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Erika Ábrahám

Theory of Hybrid Systems, RWTH Aachen University, 52056 Aachen, Germany

Abstract

Collins introduced the cylindrical algebraic decomposition method for eliminating quantifiers in
real arithmetic formulas. In our work we use this method for satisfiability checking in satisfia-
bility modulo theories solver technologies, and tune it by trying to avoid some computation steps
that are needed for quantifier elimination but not for satisfiability checking. We further propose
novel data structures and adapt the method to work incrementally and to support backtracking.
We verify the effectiveness experimentally by comparing different versions of the cylindrical
algebraic decomposition used within a state-of-the-art satisfiability modulo theories solver.

Keywords: cylindrical algebraic decomposition, incrementality, backtracking, satisfiability
modulo theories

1. Introduction

The concept of quantifier elimination is a powerful tool for dealing with (quantified) formulas
which aims to construct an equivalent quantifier-free formula for a given formula with quantified
variables. The cylindrical algebraic decomposition method was proposed by Collins (1975)
as a generic quantifier elimination procedure for the elementary theory of real closed fields.
We call this theory, which is concerned with equalities and inequalities of polynomials over
real variables, nonlinear real arithmetic. Since its introduction, numerous works on the theory,
implementation and applications of the cylindrical algebraic decomposition method led to elegant
improvements and useful extensions.

In this paper we do not consider the general case but focus on fully existentially quantified
problems where all variables are (explicitly or implicitly) quantified existentially. The motiva-
tion for this work stems from the application of the cylindrical algebraic decomposition method
to satisfiability checking, more specifically satisfiability modulo theories (SMT) solving as pre-
sented by Barrett et al. (2009). In the case of satisfiability, this application requires only a single
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satisfying solution to prove satisfiability, therefore a procedure tuned for this purpose can provide
a great benefit to SMT solvers.

Due to its inherent mathematical complexity, the use of cylindrical algebraic decompositions
is not particularly wide-spread in this community, but it has already proven to be very useful.
A rather direct integration into an SMT solver was presented by Corzilius et al. (2015) which
mentions an earlier version of the work presented here. It was subsequently extended to the level
of incrementality presented here, but also to allow the solving of integer problems by Kremer
et al. (2016), and combined with other solving methods, for example with interval constraint
propagation by Loup et al. (2013). Another significant contribution is the very successful NLSAT
approach by Jovanović and De Moura (2012) that includes a novel adaption of the cylindrical
algebraic decomposition method in the context of satisfiability checking.

To make the cylindrical algebraic decomposition method competitive in the SMT solving
context, it should be adapted to fulfill some specific requirements. Given a set of polynomial
constraints, it either has to find a single satisfying solution or prove that there is no solution.
In this scenario the computation can be stopped when a solution is found, therefore we want
to adapt our perception of the cylindrical algebraic decomposition method to regard it a search
method for satisfying solutions. Furthermore we usually do not solve a single input problem,
instead in the SMT context we rather solve a sequence of related problems. Retaining already
computed information and reusing it for the next problem can be essential to effectively solve
real problems. We aim at satisfying these requirements by a variant of the cylindrical algebraic
decomposition method that can work incrementally and may backtrack, two concepts that we
explain in more detail in Section 3.

Our approach essentially reorders the computations of the cylindrical algebraic decomposi-
tion method and allows for interrupting and continuing these computations. The different pro-
jection operators or a heuristic variable ordering can all be used within the proposed adaption.
Thus, issues like correctness or termination immediately carry over and we refrain from looking
at the mathematical foundations in this paper.

We first introduce the notations used in the paper and give a high-level introduction to the
cylindrical algebraic decomposition method in Section 2. Section 3 then defines the framework
in which this method is used and gives some more details on our motivation and the requirements
on our methods. Subsequently we propose our adapted version of the cylindrical algebraic de-
composition internals starting with the lifting phase in Section 4 and the data structure for the
projection phase in Section 5. The algorithms for the projection phase are presented in Section 6
and Section 7. Based on this we specify how backtracking is performed in Section 8 to finally
get a complete version of the SMT-adaptation of the cylindrical algebraic decomposition method
in Section 9. In Section 10 we discuss some further topics of interest, including techniques to
ensure soundness and optimizations that were not explicitly considered in the previous sections.
We finally provide experimental evaluations in Section 11 and conclude the paper in Section 12.

2. Preliminaries

2.1. Notations

We start with introducing some notions and notations used throughout the paper. We denote
the set of integers by Z, the set of real algebraic numbers by R and the power set of some set S
by P(S ). We assume a set X = {x1, . . . , xn} of variables with a fixed total ordering x1 < . . . < xn,
and define Xi = {x1, . . . , xi} for 1 ≤ i ≤ n.
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We write K[y1, . . . , ym] for the set of polynomials over variables {y1, . . . , ym} with coefficients
from K and define P = Z[x1, . . . , xn] and Pi = Z[x1, . . . , xi] for 1 ≤ i ≤ n. We define Pi =

P ∩ (Pi \ Pi−1) for a set of polynomials P ⊆ P. An input formula is of the form ϕ = p1 ∼1
0 ∧ . . . ∧ pk ∼k 0 with polynomials pi ∈ P and ∼i∈ {<,≤,=,,,≥, >} for some k ∈ Z, k ≥ 1. We
call C = {p1 ∼1 0, . . . , pk ∼k 0} the input constraints and P = {p1, . . . , pk} the input polynomials.

A variable assignment over some X′ ⊆ X is a function α : X′ → R. For p ∈ Pi we can
evaluate p under an assignment α : Xi → R to a real algebraic number and likewise evaluate
the constraint p ∼ 0 to either true or false. Evaluating a polynomial q ∈ Pi+1 under α : Xi → R

yields a univariate polynomial from R[xi+1] whose real roots are called the roots of q under α.

2.2. The Cylindrical Algebraic Decomposition Method
Originally the cylindrical algebraic decomposition (CAD) method was proposed to work on

sets of polynomials and mostly relies on constructing regions that are sign-invariant with respect
to these polynomials. It was quickly realized that this implies thruth-invariance with respect
to formulas involving these polynomials, giving rise to what we now call truth-table invariant
CAD Bradford et al. (2016) (TTICAD) and most of what we present here is based on this no-
tion of TTICAD. For a given input formula, CAD is able to iteratively eliminate variables from
the formula and answer questions concerning the formula’s satisfiability or validity. We defined
input formulas to be conjunctive because our SMT application uses CAD to determine the satis-
fiability of sets (or conjunctions) of constraints only. Note that thus checking the satisfiability of
conjunctions of constraints is sufficient to check whether a fully existentially quantified sentence
is true using the SMT framework.

Before we present our SMT adaptation of the CAD method, we first give a rough sketch of
how the CAD method works. Note that we do not attempt to thoroughly explain the mathematical
background and refer to Collins (1975) or Collins and Hong (1991) for more details.

The fundamental idea of the CAD method is to decompose the space of possible values of
the real-valued variables into a finite number of connected regions such that all points within
a region are equivalent, where different CAD versions might give different meanings to this
equivalence relation. The regular sign-invariant CAD considers two points equivalent if all input
polynomials evaluate to the same sign under both points. The TTICAD Bradford et al. (2016)
already mentioned above considers two points equivalent if the evaluation of the formulae is
the same. The TTICAD method computes such a finite decomposition represented by a single
sample point from every region, which allows us to determine satisfiability or validity of the
formula by only considering a finite number of points. In the following we use the term CAD for
the algorithm, the set of regions or the set of points representing these regions interchangeably.

The core of the CAD method works on the polynomials of the input formula only and ignores
the constraints and the formula structure, except for the evaluation in Algorithm 4. The abstract
procedure is visualized in Figure 1 and roughly decomposes into the projection and the lifting
phases on the left and right-hand side, respectively. Note that also other terminology is used
in the literature, for example elimination instead of projection or construction instead of lifting.
For a CAD of dimension n we expect a finite set P ⊆ Pn of input polynomials and associate the
variable xi with every level 1 ≤ i ≤ n, a finite set Pi ⊂ Z[x1, . . . , xi] of polynomials and a finite
set Zi ⊂ Ri of sample points for (x1, . . . , xi). The levels are decreasing during the projection and
increasing during the lifting. We call sample points of dimension n full-dimensional and sample
points of lower dimensions partial.

The projection starts with the set Pn of input polynomials over n variables and uses a pro-
jection operator to eliminate one variable at a time until it obtains P1 containing only univariate

3



Pn ⊂ Z[x1, . . . , xn]

Pn−1 ⊂ Z[x1, . . . , xn−1]

...

P1 ⊂ Z[x1]

Zn ⊂ Zn−1 × R

...

Z2 ⊂ Z1 × R

Z1 ⊂ R
roots(P1)

roots(P2 at Z1)

roots(P3 at Z2)

roots(Pn at Zn−1)

Figure 1: The structure of the CAD method

x1

x2

Figure 2: A cylinder in a CAD

polynomials. Once this is done, a set Z1 of one-dimensional partial sample points for x1 is con-
structed. To do this we obtain the set of all real roots of all polynomials in P1 and extend it by
some value smaller than the smallest root, a value between every two successive roots and a value
greater than the largest root. Note that these sample points represent each sign-invariant region
for P1. Now every partial sample point is lifted by substituting it into all polynomials from P2 –
which yields a set of univariate polynomials in x2 – and repeating the same process as we have
done for the univariate partial sample points to obtain Z2. This process is iterated until we obtain
sample points of full dimension n.

The varieties (sets of real zeros) of the polynomials in P1, . . . , Pn decompose the whole Rn

into a finite number of connected regions of equivalent points, where the properties of the pro-
jection operator induce the notion of equivalence. The lifting process constructs regions that are
arranged in cylinders which means that the (k − 1)-dimensional projections of every two regions
from dimension k are either identical or disjoint. The projection operators used for the CAD
method (should) assure that in the lifting phase the choice of a point between two zeros does not
influence which regions can be covered by the resulting sample and thereby the soundness of the
overall approach.

Consider the 2-dimensional example in Figure 2 which shows a cylinder from a CAD parti-
tioned into four shaded regions that are separated by three segments of the polynomial varieties.
The projection of all of these seven regions onto the x1 axis is identical and this interval is indi-
cated by the bold line on the x1 axis. No matter which partial sample point we select from this
interval, it can be extended to sample points from all seven regions.

We observe that the boundaries of the cylinders are given by the roots of the lower-dimen-
sional polynomials from P1. Hence we have to ensure that these polynomials have roots at all
relevant places such that we get such a cylindrical alignment of all regions. Different projection
operators are known that satisfy this property. We give the definition of one of the most popular
such operators due to McCallum (1998).
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x1

x2

Figure 3: CAD for x2
1 + x2

2 < 4 ∧ x1 · x2 > 1

P2 : {x2
1 + x2

2 − 4, x1 · x2 − 1}

P1 : {x1, x2
1 − 4, x4

1 − 4 · x2
1 + 1}

Z2 : {. . . }

Z1 : {. . . }

roots(P1)

roots(P2 at Z1)

Figure 4: Example computation for x2
1 + x2

2 − 4 and x1 · x2 − 1

Definition 1 (McCallum’s projection operator). Given a set of input polynomials P, the projec-
tion set Pro jx(P) due to McCallum is defined as

Pro jx(P) =
(
∪p∈P coeffsx(p)

)
∪ {discx(p) | p ∈ P} ∪ {resx(p, q) | p, q ∈ P}

where coeffsx, discx and resx return the set of all coefficients, the discriminant and the resultant,
respectively, with respect to some fixed variable x.

Note that some projection operators (including the one defined above) only provide sound-
ness under some additional conditions. In particular P may not be any set of polynomials but
should rather be a square-free basis of some polynomials combined with their contents. This
is necessary not only for the input polynomials, but at every level the respective polynomials
need to form such a square-free basis. We achieve this goal by using a full factorization of every
individual polynomial instead of the (unfactorized) polynomial, both for input polynomials and
the results of coeffsx, discx and resx. Also we may be forced to construct additional delineating
polynomials if certain cases occur during the lifting process. We do not discuss these issues here
further and refer to McCallum (1998); Viehmann et al. (2017) for more details, as well as to
Sections 10.5 and 10.6 for some discussion on how to deal with them. We also want to refer
to Lazard (1994); Brown (2001) for other projection operators that produce even smaller sets of
projection polynomials in practice.

A comparison with several other projection operators can be found in Viehmann et al. (2017).
As we do not want to deal with this question here we use a slightly modified version of the
projection operator due to McCallum (1998) for all examples and experiments. Our modification
is concerned with the set coeffsx(p) and checks whether each of the coefficients may vanish, i.e.,
become zero. If we can show that some coefficient c from a term c · xk does not vanish we remove
all coefficients for smaller k from coeffsx(p).

To illustrate this process we consider the input polynomials P2 = {x2
1 + x2

2 − 4, x1 · x2 − 1}, an
example taken from Brown (2001). Figure 3 shows the varieties of the two polynomials as solid
lines and indicates the borders of the one-dimensional cylinders by dashed lines. There are two
regions (marked by stripes) that satisfy the two constraints that give rise to the polynomials. The
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two sample points that our solver SMT-RAT – presented by Corzilius et al. (2015) – generates
are shown as dots.

Figure 4 shows the computations performed for the example from Figure 3. Starting with the
two polynomials in P2 we apply the projection operator to obtain three univariate polynomials
in P1. The real roots of the polynomials in P1 are {−2, ξ1, ξ2, 0, ξ3, ξ4, 2} (in ascending numerical
order) where ξi denote the roots of x4

1 − 4 · x2
1 + 1. Note that each of these roots corresponds to

one of the dashed lines. The set of roots is extended by intermediate sample points that represent
the cylinders between the dashed lines to obtain Z1, for example

Z1 = {−3,−2,−1.95, ξ1,−1, ξ2,−0.25, 0, 0.25, ξ3, 1, ξ4, 1.95, 2} .

Each of these points from Z1 is then substituted into the two original polynomials. When using
the sample point 1 for example, we obtain the polynomials x2

2 − 3 and x2 − 1 and their real
roots {−

√
3, 1,

√
3}. We construct Z2 by extending the sample point 1 by these roots and the

intermediate sample points, for example

{(1,−2), (1,−
√

3), (1, 0), (1, 1), (1, 1.5), (1,
√

3), (1, 2)} .

Continuing this process for all samples from Z1 yields 83 sample points overall in Z2 (which
we do not list here). Note that the roots ξi as well as −

√
3 and

√
3, are not rational numbers

and we need some exact representation for them. More precisely, we need exact (symbolic)
representations for real algebraic numbers, which are real roots of univariate polynomials. We
refrain from discussing this issue here and refer to Collins and Loos (1983) or Coste and Roy
(1988) and only note that our implementation uses isolating intervals based on Descartes’ rule of
signs.

Most techniques presented in this paper naturally generalize to existentially quantified for-
mulas in negation normal form and the restriction to sets of constraints only simplifies the pre-
sentation. The only exception is the evaluation of sample points that we borrow from Collins
and Hong (1991) in Algorithm 4 that implicitly assumes the input to be a set of constraints. To
generalize this we essentially need to give up on caching the evaluation results for each constraint
– though we could still cache evaluation results for subformulas.

3. An SMT-Compliant CAD Adaptation

Before giving details on the data structures and algorithms for our CAD adaptation, let us
state some relevant aspects of the context in which our implementation is meant to be used.
First and foremost, we do not aim at a general-purpose CAD but a specialization that can be
understood as a CAD-based search procedure for satisfying solutions of formulas. Our CAD
adaptation attempts to find a single satisfying sample point as fast as possible, and if it finds one
the search can be stopped. Furthermore, it allows for efficient solving of a sequence of similar
formulas. It does not attempt to improve the case of general quantifier elimination, though it can
also be used for that purpose as described in Section 10.8.

3.1. CAD Interface
This work is mainly motivated by the application of the CAD method in the context of satisfi-

ability modulo theories (SMT) solving. A traditional SMT solver analyses the Boolean structure
of a (usually quantifier-free first-order logic) formula by a SAT solver and uses one or more
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theory solvers to check the consistency of (sets of) theory constraints. The Boolean and theory
checks often proceed interlaced, i.e., a partial Boolean assignment is extended stepwise and for
each extension the consistency of an increasing set of theory constraints needs to be checked.

Definition 2 (Extension and reduction). Let atom(ϕ) be the set of theory atoms contained in a
first-order formula ϕ. We consider ϕ′ an extension of ϕ if atom(ϕ) ⊂ atom(ϕ′). Conversely, we
call ϕ a reduction of ϕ′.

To be able to efficiently exploit CAD in this context, we need an adaptation that is incremental
in the sense that once it has found a satisfying solution for a set of input constraints it is able to
re-use the results of those computations to check the consistency of an extended set of input
constraints. Furthermore, if a conflict is detected either at the Boolean or at the theory level
(meaning that the currently considered partial assignment cannot be extended to a satisfying
solution) then backtracking at the Boolean level reduces the current partial assignment, thereby
also reducing the set of constraints that needs to be checked for consistency; for these steps it is
advantageous if the theory solver is also able to backtrack by removing constraints from its input
set without forgetting all information about previous computation steps.

Depending on whether these abilities are available, we distinguish three settings: In a non-
incremental setting, CAD is always used on input formulas in the traditional fashion. In contrast
to that, a forward incremental CAD is able to re-use information to decide the satisfiability of
a sequence of formulas where every formula is an extension of the previous one. The hope is
to solve subsequent problems faster by retaining the intermediate results of the previous calcu-
lations. In the forward incremental setting, backtracking removes all knowledge about previous
checks. When backtracking incrementality is considered, the solver is able to remove constraints
from its input set without losing all information about previous computations.

Technically, after a conflict, the next theory check is only required after backtracking and
a subsequent extension of the partial assignment. In this case the next input formula is neither
a reduction nor an extension of the previous one. We consider this to be two steps, a reduc-
tion followed by an extension, though the intermediate CAD computation is not performed in
practice.

For the CAD adaptation, the Boolean search is irrelevant and we therefore only consider the
communication at its interface. Incrementality (backtracking) reduces to adding (and removing)
theory atoms from this set. There are two fundamentally different approaches to backtracking:
In chronological backtracking theory atoms are removed in reversed order as they were added,
so that they essentially form a stack. In non-chronological backtracking theory atoms can be
removed in any order. As non-chronological backtracking is more general but traditional SMT
solvers use chronological removal, which allows for an easier data structure, we consider both
scenarios.

3.2. Incrementality within CAD

We recall that we restricted the input formulas to our CAD to conjunctions of constraints
with existentially quantified variables. Thus finding a single satisfying sample point witnesses
the satisfiability of the (existentially quantified) input formula and we can prematurely stop any
computation. At this point the CAD may not be fully computed, but a partially constructed CAD
is sufficient to answer the posed question.

Assuming we manage to keep the CAD in some kind of consistent state we can resume the
computation based on the partial information already computed. The purpose of resuming the
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computation may be to find another satisfying sample or – as in our case – proceeding with a
slightly changed input.

An incremental or partial lifting was already proposed in Collins and Hong (1991) and we
borrow ideas from there (see Section 4). However, to generate a satisfying sample point we
might not need the full projection. We develop two approaches to perform also the projection in
an incremental fashion. Using simple incremental projection we consider the input polynomials
one after another, compute the full projection and try to find a satisfying sample after every
polynomial (see Section 6). In contrast, using full incremental projection we decompose the
(traditionally atomic) projection into many small projection steps and perform these individually,
possibly switching back to lifting between two projection steps (see Section 7).

4. Incrementality in Lifting

We start with the description of the lifting (or construction) phase which is heavily inspired
by partial CAD due to Collins and Hong (1991). The idea is that if we use CAD for satisfiability
checking then we can stop the decomposition once we have found a satisfying sample point.

Definition 3 (Lifting tree). A lifting tree is a tuple (T, value, liftedWith, rootOf, evaluation,Q)
with the following components:

• T is a tree either being empty or having a finite set V of nodes with a root node r ∈ V and
child relation children : V → P(V);

• value : (V \ {r})→ R assigns a real algebraic number to each node;

• liftedWith : (V \ {r})→ P(P) assigns a set of polynomials to each node;

• rootOf : (V \ {r})→ P(P) assigns a set of polynomials to each node;

• evaluation : (V \ {r})→ (C → {F,T,U, ?}) assigns evaluation results (false, true, unknown
and not evaluated) of constraints to each node; and

• Q is a priority queue containing nodes from V and using some user-defined order.

We construct for every node from V a sample point s in the following way: the root node
is assigned the empty sample point of dimension zero, and every other node extends the sample
point of its parent node by its associated value. We can obtain the sample point as a variable
assignment using Algorithm 1.

We define the level level(s) of the sample point of a node s by its dimension (which is also
the length of the path from the root leading to the node, and also the level of the CAD at which it
is computed). In the following we also use the term sample point for nodes of T , meaning their
(partial) sample points, and write also s. f for f (s) (e.g., s.level) and s. f := e for modifying the
function f to assign e to s. The purpose of the remaining components will become clear in the
further course of this section.

A lifting tree represents the lifting phase of the CAD where we start at the bottom with the
root node (at level zero) and proceed upwards until we obtain (full-dimensional) sample points
of level n. To lift a sample point we compute extensions for it as described in Section 2.2 and
append these extended sample points as new children to the current sample point. With this data
structure we are able to store the sample points in a tree instead of just enumerating them locally
in a recursive fashion.
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Algorithm 1: Generate a sample point for a node from L
Input : Node v from lifting tree L
Output: Sample point αv

1 Function Assignment(v)
2 αv := ()
3 while v , root do
4 αv := compose(v.value, αv)
5 v := v.parent

6 return αv

This view essentially translates the lifting phase into a tree search problem for a satisfying
sample point on the topmost level. By globally storing the state we can easily pause and continue
the search and always retain the current progress. Rather than using a fixed search order (such as
depth-first or breadth-first), we aim for more flexibility and use the priority queue Q to impose a
user-defined order on the sample points that are still to be lifted. As we discontinue the search
as soon as a satisfying sample is found, the state of the search is not local to a single CAD
computation. On the contrary the lifting tree including the sample queue is persistently stored
and updated throughout a whole sequence of CAD executions as presented in Section 3.

As a refinement compared to the lifting phase of the regular CAD, we allow the lifting to
lift a sample point only with a single polynomial instead of all polynomials from the respective
level. This allows us to defer work – lifting with respect to difficult polynomials – in the hope
that using easy polynomials already guide us towards a satisfying sample point.

In order to remember which sample point was already lifted with respect to which polyno-
mial, we store a set of polynomials for every sample point using liftedWith (see Section 10.11
for some details about the actual implementation). Whenever we lift a sample point s we select
a polynomial p < s.liftedWith and add p to s.liftedWith afterwards. Note that this implies that all
roots of p under s are considered in one go.

For the purpose of backtracking in Section 8 we store the set of all polynomials that vanish
at a sample point s in s.rootOf. We call a sample point s a root sample if s.rootOf , ∅, other-
wise a non-root sample. We also write s.isRoot as a shortcut for s.rootOf , ∅. Intuitively the
polynomials in s.rootOf are the reasons that this particular sample point exists.

Algorithm 2: Merge two lists of samples
Input : Lists of samples S 1, S 2 from the same level with

s, s′ ∈ S i → s.value , s′.value for i = 1, 2
Output: Merged list of samples containing S 1, S 2

1 Function MergeSamples(S 1, S 2)

2 R := ∅
3 for s1 ∈ S 1, s2 ∈ S 2 with s1.value = s2.value do
4 Add sample(s1.value, s1.rootOf ∪ s2.rootOf) to R
5 Remove s1 from S 1 and s2 from S 2

6 return sorted(R ∪ S 1 ∪ S 2)
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During the lifting of a sample point s with a polynomial p it may be the case that s already
has some child nodes and we need to merge the set of newly obtained sample points with the
existing ones. This procedure decomposes into three separate steps: finding the roots of p under
s, merging these roots into the child nodes that are already present and finally adding missing
sample points. We assume that a procedure roots() exists and show the other two steps in Al-
gorithms 2 and 3. Algorithm 2 merges two lists of samples and orders them by the value of the
samples. It unifies samples whose values are identical and makes sure that the unified sample is
a root sample if at least one of the original samples was a root sample.

Algorithm 3: Lift sample point with a single polynomial
Input : Lifting tree L, sample point s of some level i, polynomial p of level i + 1
Output: Updated lifting tree L

1 Function LiftSample(L, s, p)
2 R := ∅
3 for r ∈ roots(p(s)) do
4 Add sample(value = r, rootOf = {p}) to R

5 S := MergeSamples (L.children(s), R) // Algorithm 2

6 if head(S ).isRoot then
7 prepend s with s < head(S ).value to S

8 if tail(S ).isRoot then
9 append s with s > tail(S ).value to S

10 for every two consecutive samples si, si+1 do
11 if si.isRoot and si+1.isRoot then
12 value := value from (si.value, si+1.value)
13 insert sample(value, rootOf = ∅) between si and si+1

14 add S \ L.children(s) to L.Q
15 replace L.children(s) by S

Algorithm 3 first computes all real roots of the polynomial p under s and merges this list
of root samples into the list of existing children of s by calling Algorithm 2. The remainder of
Algorithm 3 completes this merged list S such that a non-root sample point exists before the
smallest root sample, in between every two consecutive root samples and above the largest root
sample. This implements the lifting drafted in Section 2.2 in an incremental fashion.

Before actually using Algorithm 3, we can evaluate a sample point on the input constraints to
avoid lifting unsatisfiable samples in the spirit of Collins and Hong (1991). The evaluation result
can be true or false (denoted by T and F), but also undefined or unknown (denoted by U and ?)
if the constraint contains additional variables or the evaluation was simply not done yet. As this
check is performed frequently, we store the evaluation results in s.evaluation to avoid evaluating
the same sample on the same constraint over and over again.

Whenever a constraint evaluates to false on some sample point, Algorithm 3 is not called
and the sample point is skipped. The process of this evaluation is shown in Algorithm 4. This
technique is particularly valuable if constraints with only a few variables are present that conflict
with a large number of sample points. The practical impact can be very significant, as for example
shown by Loup et al. (2013).

10



Algorithm 4: Evaluate sample on constraints
Input : Sample point s, Constraints C
Output: The evaluation result of C over s, either T (true), F (false) or U (unknown)

1 Function Evaluate(s, C)
2 if s.evaluation(c) = F for some c ∈ C then return F
3 while s.evaluation(c) =? for some c ∈ C do
4 s.evaluation(c) := evaluate(s, c)
5 if s.evaluation(c) = F then return F

6 if s.level = n with n being the dimension of the CAD then return T
7 return U

The complete lifting process is shown in Algorithm 5, assuming polynomials P ⊆ P. We
later see that certain samples have to be reconsidered after we paused the lifting, for example if
new polynomials were added to the projection. This incurs a certain overhead even if no further
children are computed from the samples we reconsider, but it is usually very small.

Algorithm 5: Lifting
Input : Lifting tree L, polynomials P
Output: (S AT, s) with a satisfying sample s, or UNS AT

1 Function Lifting(L, P)
2 while not L.Q.empty do
3 s := L.Q.top
4 switch Evaluate (s,C) do // Algorithm 4

5 case T do return (S AT, s)
6 case F do L.Q.remove(s), continue

7 if s.liftedWith = Ps.level+1 then
8 L.Q.remove(s)

9 Select p ∈ Ps.level+1 \ s.liftedWith
10 LiftSample (L, s, p) // Algorithm 3

11 Add p to s.liftedWith

12 return UNS AT

5. Data Structure for Projection

The projection is commonly seen as a single procedure that is performed as a whole before
even starting the lifting process. The projection can however be split into many individual steps
and we show how to do this using the example of McCallum’s projection operator that we already
presented in Definition 1. Given a set of input polynomials I ⊆ P we accumulate the set of
all projection polynomials P by applying this rule recursively until we have used Pro jx for all
variables but x1. We give a possible implementation for McCallums’s projection operator as a
first algorithmic description in Algorithm 6.
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Algorithm 6: Compute the set of all projection polynomials
Input : Set of input polynomials I, variables X
Output: Set of all projection polynomials P

1 Function Projection(I)
2 P := I
3 for i = n, n − 1, ..., 2 do
4 for p ∈ Pi do
5 P := P ∪ {discxi (p)} ∪ coeffsxi (p)

6 for p, q ∈ Pi do
7 P := P ∪ {resxi (p, q)}

8 return P

We consider the computations in Line 5 and Line 7, though depending on the computations
of earlier iterations, as individual steps. Notably, we distinguish between single projection steps
(in Line 5) that process a single polynomial and paired projection steps (in Line 7) that combine
two polynomials. We choose this level of abstraction because it is common to all prominent
projection operators.

To obtain an incremental version of this overall projection process we adopt a different per-
spective. We consider the projection to be a directed graph where every node corresponds to a
polynomial from P and is associated to a level i that corresponds to the variable xi.

Definition 4 (Projection data structure). Let PROJ = (P, E) be a directed acyclic hypergraph
with polynomials P acting as vertices and hyperedges E ⊂ (P∪ (P×P))×P. We associate a level
i with every polynomial p ∈ P which is the index of its largest variable xi. A hyperedge e ∈ E
has one or two source polynomials and a single target polynomial and the level of all source
polynomials is always larger than the level of the target polynomial.

We call PROJ a projection data structure. We write PROJi for the set of all polynomials from
PROJ on level i.

The intention of this definition is that every hyperedge is directly associated with one of the
steps from Algorithm 6. A hyperedge e ∈ P × P stems from a single projection step while
e ∈ (P×P)×P originates from a paired projection step. Similar to the lifting tree, this projection
data structure allows us to suspend the computation of the projection at any time and resume
without the need to recompute anything.

This computation can be taken as an iterative refinement of the CAD. Every step possibly
yields new polynomials that separate existing regions into multiple smaller ones. Though these
intermediate partially refined states bear no strict mathematical meaning per se, other than being
a precursor to a CAD, they may be enough to determine satisfiability. Each separation of regions
forces the lifting process to construct more sample points which may just hit a satisfying region
– at which point we can stop immediately.

We can also interpret the projection data structure as a dependency graph that models the data
flow within Algorithm 6 and we can reorder the individual steps arbitrarily, as long as we adhere
to the partial order implied by the dependency graph.

Note that multiple steps can produce the same polynomial (possibly after considering nor-
malization and taking care of the restrictions of the projection operator discussed above) in a
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lower level which manifests in PROJ as multiple hyperedges with the same target polynomial.
In this case polynomials are not inserted a second time and thus do not induce new projection
steps. We thus do not know the graph structure of PROJ beforehand: it rather evolves dur-
ing the computation and the steps that still need to be computed are expanded with every new
polynomial.

It is important to note that we do not actually implement PROJ as defined above but merely
use it as a mental model. As long as we do not backtrack the hyperedges are not needed and
therefore not stored. For backtracking PROJ is extended by so-called origins in Section 8 that
partially represent the hyperedges.

Algorithm 7: CAD without incrementality
Input : List of constraints C
Output: (S AT, s) with a satisfying sample s, or UNS AT

1 Function CADNN(PROJ, L)
2 PROJ := Projection (PROJ.Q) // Algorithm 6

3 return Lifting (L, PROJ) // Algorithm 5

4 PROJ := ∅
5 PROJ.Q := polynomials(C)
6 L := empty lifting tree
7 return CADNN (PROJ, L)

The presented methods and data structures can already be used to compute a CAD in the
regular non-incremental fashion as shown in Algorithm 7. We present different versions of these
when the computation may be suspended and how we reorder the individual steps in Section 6
and Section 7. Before diving into how to build an incremental projection we give an example of
Algorithm 7.

Example 5. We extend the previous example
from Figure 3 with another constraint to x2

1 +

x2
2 < 4 ∧ x1 · x2 > 1 ∧ x2

1 + x2 ≤ 3 as shown in
Figure 5.
We start computing the full projection from {x2

1 +

x2
2 − 4, x1 · x2 − 1, x2

1 + x2 − 3} by calling
Projection. For each of these polynomials we
consider the discriminant and the coefficients as
well as the resultant for all pairs of polynomials.
This results in the five univariate polynomials
{x1, x2

1−4, x3
1−3x+1, x4

1−4x2
1+1, x4

1−5x2
1+5}. We

continue with Lifting using these polynomials
and eventually find a satisfying sample from one
of the 225 regions.

x1

x2

Figure 5: Example for the input formula x2
1 + x2

2 <

4 ∧ x1 · x2 > 1 ∧ x2
1 + x2 ≤ 3
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6. Simple Forward Incremental Projection

We start with a simple version of incrementality to illustrate the general idea. For this ap-
proach that we call simple incremental we maintain a queue of input polynomials and extend
PROJ with one polynomial at a time. We denote this queue by PROJ.Q.

Algorithm 8: Extend the projection with a new polynomial
Input : Existing projection PROJ, new polynomial r
Output: Levels on which polynomials were added

1 Function ExtendProjectionS (PROJ, r)
2 Q := {r}
3 levels := ∅
4 for i = n, n − 1, ..., 1 do
5 if Qi = ∅ then
6 continue

7 for q ∈ Qi do
8 Q := Q ∪ {discxi (q)} ∪ coeffsxi (q)
9 for p ∈ PROJi do

10 Q := Q ∪ {resxi (p, q)}

11 Q := Q \ PROJ
12 Add i to levels
13 Add Qi to PROJ

14 return levels

Whenever we add a polynomial r to PROJ, we extend PROJ as shown in Algorithm 8.
This procedure extends the existing projection PROJ by performing all computation steps that
in some way depend on the newly added polynomial r. After all polynomials have been added
by Algorithm 8 PROJ contains the same data as if it had been computed by Algorithm 6 on all
polynomials in the first place. Note that we treat PROJ as a mutable argument in Algorithm 8
(and Algorithm 10) and the actual extension of the projection happens as a side effect of the
function call while the return value merely indicates which levels have been modified.

This gives us a way to start with the empty projection and iteratively refining the projection
with one input polynomial at a time. We suspend the projection process after each input polyno-
mial and go back to the lifting process, always hoping that we can avoid the rest of the projection
if the lifting can already find a satisfying sample.

The process is detailed in Algorithm 9 which is a complete CAD method for satisfiability
problems. Note that we implicitly choose an order on the constraints in Line 11 hoping that we
can avoid looking at some constraints altogether. However the granularity of work that we can
avoid is extending the projection by a whole constraint at a time. We show how to improve on
this by allowing for smaller steps in the next section.

Example 6. We reconsider Example 5 and assume that the polynomials are considered in the
order x1 · x2 − 1, x2

1 + x2 − 3, x2
1 + x2

2 − 4. Note that this ordering is the result of using the total
degree as a sorting criterion.
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Algorithm 9: CAD with simple forward incrementality
Input : List of constraints C
Output: (S AT, s) with a satisfying sample s, or UNS AT

1 Function CADS F(PROJ, L)
2 while not PROJ.Q.empty do
3 res := Lifting (PROJ) // Algorithm 5

4 if res = (S AT, s) then
5 return (S AT, s)

6 levels := ExtendProjectionS (PROJ, PROJ.Q.top) // Algorithm 8

7 Add {s ∈ L | s.level + 1 ∈ levels} to L.Q
8 PROJ.Q.pop()

9 return Lifting (L, PROJ) // Algorithm 5

10 PROJ := ∅
11 PROJ.Q := polynomials(C)
12 L := empty lifting tree
13 L.Q := sort nodes(L) heuristically
14 return CADS F (PROJ, L)

We start by calling Lifting on an empty projection which typically guesses (0, 0) and thus
fails. Afterwards the projection is extended by the first polynomial x1 ·x2−1 and we call Lifting
again. At this point the CAD looks like shown in Figure 6a. Note that SMT-RAT already tries to
use x1 = 1 as a sample but fails to find a satisfying value for x2 based on the partial projection
as it tries to extend it with x2 = 0, x2 = 1 and x2 = 2.

We continue by adding x2
1 + x2 − 3 to the projection and arrive at Figure 6b. Which sample

points are chosen in Lifting of course depends on a few heuristics, but SMT-RAT tries (1, 1.5)
at this point and finds a satisfying sample point before the third constraint is considered at all.

7. Full Forward Incremental Projection

To maximize the amount of work we may avoid the size of the individual steps performed
during the projection should be reduced. We do that by considering every step from Algorithm 6
individually. We consider projection candidates that represent a single projection step that is to
be performed within a projection.

Definition 7 (Projection candidate). We define PC = P ∪ (P × P) to be the set of projection
candidates. We call pci

p ∈ P single and pci
p,q ∈ P × P paired projection candidates on level i.

A projection candidate can be evaluated by a projection operator Pro j, for example as follows
using McCallum’s operator from Definition 1:

Pro j(pci
p) = {discxi (p)} ∪ coeffsxi (p)

Pro j(pci
p,q) = {resxi (p, q)}

We define PCp = {pc ∈ PC | p ∈ Pro j(pc)} as the set of projection candidates that yield a
polynomial p.
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x1

x2

(a) Added x1 · x2 − 1

x1

x2

(b) Added x1 · x2 − 1 and x2
1 + x2 − 3

Figure 6: Simple incremental computation for x1 · x2 > 1 ∧ x2
1 + x2 ≤ 3

As we want to be able to suspend the computation after every such step, we maintain a list of
projection candidates that still have to be performed that we call the projection queue. Whenever
a polynomial is inserted into the projection, all projection candidates that are induced by the new
polynomial are added to the queue. Again we denote this queue by PROJ.Q.

Algorithm 10: Extend the projection with a new polynomial
Input : Existing projection PROJ
Output: Levels on which polynomials were added

1 Function ExtendProjectionF(PROJ)
2 pc := PROJ.Q.top
3 PROJ.Q.pop()
4 levels := ∅
5 for p ∈ Pro j(pc) do
6 if p ∈ PROJ then
7 continue

8 Let i such that p ∈ Pi \ Pi−1
9 Add pci

p to PROJ.Q
10 for q ∈ PROJi do
11 Add pci

p,q to PROJ.Q

12 Add p to PROJi

13 Add i to levels

14 return levels

This operation is shown in Algorithm 10. We use Definition 7 to obtain a set of polynomials
that is the result of the respective projection step. For every polynomial of this set that is not
already part of the projection, we create the induced projection candidates in Line 9 and Line 11
and finally add it to PROJ.
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We could suspend the computation after every additional polynomial instead of the complete
processing of a projection candidate. This however requires even more overhead to store these
polynomials while the computation is suspended.

The order in which the projection candidates are processed is heuristic and we have plenty of
properties that can be considered here. We could favor polynomials of smaller degrees or fewer
variables, hoping that the projection operations are less costly. Using the presented projection
operator a paired projection candidate only ever adds a single new polynomial. Meanwhile a
single projection candidate adds the coefficients of the polynomial that however usually have a
smaller degree.

Note that compared to the simple incremental version the projection queue PROJ.Q contains
projection candidates instead of polynomials. As projection candidates refer to polynomials from
PROJ we initially need to insert input polynomials into PROJ before we can start building any
projection candidates from them. This observation has an interesting consequence for the lifting
process: as the lifting happens with respect to all existing projection polynomials, the input
polynomials are immediately visible to the lifting process which may be a significant overhead
that we may want to avoid. We therefore introduce a virtual level PROJ∞ into PROJ that contains
all input constraints and add artificial projection candidates pc∞c to PROJ.Q that are evaluated
using Pro j(pc∞c ) = {p | c = p ∼ 0}. This virtual level essentially mimics the behavior of
Algorithm 9, and we finally obtain Algorithm 11.

Algorithm 11: CAD with full forward incrementality
Input : List of constraints C
Output: (S AT, s) with a satisfying sample s, or UNS AT

1 Function CADFF(PROJ, L)
2 while not PROJ.Q.empty do
3 res := Lifting (L, PROJ) // Algorithm 5

4 if res = (S AT, s) then
5 return (S AT, s)

6 levels := ExtendProjectionF (PROJ) // Algorithm 10

7 Add {s ∈ L | s.level + 1 ∈ levels} to L.Q

8 return Lifting (L, PROJ) // Algorithm 5

9 PROJ := ∅
10 Initialize PROJ∞ with C
11 PROJ.Q := {pc∞c for every c ∈ C}
12 L := empty lifting tree
13 L.Q := sort nodes(L) heuristically
14 return CADFF (PROJ, L)

Example 8. We again have a look at our input problem from Example 5. We assume that we first
considered x1 · x2 − 1, then x2

1 + x2 − 3 and continue with the single projection steps of these two.
As before we start by calling Lifting on an empty projection, guess (0, 0) and fail. We

now add the first polynomial x1 · x2 − 1 to the projection but do not evaluate the consequential
projection candidates yet. The subsequent call to Lifting therefore finds no new samples and
fails again. We try to add the second polynomial x2

1+x2−3, again without evaluating the resulting
projection candidates, yielding the situation shown in Figure 7a.
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x1

x2

(a) Added x1 · x2 − 1 and x2
1 + x2 − 3

x1

x2

(b) Added the coefficient x1

Figure 7: Fully incremental computation for x1 · x2 > 1 ∧ x2
1 + x2 ≤ 3

Finally we perform a first real projection step by computing the single projection of x1 · x2−1
which only results in x1 as the discriminant is constant. Due to the new root at x1 = 0 SMT-RAT
also checks the sample points x1 = −1 and x1 = 1 and Lifting finds the satisfying sample
shown in Figure 7b.

8. Backtracking

The incrementality presented up to this point allows us to lazily extend our CAD compu-
tation. We know how to add new constraints and try to find a satisfying sample point for this
extended problem without computing the whole CAD. In SMT solving, we also want to do the
reverse: removing constraints from our partial CAD to explore a different branch in our Boolean
search. This implies that we want to remove all polynomials from PROJ that originate from a
constraint that is removed.

We first present a simple variant of this removal that we call chronological backtracking. The
assumption is that constraints are added in a particular order and only the last constraint can be
removed. We can regard the set of constraints as a stack where new constraints are added on top
and only the topmost element can be removed. This restriction allows for a rather easy scheme
to figure out what to remove from the projection.

Afterwards we consider the general case that we call non-chronological backtracking where
any constraint can be removed at any time. This gives us some freedom to avoid removals in
certain cases, but introduces some overhead due to more involved bookkeeping.

Example 9 (Different backtracking strategies). Let c1, c2, c3 be a set of constraints. Assume we
first add c1 and subsequently c2 to our constraint set and computed the CAD. If we now want to
compute the CAD for c2, c3 we have two possibilities: either we remove c2 and c1 and then add
c2 and c3 or we only remove c1 and add c3.

In the first case the constraints are removed chronologically while the removal of c1 is non-
chronological in the second case. We need two removals and two additions in the first case
compared to one addition and one removal in the second case.
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For any backtracking attempt, we need to know a reason for some object to be present. Once
this reason ceases to exist we can remove this object.

In our projection there may be more than one reason for a single polynomial because multiple
projection candidates may produce the same polynomial (or different polynomials with a com-
mon factor). This means that we have not only a single but several reasons that we call origins
and a polynomial can only be removed when no origin is left. We define what exactly origins are
for chronological and non-chronological backtracking separately.

Note that we assume that auxiliary data structures are always cleaned appropriately if a con-
straint or a polynomial is removed from the projection. This includes the queues in Algorithm 9
and Algorithm 11, but also the lifting tree L as explained in Section 8.3. Furthermore we assume
the case of full incrementality but both approaches can be applied directly to the other variants
as well.

8.1. Chronological Backtracking
In the case of chronological backtracking we have a strict ordering on the input constraints.

We define the origin of a polynomial to be the smallest constraint that yielded the polynomial.

Definition 10 (Origin for chronological backtracking). Let p ∈ PROJ and PC the set of projec-
tion candidates. We define the origin of a projection candidate as

σ(pcp) = origin(p)
σ(pcp,q) = max{origin(p), origin(q)}
σ(pc∞c ) = c

and the origin of a polynomial as

origin(p) = min{σ(pc) | pc ∈ PCp}.

Following this definition it suffices to store a single input constraint for every polynomial.
Note that the origin of a polynomial may change during the computation as new projection can-
didates are executed. This definition provides an easy criterion for when to remove a polynomial
from PROJ: if an input constraint is removed all polynomials that have this constraint as their
origin can also be removed. This immediately yields Algorithm 12 which modifies its (mutable)
argument PROJ accordingly.

Algorithm 12: Remove constraint using chronological backtracking
Input : Projection PROJ, input constraint c (that was added last)

1 Function RemoveC(PROJ, c)
2 P := {q ∈ PROJ | origin(q) = c}
3 Remove P from PROJ

Note that we can use a projection data structure that only supports chronological backtrack-
ing within a system that backtracks non-chronologically, essentially dropping the condition that
c should be the input constraint that was added last. Given the ordered list of constraints C Al-
gorithm 13 serves as an adapter for this case. When removing an older constraint it removes
all newer constraints and re-adds them to the projection queue afterwards. This may incur a
significant overhead but it happens only rarely in practice.
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Algorithm 13: Transform non-chronological to chronological backtracking
Input : Projection PROJ, any input constraint c, ordered list of constraints C

1 Function Remove(PROJ, c, C)
2 for c′ ∈ reversed(C) do
3 RemoveC (PROJ, c′) // Algorithm 12

4 if c = c′ then
5 return
6 Add c′ to PROJ.Q

8.2. Non-chronological Backtracking

If we allow non-chronological backtracking it is not sufficient to store a single constraint.
Instead we store a set of origins consisting of projection candidates which essentially represent
the hyperedges of PROJ.

Definition 11 (Origins for non-chronological backtracking). Let p ∈ PROJ and PC be the set
of projection candidates. We define the origins of a polynomial as origins(p) = PCp and call
o ∈ origins(p) an origin of p.

We assume that the implementation makes sure that the origins of any polynomial are al-
ways reduced, meaning that it removes an origin if the respective input constraint or a referenced
polynomial is removed from PROJ. Whenever the origins of some polynomial p become empty,
either because an input constraint or some other polynomials were removed, p can be removed
from PROJ. This gives us a criterion to remove polynomials from PROJ after some input con-
straint has been removed that immediately yields Algorithm 14.

Algorithm 14: Remove constraint from projection
Input : Projection PROJ, any input constraint c

1 Function RemoveN(PROJ, c)
2 R := {c}
3 for i = n, ..., 1 do
4 Remove R from origins(p) for all p ∈ PROJi

5 P := {p ∈ PROJi | origins(p) = ∅}

6 Remove P from PROJi

7 R := R ∪ P

8.3. Backtracking in Lifting

To avoid unnecessary work we also remove obsolete sample points from the lifting tree L
when polynomials are removed from the projection. Our aim is to clean up L so that after
removing input constraints it does not contain any sample points that are superfluous with respect
to the remaining input constraints. We first define which sample points are obsolete and then give
a mechanism to remove exactly these sample points from L.
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We observe that there are two types of sample points that are fundamentally different when
we are concerned with backtracking. A root sample s (as described in Section 4, representing a
root of one or more projection polynomials) exists due to the projection polynomials in s.rootOf
and can therefore only be removed if s.rootOf becomes empty. A non-root sample on the other
hand exists because of the neighboring root samples. Thus whenever a root sample is removed
we also remove either of its two neighbors.

Algorithm 15: Backtrack the lifting tree
Input : Lifting tree L, projection PROJ

1 Function BacktrackLifting(L, PROJ)
2 for s ∈ L with s.rootOf , ∅ do
3 s.rootOf := s.rootOf ∩ PROJ
4 if s.rootOf = ∅ then
5 t := some neighboring non-root sample of s
6 Remove subtrees of s and t from L

Algorithm 15 uses exactly this insight to remove obsolete sample points. For every sample
point s it removes all polynomials from s.rootOf that are no longer part of PROJ. If this results
in s.rootOf being empty, s and a neighbor of s is removed including their whole subtrees.

Note that for the case of simple incrementality, we do not actually need to store the full set of
polynomials in s.rootOf. Instead we can reduce this set to the smallest constraint involved, very
similar to the origins of the polynomials.

9. The Overall Procedure

We can now combine all the methods we have seen into a CAD object that is able to work
incrementally and may backtrack. This CAD object as shown in Algorithm 16 can for example
be used as a theory solving module in an SMT solver where we use any of the Algorithms 7, 9
or 11 within the Check method.

Algorithm 16: CAD object

1 object CAD
2 Lifting tree L
3 Projection PROJ
4 Function Add(Constraint c)
5 Add c to PROJ.Q

6 Function Remove(Constraint c)
7 Remove (PROJ, c) // Algorithm 12, 13 or 14

8 BacktrackLifting (L, PROJ) // Algorithm 15

9 Function Check()

10 return CAD(PROJ, L) // Algorithm 7, 9 or 11
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10. Further Topics

Since the proposal of CAD by Collins (1975) an abundance of optimizations and extensions
has been accumulated that we have not mentioned yet. Naturally we want to integrate these
existing techniques with our proposed ones wherever suitable. In the following we briefly discuss
some of these contributions and indicate how they affect or interact with our approach.

10.1. Additional Information on Polynomials

Some modifications to the CAD require additional data to be stored for polynomials or sam-
ple points. A prominent example is the projection operator due to Brown (2001) which tags
polynomials with the information whether they are sign-invariant or order-invariant. Such addi-
tional data can easily be added to PROJ as an additional label to the polynomials.

10.2. Variable Order

We assumed a total variable ordering on our variables x1, . . . , xn. Choosing a good ordering
is a topic of active research, for example in Dolzmann et al. (2004) or Huang et al. (2014) –
and it can have a huge impact on whether a specific problem is practically solvable. In our
implementation we use the triangular heuristic as described by England et al. (2014) with respect
to the set of all polynomials of the whole input for all experiments. We refrain from discussing
the impact of different variable orderings in our use case here as we only performed limited
experiments with inconclusive results yet, but plan to conduct further research on this issue.

10.3. Forwarding Polynomials

Whenever a projection step using polynomials from level i is performed we insert the result
to level i − 1. In the special case of a resulting polynomial that does not contain xi−1 however,
we can immediately forward it to a lower level. This essentially skips some projection steps that
only produce redundant polynomials anyway.

We argue that this optimization is sound using the example of McCallum’s projection opera-
tor by showing that no relevant polynomial factor is produced for such a polynomial. We defined
it as

Pro jx(P) =
⋃
p∈P

coeffsx(p) ∪ {discx(p) | p ∈ P} ∪ {resx(p, q) | p, q ∈ P}

For a polynomial p that does not contain x we have coeffsx(p) = {p} which effectively only
forwards p to the next level. The discriminant of p is defined as the resultant of p and its
derivative p′. With respect to x we have p′ = 0 and thereby discx(p) = 0. For the resultant of p
and some other polynomial q it is known that resx(p, q) = pe with e being the degree of q. Hence
p only adds powers of itself to the next level which can be reduced to p. Thus computing all
these projection steps is equivalent to simply forwarding p in the first place.

10.4. Discarding Polynomials

We observe that we can safely discard polynomials that have no real roots, for example
constants or polynomials like x2 + 1. If we have a bounded problem – that is a variable xi must
be from an interval Ii that we call the bounds of xi – we can extend this notion: a polynomial can
be discarded if it has no real roots within the given bounds. We refer to Loup et al. (2013) for
more details on how to identify such polynomials.
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We extract bounds from input constraints of the form xi + r ∼ 0 with r ∈ R and thus these
bounds may change when constraints are added or removed. This implies that whenever a con-
straints is removed from our CAD we must check whether this changes any of the bounds and
potentially recheck all polynomials that we discarded.

To do this we maintain a list of polynomials P× that do not vanish within the current bounds
and a list of projection candidates PC× that are based on these not vanishing polynomials. When
a polynomial is added to the projection we check whether it vanishes within the bounds. If it
does not, we add it to P× instead of PROJ and add the respective projection candidates to PC×
instead of PROJ.Q. Whenever a bound is removed we reevaluate all polynomials from P× and
move all polynomials that now vanish to PROJ including the associated projection candidates.

Note that whenever a new bound is added polynomials already part of PROJ could be dis-
carded although they may already have produced other polynomials. We could move the dis-
carded polynomial to P× and remove all polynomials originating from it from PROJ, leading
to a large number of recomputations when the bound is removed again. Alternatively we could
store these dependent polynomials alongside with the not vanishing one in P×, incurring a large
bookkeeping overhead. Our implementation does not perform this check at all but keeps these
polynomials in PROJ. Though this may lead to larger projections than necessary we suspect that
the overhead of any of the two solutions is significant. We however plan to study this topic in the
future.

10.5. Polynomial Factors
A common technique is to factorize all polynomials and consider all factors individually. This

immediately eliminates all multiple factors, can reduce the polynomial degree which is one of the
main drivers of computational complexity in the CAD and also yields a square-free basis that we
need for some projection operators anyway. This can be implemented (almost) transparently by
returning the irreducible factors of input polynomials as well as coeffsx, discx and resx instead of
the (unfactorized) input polynomials, coefficients, discriminants and resultants, requiring a slight
change in notation in Algorithm 6 and Algorithm 8.

We acknowledge that a square-free basis (and the contents) can be coarser than that but
requires a global view on all polynomials to be computed or might need to change earlier poly-
nomials when new ones are added, making it hard to integrate with the incremental projection
described above. Fully factorizing polynomials avoids this problem and can be applied to every
polynomial (and every projection step) individually. In this sense factorization is not an opti-
mization but rather an integral part in ensuring soundness if a projection operator is used that
requires a square-free basis.

Our approach allows for this technique and we simply use the origin of the polynomial for all
factors to ensure proper backtracking. Note that if multiple polynomials have common factors
this may reduce the number of polynomials that are removed during backtracking and thereby
may further strengthen our proposed approaches.

10.6. Delineating Polynomials
The usage of some projection operators, most notably the ones due to McCallum (1998)

and Brown (2001), may lead into problems during the lifting phase. Some of these cases can
be rectified by adding delineating polynomials to the projection, though the CAD using these
projection operators is incomplete in general. This may be a problem for regular implementations
of CAD as it requires going back to the projection phase and potentially challenges architectural
assumptions of the implementation.
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It however neatly integrates into the proposed adaption of CAD as we regularly switch be-
tween projection and lifting anyway. A delineating polynomial is added for a polynomial p if p
vanishes identically zero over a whole region and thus is a direct consequence of p. The origins
of this newly added delineating polynomial can thus be copied from p, integrating this method
nicely into our backtracking mechanism.

10.7. Explanations for Unsatisfiability

A common extension, especially when used in the context of SMT solving, is the generation
of explanations for unsatisfiability or infeasible subsets. We consider an infeasible subset a subset
of the input constraints that are inconsistent over the reals. It is usually beneficial to spend some
effort to find a small set as this can provide major performance improvements during the overall
solving process.

A common approach for the CAD as for example presented in Jaroschek et al. (2015) or
Hentze (2017) relies on the leaf sample points of the lifting tree. The fundamental reasoning is
as follows: given that the set of constraints is infeasible, every leaf sample point conflicts with
at least a single constraint. Finding a small set of constraints such that every leaf sample point
conflicts with at least one of these constraints translates to a set cover problem. This approach is
independent of the inner workings of the CAD as long as we can extract the leaf sample points.

While Jaroschek et al. (2015) is more theoretical and also explores its application beyond
CAD, Hentze (2017) provides more details on an efficient implementation and concrete heuris-
tics. Note that although Jaroschek et al. (2015) presents the problem as a linear program, both
implementations actually consider the set cover encoding from Hentze (2017) and a standard
greedy heuristic as the main selection strategy. An important contribution of Hentze (2017) is
the realization that most instances we face when solving the standard benchmarks from Barrett
et al. (2016) can actually be solved optimally after appropriate preprocessing. The implementa-
tion described in Hentze (2017) is part of SMT-RAT and thus used in the benchmarks below.

10.8. Usage as a general CAD Method

Though we have gone to great lengths to provide an CAD method that is optimized for
satisfiability questions, it can easily be used as a general purpose CAD as well, for example for
general quantifier elimination. This already proved to be valuable as quantified problems are now
being considered in the SMT community as well, witnessed for example by a (quantified) NRA
category in Barrett et al. (2016), and we successfully used this implementation without many
changes for quantifier elimination in Neuhäuser (2018). The proposed algorithms change only
two things, compared to the general CAD. Sample points are not lifted further if they are found
to conflict with some constraint and we terminate as soon as a satisfying sample is found.

We can easily disable both if we skip the evaluation of sample points in Line 4 of Algorithm 5.
If we do this, Lifting always returns UNS AT and our algorithm constructs the whole projection
and all sample points. Alternatively we can only disable the case in which s turns out to be a
satisfying sample. In this case we essentially get a partial CAD in the spirit of Collins and Hong
(1991). Note that the proposed techniques are not particularly beneficial for this case, we can
however cover this use case with the same implementation.

10.9. Universally Quantified Formulas

We restricted the input to sets of constraints or at least existentially quantified formulas which
allowed us to view the CAD as a search procedure for a satisfying sample point. Similarly
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a single contradictory sample suffices to prove non-validity of a purely universally quantified
formula. In general these two cases can be reduced to each other by negating the formula. Hence
we can apply the same modifications to obtain a search procedure for a counterexample for a
purely universally quantified formula.

10.10. Equational Constraints

A more recent result of Collins (1998) and McCallum (1999) is that equational constraints
can be exploited to essentially reduce the projection by one level. They can even be used to
obtain further savings as shown in England et al. (2015). This technique can also be applied to
our scenario by identifying equational constraints and properly adapting the projection operator.

Note however that the incremental addition and removal of equational constraints may lead
to a large number of recomputations, similar to what we describe in Section 10.4. It may be
even worse in the case of equational constraints as the insertion of a single constraint removes a
potentially large number of projection candidates – that may have been computed already. We are
currently exploring efficient schemes to deal with these issues that integrate the use of equational
constraints with an incremental CAD.

10.11. Implementation

Even if an abstract algorithm is well understood it can still be a long way to an actual imple-
mentation, in particular if one aims for reasonable efficiency. We present a few technical details
of our C++ implementation that may not be immediately obvious.

We use sets of polynomials in several places throughout our algorithms. Unfortunately
sets usually are rather inefficient in practice, particularly if we were to actually duplicate the
polynomials in those sets. We therefore choose to assign a – per level – unique id to every
polynomial which allows us to efficiently store these sets as bitsets, for example taken from
boost::dynamic bitset. Note however that we have to take care if we have sets containing poly-
nomials from different levels, for example in Algorithm 14.

There are several known methods to implement a sorted queue, a heap like the standard
C++ std::priority queue being the default implementation. Note however that we require some
operations that std::priority queue does not support. We want to iterate over all elements or even
remove arbitrary elements from the queue during backtracking. While we opted for an extended
version of std::priority queue, maintaining a simple list that is regularly sorted also seems like a
legitimate solution.

11. Experiments

To effectively estimate the impact of the presented approaches and techniques we present a
couple of experiments. All of the following tests were performed – unless stated otherwise –
within our own solver SMT-RAT presented in Corzilius et al. (2015). For every input problem
the solver binary is executed on an AMD Opteron 6172 processor with a timeout of 60 seconds
and at most 4GB of memory. The different variants of the CAD methods are embedded into a
SMT solver in SMT-RAT using a SAT solver but no additional preprocessing or theory solving
modules. Though additional preprocessing could enhance the overall solver, we felt that it would
not help with gauging the relative strengths of the presented approaches.
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11.1. Illustrative Example

Before providing benchmarks that actually evaluate the presented techniques we compare
our solver SMT-RAT to other well-known tools for CAD computations. We choose the Reg-
ularChains library described in Lemaire et al. (2005) and Chen et al. (2009) that is shipped
with Maple 2017 by Maplesoft (2017) and QEPCAD B by Brown (2003) as representatives for
general purpose computer algebra systems and specialized CAD tools from computer algebra,
respectively. The goal of this comparison is to show both the soundness and competitiveness of
our solver.

The authors acknowledge that other (and arguably better) tools exist: both Redlog and Math-
ematica feature CAD implementations and the version of RegularChains we use is outdated. We
consider this experiment only a quick check that the overall performance of the underlying meth-
ods in SMT-RAT is somewhat on par with other tools. Given that the other tools mostly focus on
quantifier elimination and usually do not support the SMT-LIB input format we do not compare
against external tools in the more detailed experiments below.

We reconsider the extended example from Figure 5. Computing a full CAD of this example
and enumerating all 225 regions takes about 240ms using SMT-RAT, 830ms using RegularChains
in Maple and 70ms using QEPCAD B on a desktop computer with an Intel i7-4790K CPU. We
consider this to be a confirmation that SMT-RAT does reasonably well performance-wise and the
following experiments should provide a meaningful analysis of the general techniques.

11.2. Selection of Benchmarks

Efficiently solving SMT queries is our main motivation for this work, and thus we use the
common SMT benchmarks here. The SMT-LIB initiative presented by Barrett et al. (2016)
maintains a large and growing repository of sample inputs from a variety of applications. Being
solely concerned with nonlinear polynomial arithmetic here, we focus on a logic called QF NRA

– quantifier-free nonlinear real arithmetic. At the time of writing in early 2018 QF NRA contained
11354 problem instances from 10 different applications.

It is important to distinguish between a single CAD construction and the solving of a whole
SMT problem. Usually solving a single SMT problem yields a whole sequence of calls to the
CAD method. The result of each call to the CAD method may be satisfiable or unsatisfiable
independent from the overall result. Hence also unsatisfiable problems can benefit from our
proposed techniques for CAD computations for satisfiable problems. We thus do not distinguish
between satisfiable and unsatisfiable SMT problems here. If the particular solver gives a (correct)
result after at most 60 seconds and uses at most 4GB of memory we consider the example solved
and otherwise unsolved.

We refrain from an analysis of the individual benchmark groups and acknowledge that they
might very well contain some bias towards specific problem structures. For example a significant
number of benchmarks are unsatisfiable considering only the Boolean abstraction, thus suggest-
ing that doing any theory computation is just overhead. On the other hand a theory solver like
CAD might be of great assistance if it can determine unsatisfiability for very small sets of con-
straints and thereby reduce the Boolean search space on these examples. Ultimately this only
highlights another class of problems for which more specialized heuristics could prove to be
valuable.

Finally we want to note that a performance increase by a certain percentage usually does not
yield the same percentage of newly solved problem instances. When ordering the problems by
their difficulty – whatever it is that makes a particular problem difficult for a particular solver
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Figure 8: Percentage of instances solved within a given time.

– the runtime usually grows exponentially. At the same time every change to any heuristic
solves a few instances but fails to solve some that were solved previously. A very small increase
or decrease in the number of solved instances is probably not meaningful but the result of a
statistical fluctuation. This also implies that any metric involving the absolute runtimes should
be considered with caution, for example solving more problems overall almost inevitably leads
to a higher average runtime.

11.3. Different Versions of Incrementality

We presented different ways to compute a CAD incrementally and how to perform backtrack-
ing. As a baseline for comparison we use a solver CADnaive with a naive CAD implementation
that computes a full CAD from scratch in every theory call. In comparison CADNC and CADNN

retain the computed CAD from the last theory call and merely update it to a full CAD every
time. They use chronological and non-chronological backtracking, respectively. CADS C and
CADS N use the approach we called simple incrementality, again with chronological and non-
chronological backtracking. Finally we also implemented CADFN that uses full incrementality
with non-chronological backtracking.

Table 1a and Figure 8 provide an overview of the results for these solvers. We can see that
CADnaive already solves a fair amount of examples. With CADNC or CADNN the number of
solvable instances grows significantly, thanks to retaining the state during multiple calls to the
CAD method.

Using CADS C and CADS N results in another notable performance increase as we can avoid
considering constraints in many cases. CADFN proves to be better once again as it apparently
avoids many projection steps in practice. We consider this result a confirmation that the effort to
implement the proposed techniques is worthwhile.

Interestingly the impact of using either chronological or non-chronological backtracking
is negligible. We conclude that our SAT solver rarely behaves in a way that leads to non-
chronological backtracking in the theory solver or using Algorithm 13 is rather cheap in these
cases. One might have expected this as most problem instances from QF NRA have almost no
Boolean structure which would be needed to allow for non-chronological backtracking to occur.
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Solver solved runtime

CADnaive 5571 49.1 % 0.69
CADNN 7555 66.5 % 0.64
CADNC 7559 66.6 % 0.60
CADS C 7919 69.7 % 1.08
CADS N 7924 69.8 % 1.11
CADFN 8158 71.9 % 1.22

(a) Results for incrementality and backtracking

Solver solved runtime

CADS R 8144 71.7 % 1.20
CADS∞ 8146 71.7 % 1.21
CADS C 8147 71.8 % 1.21
CADS 0 8154 71.8 % 1.20
CADS I 8155 71.8 % 1.19
CADS L 8158 71.9 % 1.22

(b) Different sampling heuristics

Solver solved runtime

CADLTSA 8118 71.5 % 1.21
CADLS 8121 71.5 % 1.22
CADLT 8138 71.7 % 1.20
CADLLTS 8143 71.7 % 1.22
CADLLT 8144 71.7 % 1.20

(c) Different lifting orders

Solver solved runtime

CADPSC 8074 71.1 % 1.13
CADPC 8075 71.1 % 1.13
CADPPC 8076 71.1 % 1.12
CADPLC 8135 71.6 % 1.28
CADPlC 8135 71.6 % 1.18

(d) Different projection orders

Table 1: Experimental results on all 11354 benchmarks from QF NRA.
Number and percentage of solved instances with average runtime in seconds on solved instances.

11.4. Different Heuristics

The proposed techniques contain multiple places where custom heuristics can be employed:
which sample to choose in Algorithm 3, the order in which to consider sample points for lifting
or which polynomial to use for lifting a specific sample point in Algorithm 5 and the projection
order in Algorithm 9 and Algorithm 11. We now present several heuristics for each of these
and evaluate how they affect the overall performance based on CADFN . Note that for every
comparison we only vary one and select fixed heuristics for all the others and hence the results
should not be compared across multiple tables.

We first check different ways to generate sample points from an interval between two roots.
Our assumption is that it makes sense to select values that are easy to calculate with, ideally
integers. The heuristics we tried are using the midpoint (CADS C) or an integer value close to
the midpoint (CADS I), the smallest or largest integer in the interval (CADS L and CADS R) and an
integer close to zero or far away from zero (CADS 0 and CADS∞). The results shown in Table 1b
demonstrate that these heuristics can make a difference in some rare cases, but are generally not
significant.

Another heuristic is the lifting order of the samples in L.Q. Essentially we try to prefer certain
samples that quickly lead to a satisfying sample point. We identified the following criteria to
distinguish sample points: absolute value, level, size and type that we denote by A, L, S and T,
respectively. We use some approximation of the size of the internal representation for the size and
consider the three different types integral, rational and algebraic. These criteria were combined
in a lexicographical manner with the results shown in Table 1c. Once again we see that the
differences are rather small on average. Note that all orders that use the level as a criterion are
strongly coupled to the variable ordering that is used and the results may thus change drastically
if the variable variable order changes.
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The projection order governs in which order polynomials are considered during the projec-
tion in Algorithm 9 and Algorithm 11. Again we identified several criteria, in this case the level
of the projection candidate, whether it is a single or paired projection step and a heuristic mea-
sure for the complexity of the involved polynomials. We denote these by l and L for the level in
decreasing and increasing order, S and P for single and paired and C for complexity, respectively.
Table 1d shows some experimental results for different projection orders. Similar to the lifting
order, all orders that use the level as a criterion are dependent on the variable order. It turns out
to be beneficial to consider the level of projection candidates and surprisingly both increasing
and decreasing order are an improvement compared to not considering the level at all.

12. Conclusion and Future Work

Based on a restriction of the cylindrical algebraic decomposition to fully existentially quanti-
fied formulas we regard CAD as a search procedure for a satisfying sample point. The traditional
CAD is essentially split into many small steps such that we can pause and continue the work after
every step. We motivate the solving of a sequence of such problems in an incremental fashion
and argue why a proper backtracking mechanism is crucial in practice.

Starting from the non-incremental CAD two incremental variants are presented that we call
simple incremental and full incremental. This is extended by backtracking to allow for the re-
moval of constraints, either chronologically or non-chronologically.

We then present data structures and algorithms that implement those approaches and are
combined to a complete CAD implementation. Afterwards we briefly discuss a list of extensions
that may be of interest to the reader and conclude with an experimental evaluation using our
solver SMT-RAT checking a number of different heuristics.

We argue that some degree of incrementality is highly beneficial in a scenario that only
requires a satisfying sample point instead of a full CAD. We show that the different heuristics
need more investigation, though some of them do not seem to have a great effect. Nevertheless
any of the heuristics might have a significant impact on a particular class of examples in practice
and their interactions are not well understood yet.

Our future plans include the creation of a framework that unifies the backtracking mechanism
with the optimizations mentioned in Section 10.4 and Section 10.10 in a more efficient way.
Furthermore we suspect that another variable ordering could have a great impact as the existing
variable orderings are designed with respect to a single formula while we consider a sequence of
different, though similar, formulas. For our scenario we may adapt the existing variable ordering
or even change the order dynamically.
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