Corifist 20011

■ Uses symbolic representation of roots (e.g. using solution formula)
■ Only for polynomials up to degree two*

- Substitutes roots into polynomials

■ Uses symbolic representation of roots (e.g. using solution formula)
■ Only for polynomials up to degree two*

- Substitutes roots into polynomials

$$
\text { Example: } y \geq x^{2} / 2-1 \wedge y \leq x / 2
$$

$$
y \geq x^{2} / 2-1 \wedge y \leq x / 2
$$

■ Uses symbolic representation of roots (e.g. using solution formula)
■ Only for polynomials up to degree two*

- Substitutes roots into polynomials

$$
\text { Example: } y \geq x^{2} / 2-1 \wedge y \leq x / 2
$$

■ Uses symbolic representation of roots (e.g. using solution formula)
■ Only for polynomials up to degree two*

- Substitutes roots into polynomials

$$
\text { Example: } y \geq x^{2} / 2-1 \wedge y \leq x / 2
$$

■ Uses symbolic representation of roots (e.g. using solution formula)
■ Only for polynomials up to degree two*

- Substitutes roots into polynomials

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

■ Uses symbolic representation of roots (e.g. using solution formula)
■ Only for polynomials up to degree two*

- Substitutes roots into polynomials

$$
\text { Example: } y \geq x^{2} / 2-1 \wedge y \leq x / 2
$$

■ Uses symbolic representation of roots (e.g. using solution formula)
■ Only for polynomials up to degree two*

- Substitutes roots into polynomials

$$
\text { Example: } y \geq x^{2} / 2-1 \wedge y \leq x / 2
$$

■ Uses symbolic representation of roots (e.g. using solution formula)
■ Only for polynomials up to degree two*

- Substitutes roots into polynomials

$$
\text { Example: } y \geq x^{2} / 2-1 \wedge y \leq x / 2
$$

Virtual Substitution weisifenivis 10901099] [corifist 20011

■ Uses symbolic representation of roots (e.g. using solution formula)

- Only for polynomials up to degree two*
- Substitutes roots into polynomials

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

Satisfying solution: $x=-1, y=\frac{x^{2}-2}{2}=-\frac{1}{2}$

Virtual Substitution and B\&B

■ If no solution exists: return unsat $y \geq x^{2} / 2-1 \wedge y \leq x / 2$
■ Otherwise follow path upwards

$\frac{x^{2}-2}{2}$
\uparrow
true $\wedge \frac{x^{2}-2}{2} \leq \frac{x}{2}$
\uparrow
-1
\uparrow
true

Virtual Substitution and B\&B

■ If no solution exists: return unsat $y \geq x^{2} / 2-1 \wedge y \leq x / 2$
■ Otherwise follow path upwards

- $x=-1$: integral

$\frac{x^{2}-2}{2}$
\uparrow
true $\wedge \frac{x^{2}-2}{2} \leq \frac{x}{2}$

-1
\uparrow
true

Virtual Substitution and B\&B

- If no solution exists: return unsat

$$
y \geq x^{2} / 2-1 \wedge y \leq x / 2
$$

■ Otherwise follow path upwards

- $x=-1$: integral
- $y=\frac{x^{2}-2}{2}=-\frac{1}{2}$: fractional

$\frac{x^{2}-2}{2}$
\uparrow
true $\wedge \frac{x^{2}-2}{2} \leq \frac{x}{2}$

-1

true

Virtual Substitution and B\&B

- If no solution exists: return unsat

$$
\begin{gathered}
y \geq x^{2} / 2-1 \wedge y \leq x / 2 \\
\uparrow \\
\frac{x^{2}-2}{2} \\
\text { true } \wedge \frac{x^{2}-2}{2} \leq \frac{x}{2} \\
\uparrow \\
-1 \\
\uparrow \\
\text { true }
\end{gathered}
$$

■ Otherwise follow path upwards

- $x=-1$: integral
- $y=\frac{x^{2}-2}{2}=-\frac{1}{2}$: fractional
- Generate $(y \leq-1 \vee y \geq 0)$

Cylindrical Algebraic Decomposition [colins 1975$]$ LLoot 20012

■ Complete, but doubly exponential runtime
■ two-phase approach: Projection and Lifting

Cylindrical Algebraic Decomposition [colis 1976 [lopt 2001$]$

■ Complete, but doubly exponential runtime
■ two-phase approach: Projection and Lifting

Projection

Given $P_{k} \subset \mathbb{Q}\left[x_{1}, \ldots, x_{k}\right]$ construct $P_{k-1} \subset \mathbb{Q}\left[x_{1}, \ldots, x_{k-1}\right]$ such that:
ξ_{1}, \ldots, ξ_{k} is a root of $P_{k} \Rightarrow \xi_{1}, \ldots, \xi_{k-1}$ is a root of P_{k-1}

Cylindrical Algebraic Decomposition [colins 1975 [Lout 2001$]$

■ Complete, but doubly exponential runtime
■ two-phase approach: Projection and Lifting

Projection

Given $P_{k} \subset \mathbb{Q}\left[x_{1}, \ldots, x_{k}\right]$ construct $P_{k-1} \subset \mathbb{Q}\left[x_{1}, \ldots, x_{k-1}\right]$ such that:
ξ_{1}, \ldots, ξ_{k} is a root of $P_{k} \Rightarrow \xi_{1}, \ldots, \xi_{k-1}$ is a root of P_{k-1}

Lifting

Given P_{k} and $\xi_{1}, \ldots, \xi_{k-1}$, we can obtain all roots of P_{k} by

- substituting all ξ_{i} and
- calculating univariate roots of $P_{k}\left[x_{i} / \xi_{i}\right]$.

Cylindrical Algebraic Decomposition

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

$$
P_{2}:\left\{y-\frac{x^{2}}{2}-1, y-\frac{x}{2}\right\}
$$

Cylindrical Algebraic Decomposition

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

$$
\begin{gathered}
P_{2}:\left\{y-\frac{x^{2}}{2}-1, y-\frac{x}{2}\right\} \\
\downarrow \\
P_{1}:\left\{x^{2}-x-2, x^{2}-2, x\right\}
\end{gathered}
$$

Cylindrical Algebraic Decomposition

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

$$
\begin{aligned}
& P_{2}:\left\{y-\frac{x^{2}}{2}-1, y-\frac{x}{2}\right\} \\
& P_{1}:\left\{x^{2}-x-2, x^{2}-2, x\right\} \\
& \quad \operatorname{roots}\left(\left\{x^{2}-x-2, x^{2}-2, x\right\}\right)
\end{aligned}
$$

Cylindrical Algebraic Decomposition

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

$$
\begin{aligned}
& P_{2}:\left\{y-\frac{x^{2}}{2}-1, y-\frac{x}{2}\right\} \\
& P_{1}:\left\{x^{2}-x-2, x^{2}-2, x\right\} \\
& \operatorname{roots}\left(\left\{x^{2}-x-2, x^{2}-2, x\right\}\right)
\end{aligned}
$$

(2) $\begin{aligned} & \text { Theory } \\ & \text { of Hybrid } \\ & \text { Systems } \\ & \text { Informatik } 2\end{aligned}$

Cylindrical Algebraic Decomposition

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

$$
\begin{aligned}
& P_{2}:\left\{y-\frac{x^{2}}{2}-1, y-\frac{x}{2}\right\} \\
& P_{1}:\left\{x^{2}-x-2, x^{2}-2, x\right\} \\
& \operatorname{roots}\left(\left\{x^{2}-x-2, x^{2}-2, x\right\}\right)
\end{aligned}
$$

(2) $\begin{aligned} & \text { Theory } \\ & \text { of Hybrid } \\ & \text { Systems } \\ & \text { Informatik } 2\end{aligned}$

Cylindrical Algebraic Decomposition

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

$$
P_{2}:\left\{y-\frac{x^{2}}{2}-1, y-\frac{x}{2}\right\}
$$

$$
\downarrow
$$

$$
P_{1}:\left\{x^{2}-x-2, x^{2}-2, x\right\}
$$

$$
\operatorname{roots}\left(\left\{x^{2}-x-2, x^{2}-2, x\right\}\right)
$$

Cylindrical Algebraic Decomposition

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

$$
\begin{aligned}
& P_{2}:\left\{y-\frac{x^{2}}{2}-1, y-\frac{x}{2}\right\} \quad \begin{array}{l}
y-\frac{3}{2}, y+\frac{1}{2} \\
\downarrow \\
P_{1}:\left\{x^{2}-x-2, x^{2}-2, x\right\} \\
\operatorname{roots}\left(\left\{x^{2}-x-2, x^{2}-2, x\right\}\right)
\end{array}
\end{aligned}
$$

Cylindrical Algebraic Decomposition

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

Cylindrical Algebraic Decomposition

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

Cylindrical Algebraic Decomposition

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

Satisfying solution: $x=-1, y=-\frac{1}{2}$

Cylindrical Algebraic Decomposition

Example: $y \geq x^{2} / 2-1 \wedge y \leq x / 2$

Satisfying solution: $x=-1, y=-\frac{1}{2}$
Note: intermediate samples were skipped

Cylindrical Algebraic Decomposition and B\&B

Some heuristics (that worked for us)

Cylindrical Algebraic Decomposition and B\&B

Some heuristics (that worked for us)

- Try to select integers

Cylindrical Algebraic Decomposition and B\&B

Some heuristics (that worked for us)

- Try to select integers
- Select integers from the middle of interval

Cylindrical Algebraic Decomposition and B\&B

Some heuristics (that worked for us)

- Try to select integers
- Select integers from the middle of interval
- Continue lifting to avoid splitting on unsat samples

Cylindrical Algebraic Decomposition and B\&B

Some heuristics (that worked for us)

- Try to select integers
- Select integers from the middle of interval
- Continue lifting to avoid splitting on unsat samples

■ Do not lift multiple integers from a single interval

Cylindrical Algebraic Decomposition and B\&B

Some heuristics (that worked for us)

- Try to select integers
- Select integers from the middle of interval
- Continue lifting to avoid splitting on unsat samples

■ Do not lift multiple integers from a single interval

- Be careful with more involved backtracking schemes

Cylindrical Algebraic Decomposition and B\&B

Some heuristics (that worked for us)

- Try to select integers
- Select integers from the middle of interval
- Continue lifting to avoid splitting on unsat samples
- Do not lift multiple integers from a single interval
- Be careful with more involved backtracking schemes
- Different lemmas if multiple assignments are rational:
- Smallest variable
- Largest variable
- Activity-based
\rightarrow does not matter

What about existing tools?

■ Linearization [Borralleras ${ }^{+}$2009]
Approximation and incremental refinement by an LIA formula

What about existing tools?

■ Linearization [Borralleras ${ }^{+}$2009]
Approximation and incremental refinement by an LIA formula
■ Interval Constraint Propagation (iSAT3[scheibler+ 2013], raSAT [Van Kanh $^{+}$2014])
Use bounds on variables to shrink solution space

What about existing tools?

■ Linearization [Borralleras ${ }^{+}$2009]
Approximation and incremental refinement by an LIA formula
■ Interval Constraint Propagation (iSAT3[scheibler+ 2013], raSAT [Van Kanh $^{+}$2014])
Use bounds on variables to shrink solution space
■ Bit-blasting (AProVE[Gies ${ }^{+}$2014], CVC4 $_{[B a r r e t t}{ }^{+}$2011], Z3 [de Moura 2012])
Encode integers as vectors of boolean variables

Our approach

Strategies

$$
\begin{array}{ll}
\mathrm{RAT}_{\mathbb{Z}}: & M_{\text {SAT }} \rightarrow M_{\text {LRA }} \rightarrow M_{V S_{\mathbb{Z}}} \rightarrow M_{\mathrm{CAD}_{\mathbb{Z}}} \\
\operatorname{RAT}_{\text {blast }}: & M_{\text {IncWidth }} \rightarrow M_{\text {IntBlast }} \\
\operatorname{RAT}_{\text {blast.Z }}: & M_{\text {IncWidth }} \rightarrow M_{\text {IntBlast }} \rightarrow \operatorname{RAT}_{\mathbb{Z}}
\end{array}
$$

Our approach

Strategies

$$
\begin{array}{ll}
\operatorname{RAT}_{\mathbb{Z}}: & M_{\text {SAT }} \rightarrow M_{\text {LRA }} \rightarrow M_{V S_{\mathbb{Z}}} \rightarrow M_{C_{C A D}^{\mathbb{Z}}} \\
\operatorname{RAT}_{\text {blast }}: & M_{\text {IncWidth }} \rightarrow M_{\text {IntBlast }} \\
\operatorname{RAT}_{\text {blast.Z }}: & M_{\text {IncWidth }} \rightarrow M_{\text {IntBlast }} \rightarrow \operatorname{RAT}_{\mathbb{Z}}
\end{array}
$$

■ RAT $_{\mathbb{Z}}$: uses branch-and-bound approach as described
■ M MntBlast: used bit-blasting approach

- M MncWidth: creates and widens artificial bounds on all variables

■ RAT $_{\text {blast. } \mathbb{Z}}$: uses $\mathrm{M}_{\text {IncWidth }}$ up to 4 bits and uses $\mathrm{RAT}_{\mathbb{Z}}$ afterwards

Our approach

Strategies

$$
\begin{array}{ll}
\mathrm{RAT}_{\mathbb{Z}}: & M_{\text {SAT }} \rightarrow M_{\text {LRA }} \rightarrow M_{V S_{\mathbb{Z}}} \rightarrow M_{\mathrm{CAD}_{\mathbb{Z}}} \\
\operatorname{RAT}_{\text {blast }}: & M_{\text {IncWidth }} \rightarrow M_{\text {IntBlast }} \\
\operatorname{RAT}_{\text {blast.Z }}: & M_{\text {IncWidth }} \rightarrow M_{\text {IntBlast }} \rightarrow \operatorname{RAT}_{\mathbb{Z}}
\end{array}
$$

■ $\mathrm{RAT}_{\mathbb{Z}}$: uses branch-and-bound approach as described
■ MIntBlast: used bit-blasting approach
■ M MncWidth: creates and widens artificial bounds on all variables
■ RAT $_{\text {blast.Z }}$: uses $\mathrm{M}_{\text {IncWidth }}$ up to 4 bits and uses $\mathrm{RAT}_{\mathbb{Z}}$ afterwards

- Rationale: find small solutions fast, use $\mathrm{RAT}_{\mathbb{Z}}$ for large solutions

Experimental results

Bench Solver \downarrow	$\mathrm{rk} \rightarrow$	$\begin{array}{cc} \text { AProve }(8129) \\ \# \quad \text { time } \\ \hline \end{array}$		$\begin{array}{cc} \text { Calypto }(138) \\ \# \quad \text { time } \\ \hline \end{array}$		$\begin{array}{cc} \text { LEIPZIG } & (167) \\ \# & \text { time } \\ \hline \end{array}$		$\begin{array}{cc} \text { CALYPTO }_{\infty} & (138) \\ \# & \text { time } \\ \hline \end{array}$		$\begin{array}{lr} \text { all } & (8572) \\ \# & \text { time } \end{array}$	
$\overline{\mathrm{RAT}}_{\mathbb{Z}}$	sat unsat	$\begin{array}{r} 7283 \\ 73 \end{array}$	2294.8 14.3	$\begin{aligned} & 67 \\ & 52 \end{aligned}$	$\begin{aligned} & 71.2 \\ & 40.7 \end{aligned}$	9 0	$\begin{aligned} & 260.4 \\ & 0.0 \end{aligned}$	$\begin{array}{r} 133 \\ \mathbf{3} \end{array}$	$\begin{aligned} & 298.9 \\ & <0.1 \end{aligned}$	$\begin{array}{r} 7492 \\ 128 \end{array}$	$\begin{aligned} & 2925.3 \\ & 55.1 \end{aligned}$
$\overline{\mathrm{RAT}}$ blast	sat unsat	$\begin{array}{r} 8025 \\ 12 \end{array}$	$\begin{aligned} & 866.3 \\ & 0.4 \end{aligned}$	$\begin{array}{r} 21 \\ 5 \end{array}$	$\begin{aligned} & 35.6 \\ & 0.1 \end{aligned}$	$\begin{array}{r} 156 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 603.3 \\ & 0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 87 \\ 0 \end{array}$	$\begin{aligned} & 16.0 \\ & 0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 8289 \\ 17 \end{array}$	$\begin{aligned} & 1521.2 \\ & 0.5 \\ & \hline \end{aligned}$
$\overline{\text { RAT }}$ blast. $^{\mathbb{Z}}$	sat unsat	$\begin{array}{r} 8025 \\ 71 \end{array}$	$\begin{aligned} & \mathbf{7 8 0 . 7} \\ & 42.6 \end{aligned}$	$\begin{aligned} & \hline 79 \\ & 46 \end{aligned}$	$\begin{aligned} & 122.3 \\ & 127.5 \end{aligned}$	$\begin{array}{r} 156 \\ 0 \end{array}$	$\begin{aligned} & \hline 511.5 \\ & 0.0 \end{aligned}$	$\begin{array}{r} 134 \\ 3 \end{array}$	$\begin{aligned} & \hline 21.8 \\ & 0.1 \end{aligned}$	$\begin{array}{r} \hline \mathbf{8 3 9 4} \\ 120 \end{array}$	$\begin{aligned} & \hline 1436.3 \\ & 170.2 \end{aligned}$
Z3	sat unsat	$\begin{gathered} 7992 \\ \mathbf{1 0 2} \end{gathered}$	$\begin{aligned} & 14695.5 \\ & \mathbf{5 9 5 . 9} \end{aligned}$	$\begin{aligned} & \hline 78 \\ & \mathbf{5 7} \end{aligned}$	$\begin{aligned} & \hline 19.1 \\ & 117.6 \end{aligned}$	$\begin{array}{r} \hline 158 \\ 0 \end{array}$	$\begin{aligned} & \hline 427.6 \\ & 0.0 \end{aligned}$	$\begin{array}{r} 126 \\ 3 \end{array}$	$\begin{aligned} & \hline 57.3 \\ & 2.3 \end{aligned}$	$\begin{gathered} 8354 \\ \mathbf{1 6 2} \end{gathered}$	$\begin{aligned} & 15199.5 \\ & \mathbf{7 1 5 . 8} \end{aligned}$
AProVE	sat unsat	$\begin{array}{r} 8025 \\ 0 \end{array}$	$\begin{aligned} & 7052.2 \\ & 0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 74 \\ 0 \end{array}$	$\begin{aligned} & 559.1 \\ & 0.0 \end{aligned}$	$\begin{array}{r} 159 \\ 0 \end{array}$	$\begin{aligned} & \hline 696.5 \\ & 0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 127 \\ 0 \end{array}$	$\begin{aligned} & 685.2 \\ & 0.0 \end{aligned}$	$\begin{array}{r} 8385 \\ 0 \end{array}$	$\begin{aligned} & 8993.0 \\ & 0.0 \end{aligned}$

■ Comparing against Z3 and AProVE:
■ Good on sat, lagging behind for unsat (preprocessing?)

- Very fast (we start with a smaller bit-width)

■ Comparing our strategies:

- $\mathrm{RAT}_{\mathbb{Z}}$ complements $\mathrm{RAT}_{\text {blast }}$ nicely on many examples
- $\mathrm{RAT}_{\mathbb{Z}}$ finds large solution fast in many cases

Experimental results

Conclusion

- Branch-and-Bound is applied naturally to nonlinear arithmetic
- Comparably easy implementation
- Many possibilities for heuristics

Conclusion

- Branch-and-Bound is applied naturally to nonlinear arithmetic
- Comparably easy implementation
- Many possibilities for heuristics
- Nicely complements bit-blasting approach
- Benefits from improvements on NRA

