
SMT Solving for Arithmetic Theories: Theory and Tool Support

Erika Ábrahám and Gereon Kremer
RWTH Aachen University

Aachen, Germany
abraham@cs.rwth-aachen.de gereon.kremer@cs.rwth-aachen.de

Abstract—Satisfiability checking aims to develop algorithms
and tools for checking the satisfiability of logical formulas.
Driven by the impressive success of SAT solvers for proposi-
tional logic, Satisfiability-Modulo-Theories (SMT) solvers were
developed to extend the scope also to different theories. Today,
SMT solving is widely used in many applications, for example
verification, synthesis, planning or product design automation.

In this tutorial paper we give a short introduction to the
foundations of SMT solving, describe some popular SMT
solvers and illustrate their usage. We also present our own
solver SMT-RAT, which was developed to support the strategic
combination of different decision procedures, putting a focus
on arithmetic theories.

Keywords-Logic, Algorithms, Algebra, Arithmetic, Computer
aided analysis

I. INTRODUCTION

The problem to decide the satisfiability of first order
logic formulas is central in many research and applica-
tions areas like, e.g., program verification and termination
analysis, symbolic execution, test-case generation, program
and controller synthesis, combinatorial optimisation, product
design, planning and scheduling, just to mention a few. For
propositional logic formulas, since the early 1960s steadily
improving algorithms were devised and implemented in
SAT solvers, which nowadays can successfully solve huge
industrial problems with millions of variables. Driven by this
success, the scope was expanded to richer logics, including
the theory of equalities and uninterpreted functions, array
theory, bit-vector and floating-point arithmetic, difference
logic, and linear and non-linear arithmetic, launching a
new field of research named Satisfiability Modulo Theories
(SMT) solving [1], [2].

In this tutorial paper we give a brief introduction to the
foundations of SMT solving, discuss some of the theories
that are supported by the SMT-LIB standard, describe a
few SMT solvers, illustrate their usage, and mention some
further main achievements of the community around SMT
solving. We also showcase our SMT solver SMT-RAT as
an example for solvers dedicated to arithmetic problems,
and highlight its ability to strategically combine different
decision procedures.

II. SMT PROBLEMS

Given a first-order logic formula over some theories, the
satisfiability problem poses the question whether there exists

a model that evaluates the formula to true. To solve the satis-
fiability problem for propositional logic, whose formulas are
Boolean combinations of Boolean variables (propositions),
we need to decide whether we can substitute Boolean values
for the propositions appearing in a formula such that the for-
mula evaluates to true. As a second example, for quantifier-
free real arithmetic formulas, being Boolean combinations
of polynomial equations and inequalities over real-valued
variables, the problem consists of deciding whether we can
assign satisfying real values to the formula’s variables.

Different logics come with different expressive power for
problem encoding on the one hand, but also with different
worst-case complexity for solving the satisfiability problem
on the other hand. Propositional logic, for which the sat-
isfiability problem is known to be NP complete, is well-
suited to model combinatorial problems over finite domains.
Despite NP-completeness, state-of-the-art SAT solvers are
able to solve impressively large problems stemming from
practical applications. Our second example, quantifier-free
real arithmetic is more expressive and can be used to
model non-linear problems over continuous domains; despite
a singly-exponential theoretical bound, currently available
tools need in worst case doubly exponential time and space
to solve the satisfiability problem, limiting their applicability.
Therefore, the selection of the logic for problem encoding
is an important decision: the logic must be powerful enough
to encode the problem at hand, but it should not be unnec-
essarily expressive as otherwise solvers might fail to solve
the problem in practically useful time.

SMT solving originally aims at solving quantifier-free
first-order logic formulas over different theories, though
there are also SMT solvers that support quantifiers. To
illustrate the logical focus of SMT solving, we informally
describe a few representative (quantifier-free) theories along
with example formulas.

Real, integer and mixed real-integer arithmetic

x2 + y2 < 1 ∧ x ≥ 1 with x, y ∈ R

In these arithmetic theories, variables range over the re-
als or the integers. Besides addition and multiplication as
functions, comparison predicates can be used to specify
equalities and inequalities as atomic constraints. Formulas
are Boolean combinations of such atomic constraints. The



theories are called linear if they do not use multiplication
and non-linear otherwise.
Equalities and uninterpreted functions

a = b ∨ f(a, b) 6= f(b, a) with a, b ∈ D

If the satisfiability of a formula involving some functions
is too hard to determine, sometimes it is helpful to sim-
plify the problem by hiding the meaning of functions,
resulting in uninterpreted functions. This relaxed formula
is satisfiable if and only if there exist variable values and
function interpretations that make the formula true. Note that
the abstraction is over-approximating: if the abstraction is
unsatisfiable then the original formula is also unsatisfiable,
however, a satisfying solution is not necessarily consistent
with the original function interpretations. In the latter case
we can refine the abstraction by additionally encoding some
satisfiability-relevant function properties.
Bit-vector arithmetic

x+ 4 = (y << 1) with x, y ∈ B8

Bit-vector variables can be used to encode the behaviour of
integer variables in programming languages – most notably
including overflow semantics – using a fixed number of bits.
As such, they are commonly used for program verification.
Floating-point arithmetic

x/0.0 = NaN with x ∈ F23,8

Similarly as bit-vectors for integers, floating-point variables
can be used to encode the behaviour of floating-point vari-
ables in programs based on the IEEE 754 standard, including
±∞, NaN and different rounding modes. Also this theory
is useful to encode program executions, most typically in
the context of program analysis.

Other theories with SMT-support are suited to encode the
behaviour of, e.g., arrays, enumerations, algebraic data types,
tuples or even recursive data types.

For many applications, the problem encoding requires a
combination of these theories. For example, both bit-vectors
and floating-point constraints might be necessary to encode
program executions. Therefore, some SMT solvers offer
support for certain combinations of theories, based on a
generic scheme to combine decision procedures for different
theories if the theory combination fulfils certain properties.

III. SMT SOLVING

There are two fundamentally different SMT-solving ap-
proaches. Eager SMT-solving, commonly used for bit-
vectors or uninterpreted functions, can be applied to theories
that are not more expressive than propositional logic. This
technique eliminates theory constraints first (“eagerly”) by
transforming formulas to satisfiability-equivalent proposi-
tional logic formulas. Afterwards, SAT solvers can be used
to check the propositional logic formula for satisfiability.

formula ϕ

Boolean abstraction ϕ′

SAT solver

Theory solver(s)

constraints
SAT+solution

or
UNSAT+explanation

SAT or UNSAT

Figure 1. Lazy SMT solving

This approach has some similarities to polynomial reduc-
tions of NP complete problems: to solve a certain problem,
we reduce it to another problem for which we know how to
achieve the solution.

The other approach is called lazy SMT-solving and relies
on the interaction of a SAT solver with one or more theory
solver(s) as illustrated in Figure 1. For an input formula ϕ,
first its Boolean abstraction ϕ′ is computed by replacing
every theory constraint c by a fresh proposition xc. A
SAT solver is employed to compute a solution for the
abstraction ϕ′. Every such solution induces a set of theory
constraints consisting of all constraints c for which xc is
assigned to true, and the negation ¬c of all constraints
c with xc being false. The theory solver is invoked to
decide whether this set of theory constraints is consistent
in the theory. If the theory solver determines consistency
then ϕ is satisfiable. Otherwise, the abstraction is refined
by learning (the Boolean abstraction of) an explanation for
the inconsistency, and the SAT solver searches for further
solutions. If the abstraction turns out to be unsatisfiable then
the input formula is unsatisfiable, too.

The above-described approach, also called full lazy SMT
solving, consults the theory solver only for complete
Boolean solutions. A more popular variant, less lazy SMT
solving, invokes the theory solver more frequently on partial
assignments to avoid that the SAT solver makes unnecessary
effort to complete a partial assignment that is already con-
flicting in the theory.

Besides SMT solving, in this paper we will not further
discuss other approaches for solving satisfiability problems,
we only mention some of them at this point. Linear pro-
gramming aims at finding an optimal solution (with respect
to an objective) for a set of linear real-arithmetic constraints;
prominent solvers include glpk, CPLEX, Gurobi or SCIP,
but these methods are also integrated into Excel, Maple,
MATLAB or Mathematica. Constraint programming has its



roots in artificial intelligence and supports traditionally finite
domains; some popular solvers include Gecode, HaifaCSP,
OR-Tools or sunny-cp. Answer set programming came out
of logic programming and aims at finding stable models for
possibly quantified formulas; some examples for tools are
ASPeRiX, Clasp, DLV and Smodels. Another related topic is
(interactive) theorem proving, where axiomatic systems are
defined and used for deduction; some well-known tools are
Coq, Isabelle/HOL, Lean, SPASS and Vampire.

IV. THE SMT LIBRARY

The increasing activities and success in the area of
SMT solving raised the need for a common community
framework, providing a platform for communication and
exchange, and defining standards for input languages and
solver interfaces. This need was satisfied by the Satisfiability
Modulo Theories Library (SMT-LIB) initiative [3].

SMT-LIB established and maintains a selection of theory
and logic specifications as well as the SMT-LIB standard
which serves as the common input language for most SMT
solvers. Furthermore, SMT-LIB provides a large collection
of benchmarks, which are used not only for tool development
and testing but also as the basis for the evaluations in annual
competitions among SMT solvers.

A. Theories

Theories are the basic building blocks of SMT logics. As
of December 2017, SMT-LIB specifies seven different the-
ories: Core, ArraysEx, FixedSizeBitVectors, FloatingPoint,
Ints, Reals and Reals Ints. We exemplarily present the two
theories Core and Reals Ints here; for the others we refer
to the SMT-LIB website. For all theories, datatypes and the
syntax for functions and predicates are defined by a formal
language. As the aim is to fix a standard syntax for inputs,
the semantics is given only by informal descriptions.

The Core theory describes the Boolean framework of
first-order logic. The excerpt shown in Figure 2 defines the
Boolean domain with two constants true and false, as well
as a number of operators below it. Note that not and and
are defined as Boolean operators while = and ite have a
type parameter A and thus can be instantiated with different
argument types.

The Reals Ints theory (see Figure 3) describes all theory
constructs related to either reals or integers. This includes
numeric constants, arithmetic operations like addition and
multiplications and comparisons, but also functions like
mod, abs or conversions to real and to int.

These standard theory specifications sometimes differ
from what actual solvers implement for a variety of reasons.

Solvability SMT solvers rely on embedded decision pro-
cedures, which sometimes cannot handle the full theory but
only a fragment of it. Hence, sometimes only inputs with
constraints that are suitable for the given algorithm can
be considered. Problematic functions are for example div

:sorts ((Bool 0))
:funs (
(true Bool)
(false Bool)
(not Bool Bool)
(and Bool Bool Bool :left-assoc)
...
(par (A) (= A A Bool :chainable))
(par (A) (ite Bool A A A))
...

)

Figure 2. SMT-LIB Core theory

:sorts ((Int 0) (Real 0))
:funs (
(NUMERAL Int)
(- Int Int)
(- Int Int Int :left-assoc)
(+ Int Int Int :left-assoc)
(* Int Int Int :left-assoc)
(div Int Int Int :left-assoc)
(mod Int Int Int)
(abs Int Int)
(< Int Int Bool :chainable)
...
(DECIMAL Real)
(- Real Real)
(- Real Real Real :left-assoc)
(+ Real Real Real :left-assoc)
(* Real Real Real :left-assoc)
(/ Real Real Real :left-assoc)
(< Real Real Bool :chainable)
...
(to_real Int Real)
(to_int Real Int)
...

)

Figure 3. SMT-LIB Reals Ints theory

and abs. Though sometimes these functions can be reduced
to constructs from the supported theory fragment, not all
solvers implement such reductions.

Interoperability Under the given definition in the standard,
Int and Real can only interact after being converted using
to real or to int which is highly inconvenient. However,
as Int is a subset of Real and all the common arithmetic
operations and comparisons are compatible for the two
domains, most solvers allow to seamlessly move between
the two domains.

Underspecification In some cases the semantics is under-
specified and allows for a certain freedom in interpretation.
E.g., the result of a division by zero can be defined arbitrarily
as long as division remains a total function. This can lead to
differing interpretations by different solvers, which is why
solvers may also reject such inputs in practice.

Unexpected specification Considering the datatype Real,
the user would expect a solver to handle the full set of
real numbers. While this expectation is usually met for Int,



(logic QF_LRA
:theories (Reals)
:language
"Closed quantifier-free formulas built over

arbitrary expansions of the Reals signature
with free constant symbols, but containing
only linear atoms, that is, atoms with no
occurrences of the function symbols * and /,
except as specified the :extensions
attribute."

:extensions
"Terms with _concrete_ coefficients are also

allowed, that is, terms of the form c, (* c
x), or (* x c) where x is a free constant
and c is an integer or rational coefficient.

- An integer coefficient is a term of the form m
or (- m) for some numeral m.

- A rational coefficient is a term of the form d
, (- d) or (/ c n) for some decimal d,
integer coefficient c and numeral n other
than 0.

")

Figure 4. SMT-LIB QF LRA logic

representing any arbitrary value from Real is not possible.
Upon closer inspection, the specification actually states that
Real does not contain all real numbers, but only the algebraic
numbers.

B. Logics

Based on the above theories, SMT-LIB defines a large,
but by no means exhaustive, list of logics. A logic defines a
fragment of a first-order logic over one or more theories. If a
certain logic is specified, this usually means that there is an
interest in solving that specific logic, either because there are
effective solving techniques handling exactly this fragment
or because some applications need exactly this modelling
language.

Common restrictions are to disallow quantification (in-
dicated by a leading QF for “quantifier-free”) or to re-
move certain functions from the signature. A few examples
for widely used logics are QF LRA (quantifier-free linear
real arithmetic), QF NRA (quantifier-free non-linear real
arithmetic), QF BV (quantifier-free bit-vectors) or UFLRA
(quantified uninterpreted functions and linear real arith-
metic). The language restrictions are given in an informal
format, but aim to be precise (see Figure 4 for the example
of QF LRA).

C. SMT-LIB language

Based on the definitions of theories and logics, the SMT-
LIB standard provides a specification of an input language
for SMT problems. This language is designed to be easy to
parse and to extend. Some simple examples are shown in
Figures 5, 6 and 7 together with possible results (listed as
comments starting with a semicolon).

(set-logic QF_UF)
(declare-const p Bool)
(assert (and p (not p)))
(check-sat) ; unsat

Figure 5. Example propositional logic problem

(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)
(assert (> (+ x y) 1))
(assert (= x (+ y 1)))
(check-sat) ; sat
(get-model) ; x = 2, y = 1

Figure 6. Example QF LIA problem

Figure 5 shows an example for a propositional logic
problem. After specifying the logic (where we use QF UF
for propositional logic as there is no pure propositional
logic in the SMT standard) and some variables, we can use
assert to hand over formulas to the solver and check for
satisfiability using check-sat.

Figure 6 shows a QF LIA example, where get-model
additionally asks for a model of the specified problem. A
number of other commands are available, for example to
compute unsatisfiable cores, solve a sequence of problems
incrementally or perform optimisations.

A combined example is shown in Figure 7. This example
uses two integer variables x and y. We first assert f1 : x < 1
and f2 : y > 2 and then open a new scope in which we
additionally assert that f3 : x = y. Now we ask the solver to
check whether the given formula x < 1∧y > 2∧x = y is sat-
isfiable. Obviously it is not and using get-unsat-core
we can obtain a reason for that. In this case, the reason
will be f1, f2, f3. Now we can leave the scope which will

(set-logic QF_LIA)
(set-option :produce-unsat-cores true)

(declare-const x Int)
(declare-const y Int)

(assert (! (< x 1) :named f1))
(assert (! (> y 2) :named f2))
(push 1)
(assert (! (= x y) :named f3))
(check-sat) ; unsat
(get-unsat-core) ; (f1 f2 f3)
(pop 1)
(check-sat) ; sat
(get-model) ; x = 0, y = 3
(assert (! (< y 5) :named f4))
(maximize (+ x y))
(check-sat) ; sat
(get-model) ; x = 0, y = 4

Figure 7. Example QF LIA problem



remove f3 and again ask for satisfiability. This time, the
formula x < 1 ∧ y > 2 is satisfiable and we get a model
using get-model, for example x = 0, y = 3. Additionally,
we could now ask for an optimal solution: we add a new
constraint y < 5 and tell the solver to maximise x + y.
The problem is still satisfiable and the model should be
x = 0, y = 4.

Note that it highly depends on the combination of solver
and logic whether a specific feature is available or works as
expected. While most of the commands shown in Figure 7
are part of the SMT-LIB language, every solver is free to
offer custom commands. For example, maximize is such
a custom extension, though it is implemented consistently
by a variety of solvers. Even if part of the SMT-LIB
language, many problems that can be expressed exceed the
functionalities of current solvers. Generation of unsatisfiable
cores is oftentimes implemented rather naively. Optimisation
on the other hand is nicely done for linear arithmetic by
several solvers, but non-linear optimisation is much harder
and rarely supported, and for other theories like e.g. uninter-
preted functions, its meaning is not even clearly specified.

D. Benchmarks

The SMT-LIB initiative hosts a large selection of open-
access benchmark inputs. This does not only allow re-
searchers to test their solvers, but also gives a common
basis to compare applicability and efficiency of different
approaches. Though doubts about the representativeness of
the benchmarks and the generality of results obtained from
these benchmarks are always justifiable, the selection of
benchmarks proves to be very valuable in practice.

As of 2017, there are in total more than 257.000 bench-
marks available for different logics. The quantifier-free
arithmetic theories have about 10.000 linear benchmarks
(in QF LRA, QF LIA, QF RDL and QF IDL) and about
35.000 non-linear benchmarks (in QF NRA and QF NIA).
These benchmarks are regularly updated, hence new appli-
cations can submit interesting benchmarks and in this way
implicitly guide future developments in SMT-solving.

V. THEORY SOLVING MODULES

The lazy SMT-solving approach presented in Section II
provides a framework that can be instantiated with different
theories. Independently of the underlying theory, the SAT
solver takes over responsibility for the Boolean structure
of the input problem, such that the theory solver needs to
deal with sets (conjunctions) of theory constraints only and
may even offload internal case-splitting to the SAT solver.
We now discuss some decision procedures as potential
candidates to be implemented as theory solver modules for
arithmetic theories.

The best-known approach to solve linear real-arithmetic
constraint systems is the simplex algorithm. Although it
exhibits an exponential worst-case complexity, it performs

very good in practice and is used in large industrial settings
to solve linear optimisation problems. In [4] a variant of
simplex suitable for SMT solving was presented, which was
extended in [5] to allow also optimisation queries. Other
extensions target linear integer arithmetic [6] or non-linear
arithmetic via linearisation techniques [7].

Another approach for solving linear real-arithmetic con-
straint systems is the Fourier-Motzkin variable elimination.
Though it is usually inferior to the simplex algorithm
performance-wise, in contast to simplex it can be used also
for quantifier elimination. For example, [8] employs Fourier-
Motzkin variable elimination in the context of quantified
linear real arithmetic.

As for non-linear arithmetic, only a few algebraic pro-
cedures were adapted as theory solvers. The cylindrical
algebraic decomposition due to Collins [9] is a complete
quantifier elimination procedure for real-algebraic problems
and has spawned a lot of research in computer algebra.
It was adapted and embedded as a theory solver in the
SMT-RAT solver [10] and has seen various improvements
since [11], [12]. An elegant adaptation of this algorithm,
which significantly differs from the presented SMT-solving
approach, was published in [13] an implemented in the Z3
solver.

The virtual substitution due to Weispfenning [14] is a
quantifier elimination procedure that is limited to an arbi-
trary but fixed polynomial degree, in practice degree two or
three for most solvers. Nevertheless, it proved to be very
effective in practical SMT solving both on its own and as a
pre-processor to the CAD method [15].

Gröbner bases can be used to check the consistency
of polynomial equation systems in the complex domain.
Although for the real domain they can only witness unsat-
isfiability in general, they can be a valuable tool for certain
problems as shown in [16].

Last but not least, also interval constraint propagation
[17], a technique based on interval arithmetic, can be used
for solving non-linear real arithmetic problems [18], [19].

The sheer number of decision procedures rooted in differ-
ent areas and embedded into SMT solvers could suggest that
such embeddings are merely a matter of implementation. It
indeed is for a very naive embedding, but SMT solving usu-
ally sees drastic speedups and becomes feasible in practice
only if certain features are available. Unfortunately, many
decision procedures do not have these features, therefore
they need to be adapted in order to enable an efficent SMT
embedding.

We call a theory solver SMT compliant if it is incremental,
can generate infeasible subsets or other types of explanations
for inconsistency, and supports backtracking. These notions
are explained in the following.

In less lazy SMT-solving, the constraint sets of most
theory calls are extensions of the previous theory call by



constraints corresponding to the recent extension of an
incomplete Boolean assignment since the last theory call. If
the theory solver does not check each set independently but
instead it re-uses information gained during previous checks
then we say that it works incrementally.

If the theory solver determines inconsistency of its re-
ceived constraints then the SAT solver needs to exclude from
its further search all Boolean solutions that would induce that
the given constraints should hold together. It could of course
do so by adding the information that the given constraints
together should not be selected. However, inconsistency
is often caused just by a small subset of the constraints.
Therefore, it is advantageous if the theory solver provides an
explanation for the inconsistency in form of a theory lemma
(tautology), which is often given as an infeasible subset of
the input constraints. Unsurprisingly, smaller explanations
often lead to stronger performance benefits.

After such a conflict has occurred, the SAT solver back-
tracks by undoing some of its decisions about which part
of the search space should be explored next. Whenever
this happens, some constraints will also be removed from
the constraint set, which the theory solver needs to check
for consistency. We say that a theory solver can backtrack
if it can remove single constraints from its current set of
constraints, without loosing all previously collected infor-
mation about the solving process. If this is possible then,
after backtracking, the theory solver can continue its search
incrementally, without a full restart of its computations. On
the one hand, the ability to backtrack oftentimes yields a
significant performance increase at the point of backtracking,
but on the other hand it might also cause a remarkable
computational overhead for bookkeeping.

VI. SMT SOLVERS

There is a large number of SMT solvers available. Here
we briefly describe some of them with functionalities for
non-linear real arithmetic. More solvers for different logics
can be found on the SMT-LIB home page [3] and on the
home pages of the SMT competitions.

AProVE [20] has been originally developed for program
termination analysis. In that context, it needs to solve a large
number of non-linear integer problems quickly, for which
it uses bit-blasting. AProVE has been the winner in the
respective logic in several editions of the SMT competition.

CVC4 [21] is one of the largest open-source solvers
with a broad functionality, including linear arithmetic, bit-
vectors, arrays, strings, uninterpreted functions and several
combinations of these theories. CVC4 tackles non-linear
arithmetic with a bit-blasting approach similar to [20] for
integer problems and with different linearisation techniques
for problems over the reals. For some theories also quantifi-
cation is supported.

iSAT3 [22] is based on the fast but incomplete interval
constraint propagation method and is able to handle, beyond

the usual arithmetic constructs, also extensions like trigono-
metric, exponential and logarithmic functions in order to
verify industrial C programs. Unfortunately, iSAT3 does not
support the SMT-LIB language but it comes with an own
custom format.

MiniSmt [23] was developed for termination analysis.
It interfaces the SAT solver MiniSat [24], the SMT solver
Yices, and libraries from TTT2. The approach is incomplete
and solves satisfiable instances only, but if it succeeds then
it computes satisfying models quickly. Besides bit-blasting
for integers, also non-integrals are reduced to the integral
setting using an extended version of rational arithmetic.

raSAT [25] employs a variation of interval constraint
propagation techniques for solving non-linear arithmetic
problems in an incomplete manner. Its approach combines
over-approximation and under-approximation to effectively
solve both satisfiable and unsatisfiable problems.

Yices 2 [26] is an SMT solver supporting the theories
of uninterpreted functions with equality, real and integer
arithmetic, bitvectors, scalar types, and tuples. The solver
module for non-linear real arithmetic is based on the same
technique as implemented in Z3.

Z3 [27] is one of the most well-known SMT solvers.
Besides arithmetic theories, Z3 supports the theories of
bit-vectors, arrays, datatypes, equalities and uninterpreted
functions, and quantifiers. For non-linear real arithmetic, it
instantiates an elegant variation of the cylindrical algebraic
decomposition method in the model-constructing satisfiabil-
ity calculus framework [13].

VII. THE SMT-RAT SOLVER

In this section we introduce our free and open-source
solver SMT-RAT (SMT Real Arithmetic Toolbox) [28], which
was developed with a focus on non-linear arithmetic prob-
lems.

One of its main features is that it offers a library of
solver modules which can be combined strategically by the
user. The combination is specified by a strategy, which
defines a tree of modules. The root node receives the input
problem, which it might solve alone, but it might also
pass on (sub-)problems to its children. Different types of
problems can be passed on to different children, specified
by syntactic conditions on the (sub-)problems. Examples for
such syntactic conditions are for example whether the (sub-
)problem contains uninterpreted functions or bit-vectors, for
arithmetic problems only equalities, only strict inequalities,
only linear constraints, or non-linear constraints of certain
degrees. The conditions are evaluated at runtime, and if the
conditions are satisfied for several children then they can be
called in parallel. This way, multiple backends can work on
the same task, providing an effective way to exploit multi-
core processors.



Preprocessing

SAT

ICP

VS

CAD

Simplex
Branch&Bound

Simplex

non-linear
linear
real linear

integer

Figure 8. Example SMT-RAT strategy

Every module internally maintains a set of its received
formulas and implements four methods: one for receiving a
new input formula incrementally (add), one for backtracking
(remove), one for checking the consistency of the current
problem (check) and one for providing models for consistent
problems or providing explanations for inconsistent prob-
lems (updateModel). The result of a consistency check can
be SAT, UNSAT or UNKNOWN. The latter might be returned
not only by incomplete methods but also if branching should
be lifted from the theory to the SAT level, e.g. by the branch-
and-bound method (where the branching is communicated in
the form of a lemma).

SMT-RAT currently offers the following modules: a
parser for the SMT-LIB language, several pre-processing
techniques, a SAT solver, and a whole range of theory
solvers including implementations for the simplex method,
the Fourier-Motzkin variable elimination, interval constraint
propagation, Gröbner bases, the virtual substitution and the
cylindrical algebraic decomposition.

SMT-RAT strategies allow natural cooperation schemes
with a great flexibility for solving techniques to interact
in novel ways. Typically, parsing and abstracting, SAT
preprocessing and solving, theory preprocessing, and fast but
incomplete theory modules preceed heavy theory decision
procedures with high computational costs.

An example strategy is shown in Figure 8. Every strategy
implicitly starts with the parser that forwards the input to the
strategy itself. In this example, after parsing, the first module
performs some pre-processing techniques and forwards the
– possibly simplified – formula to the SAT solver. The
SAT solver forwards theory calls to its backends. Depending
on the properties of the involved constraints, the strategy
chooses a specific backend for every individual call. If all
constraints are linear and contain real-valued variables only
then simplex is used. If the current formula is linear but
contains also integer variables then a simplex-based branch-
and-bound approach is used. Otherwise, the formula is non-

class Strategy: public Manager {
public:
Strategy() {
setStrategy(

addBackend<PP<PPSetting>>(
addBackend<SAT<SATSetting>>({
addBackend<Simplex<SimplexReal>>(
).condition(isLinear && !containsInt),
addBackend<BB<BBSetting>>(
addBackend<Simplex<SimplexInt>>()

).condition(isLinear && containsInt),
addBackend<ICP<ICPSetting>>(
addBackend<VS<VSSetting>>(

addBackend<CAD<CADSetting>>()
)

).condition(!isLinear)
})

)
);

}
};

Figure 9. Implementation of a strategy

linear and a layered approach using interval constraint prop-
agation, the virtual substitution and the cylindrical algebraic
decomposition methods is applied.

The strategy does not only define a certain module to be
used at some point, but also equips it with a configuration
called setting. In our example, the two instances of the
simplex module may use different heuristics tuned to the
real respectively the integer domain.

The implementation of strategies is rather simple as
illustrated in Figure 9 by the example of our example
strategy above (the figure simplifies the real implementation
by shortening class names and using placeholders for the
conditions). Once a strategy is implemented this way, a SMT
solver can be compiled which will behave accordingly.

The overall design has proven to be simple enough to
be used and extended without prior knowledge in solver
implementation. This allows us to use SMT-RAT also in
education. In the context of practical courses and Bach-
elor and Master theses, numerous students implemented
different theory solver modules within this framework, for
example solving modules based on Gröbner bases [29] and
interval constraint propagation [30], cutting techniques for
linear integer arithmetic [31], infeasible subset generation
for equalities with uninterpreted functions [32], bit-vectors
including bound inference that can also be used for non-
linear integer problems [33], and last but not least novel
solving techniques for pseudo-Boolean problems [34].

REFERENCES

[1] D. Kroening and O. Strichman, Decision Procedures: An
Algorithmic Point of View. Springer, 2008.

[2] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh,
Handbook of Satisfiability, ser. Frontiers in Artificial Intelli-
gence and Applications. IOS Press, 2009, vol. 185.



[3] C. Barrett, P. Fontaine, and C. Tinelli, “The
Satisfiability Modulo Theories Library (SMT-LIB),”
www.SMT-LIB.org, 2016.

[4] B. Dutertre and L. De Moura, “A fast linear-arithmetic solver
for DPLL(T),” in Proc. of CAV’06. Springer, 2006, pp. 81–
94.

[5] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “νZ - An
optimizing SMT solver,” in Proc. of TACAS’15, vol. 15, 2015,
pp. 194–199.

[6] D. Jovanovic and L. M. de Moura, “Cutting to the chase
solving linear integer arithmetic.” in Proc. of CADE-23, vol.
6803. Springer, 2011, pp. 338–353.

[7] C. Borralleras, S. Lucas, A. Oliveras, E. Rodrı́guez-Carbonell,
and A. Rubio, “SAT modulo linear arithmetic for solving
polynomial constraints,” Journal of Automated Reasoning,
vol. 48, no. 1, pp. 107–131, 2012.

[8] N. Bjørner, “Linear quantifier elimination as an abstract
decision procedure,” in Proc. of IJCAR’10. Springer, 2010,
pp. 316–330.

[9] G. E. Collins, “Quantifier elimination for real closed fields
by cylindrical algebraic decompostion,” in Proc. of Automata
Theory and Formal Languages. Springer, 1975, pp. 134–183.

[10] F. Corzilius, U. Loup, S. Junges, and E. Ábrahám, “SMT-
RAT: An SMT-compliant nonlinear real arithmetic toolbox,”
in Proc. of SAT’12. Springer, 2012, pp. 442–448.

[11] U. Loup, K. Scheibler, F. Corzilius, E. Ábrahám, and
B. Becker, “A symbiosis of interval constraint propagation
and cylindrical algebraic decomposition,” in Proc. of CADE-
24. Springer, 2013, pp. 193–207.

[12] G. Kremer, F. Corzilius, and E. Ábrahám, “A generalised
branch-and-bound approach and its application in SAT mod-
ulo nonlinear integer arithmetic,” in Proc. of CASC’16.
Springer, 2016, pp. 315–335.

[13] D. Jovanović and L. De Moura, “Solving non-linear arith-
metic,” ACM Communications in Computer Algebra, vol. 46,
no. 3/4, pp. 104–105, 2013.

[14] V. Weispfenning, “Quantifier elimination for real alge-
bra—the quadratic case and beyond,” Applicable Algebra in
Engineering, Communication and Computing, vol. 8, no. 2,
pp. 85–101, 1997.

[15] F. Corzilius and E. Ábrahám, “Virtual substitution for SMT-
solving,” in Proc. of FCT’11. Springer, 2011, pp. 360–371.

[16] S. Junges, U. Loup, F. Corzilius, and E. Ábrahám, “On
Gröbner bases in the context of satisfiability-modulo-theories
solving over the real numbers,” in Proc. of ICAI’13. Springer,
2013, pp. 186–198.

[17] P. Van Hentenryck, D. McAllester, and D. Kapur, “Solving
polynomial systems using a branch and prune approach,”
SIAM J. Numer. Anal., vol. 34, no. 2, pp. 797–827, 1997.

[18] S. Gao, S. Kong, and E. M. Clarke, “dReal: An SMT solver
for nonlinear theories over the reals,” in Proc. of CADE-24.
Springer, 2013, pp. 208–214.

[19] S. Schupp, “Interval constraint propagation in SMT-compliant
decision procedures,” Master’s thesis, RWTH Aachen Univer-
sity, 2013.

[20] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp,
R. Thiemann, and H. Zankl, “SAT solving for termination
analysis with polynomial interpretations,” in Proc. of SAT’07.
Springer, 2007, pp. 340–354.

[21] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jo-
vanović, T. King, A. Reynolds, and C. Tinelli, “CVC4,” in
Proc. of CAV’11. Springer, 2011, pp. 171–177.

[22] K. Scheibler, S. Kupferschmid, and B. Becker, “Recent im-
provements in the SMT solver iSAT,” in Proc. of MBMV’13.
Universität Rostock, 2013, pp. 231–241.

[23] H. Zankl and A. Middeldorp, “Satisfiability of non-linear
(ir)rational arithmetic,” in Proc. of LPAR’10. Springer, 2010,
pp. 481–500.

[24] N. Sörensson and N. Eén, “MiniSat 2.1 and MiniSat++ 1.0 –
SAT Race 2008 Editions,” SAT, p. 31, 2009.

[25] T. Van Khanh, V. X. Tung, and M. Ogawa, “rasat: SMT for
polynomial inequality,” Formal Methods in Systems Design,
vol. 51, no. 3, pp. 462–499, 2017.

[26] B. Dutertre, “Yices 2.2,” in Proc. of CAV’14. Springer, 2014,
pp. 737–744.

[27] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT
solver,” in Proc. of TACAS’08. Springer, 2008, pp. 337–
340.

[28] F. Corzilius, G. Kremer, S. Junges, S. Schupp, and
E. Ábrahám, “SMT-RAT: An open source c++ toolbox for
strategic and parallel SMT solving,” in Proc. of SAT’15.
Springer, 2015, pp. 360–368.

[29] S. Junges, “On Gröbner bases in SMT-compliant decision
procedures,” Bachelor’s thesis, RWTH Aachen University,
2012.

[30] S. Schupp, “Interval constraint propagation in SMT-compliant
decision procedures,” Master’s thesis, RWTH Aachen Univer-
sity, 2013.

[31] D. Hütter, “SMT solving for linear integer arithmetic,” Bach-
elor’s thesis, RWTH Aachen University, 2014.

[32] L. Neuberger, “Generation of infeasible subsets in less-lazy
SMT-solving for the theory of uninterpreted functions,” Bach-
elor’s thesis, RWTH Aachen University, 2015.

[33] A. Krüger, “Bitvectors in SMT-RAT and their application to
integer arithmetic,” Master’s thesis, RWTH Aachen Univer-
sity, 2015.

[34] M. Grobelna, “SAT-modulo-theories solving for pseudo-
Boolean constraints,” Bachelor’s thesis, RWTH Aachen Uni-
versity, 2017.


