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Abstract

We discuss the topic of unsatisfiability proofs in SMT, particularly with reference to
quantifier free non-linear real arithmetic. We outline how the methods here do not admit
trivial proofs and how past formalisation attempts are not sufficient. We note that the new
breed of local search based algorithms for this domain may offer an easier path forward.

1 Introduction

Since 2013, SAT Competitions have required certificates for unsatisfiability which are verified
offline [HJS18]. As the SAT problems tackled have grown larger, and the solvers have grown
more complicated, such proofs have become more important for building trust in these solvers.
The SAT community has agreed on DRAT as a common format for presenting such proofs
(although within this there are some flavours [RB19]).

The SMT community has long recognized the value of proof certificates, but alas producing
them turned our to be much more difficult than for the SAT case. The current version of
the SMT-LIB Language (v2.6) [BF'T16] specifies APT commands for requesting and inspecting
proofs from solvers but sets no requirements on the form those proofs take. In fact on page
66 it writes explicitly: “The format of the proof is solver-specific”. We assume that this is a
place holder for future work on an SMT-LIB proof format, rather than a deliberate design. The
paper [BdF15] summarises some of the requirements, challenges and various approaches taken
to proofs in SMT. Key projects that have been working on this issue include LFSC [SRTT12]
and veriT [BBFF20], but there has not been a general agreement in the community yet.

Our long-term vision is that an SMT solver would be able to emit a “proof” that covers
both the Boolean reasoning and the theory reasoning (possibly from multiple theories) such that
a theorem prover (or a combination of multiple theorem provers) could verify its correctness,
where the inverted commas indicate that some programming linkage between the theorem
provers might be necessary. We would still be some way from having a fully verified one-stop
checker as in GRAT [Lam20], but would be a lot closer to it than we are now.
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In [BAF15] the authors explain that since in SMT the propositional and theory reasoning are
not strongly mixed, an SMT proof can be an interleaving of SAT proofs and theory reasoning
proofs in the shape of a Boolean resolution tree whose leaves are clauses. They identify the main
challenge of proof production as keeping enough information to produce proofs, without hurting
efficiency too much. This may very well be true for many cases, but for the area of interest
for the authors, QF_NRA (Quantifier-Free Nonlinear Real Arithmetic), there is the additional
challenge of providing the proofs of the theory lemmas themselves.

2 Quantifier Free Non-Linear Real Arithmetic

QF_NRA typically considers a logical formula ® where the literals are statements about the signs
of polynomials with rational coefficients, i.e. f;(z1,...,2,)0;0 with o; € {=,#,>,>, <, <}.

Any SMT solver which claims to tackle this logic completely relies in some way on the
theory of Cylindrical Algebraic Decomposition (CAD). This was initiated by Collins [Col75]
in the 1970s with many subsequent developments since: see for example the collection [CJ98]
or the introduction of the recent paper [EBD20]. The key idea is to decompose infinite space
R™ into a finite number of disjoint regions upon each of which the truth of the constraints is
constant. This may be achieved by decomposing to ensure the signs of the polynomials involved
are invariant, although optimisations can produce a coarser, and thus cheaper, decomposition.

In the case of unsatisfiability an entire CAD truth invariant for the constraints may be
produced, and the solver can check that the formula is unsatisfiable for a sample of each
cell. How may this be verified? The cylindrical condition! means that checking our cells
decompose the space is trivial, but the fact that the constraints have invariant truth-value is a
deep implication of the algorithm, not necessarily apparent from the output.

Past QF _NRA Formalisation Attempts

There was a project in Coq to formalise Quantifier Elimination in Real Closed Fields. This may
also be tackled by CAD, and of course has SMT in QF_NRA as a sub-problem. Work began on an
implementation of CAD in Coq with some of the underlying infrastructure formalised [Mah07],
but the project proceeded to instead formalise QE via alternative methods [CM10], [CM12]
which are far less efficient?. We learn that the CAD approach was not proven correct in the
end [CM12, bottom of p. 38]. Thus while it is formalised that Real QE (and thus satisfiability)
is decidable, this does not offer a route to verifying current solver results.

The only other related work in the literature we found is [NMD15] which essentially for-
malises something like CAD but only for problems in one variable.

3 Coverings instead of Decompositions

Most SMT solvers do not directly use the computer algebra implementations of CAD as theory
solvers. These are usually adapted for SMT compliance [AAB*'I 6], as CAD was in [I(r’\2()],
although there can also be success when used directly [FOST18]. A particularly exciting recent
development has been the interaction between the SMT community and the computer algebra

1Formerly, the condition is that projection of any two cells onto a lower dimensional space with respect to
the variable ordering are either equal or disjoint. Informally, this means the cells are stacked in cylinders over
a decomposition in lower dimensional space.

2Although CAD is doubly exponential in the number of variables, the methods verified do not even have
worst case complexity bound by a finite tower of exponentials!
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community from which many of these methods originate [A ABT16]. These has led to entirely
new algorithmic approaches.

Perhaps most notable is the NLSAT algorithm of Jovanovié¢ and de Moura [JdM12], intro-
duced in 2012 and since generalised into the model constructing satisfiability calculus (mcSAT)
framework [dJ13]. In mcSAT the search for a Boolean model and a theory model are mutu-
ally guided by each other away from unsatisfiable regions. Partial solution candidates for the
Boolean structure and for the corresponding theory constraints are constructed incrementally
in parallel. Boolean conflicts are generalised using propositional resolution as normal. At the
theory level, when an assignment (sample point) is determined not to satisfy all constraints
then this is generalised from the point to a region containing the point on which the same
constraints fail for the same reason.

In NLSAT, which only considers QF_NRA, the samples are generalised to CAD cells® being
excluded by adding a new clause with the negation of the algebraic description of the cell. In
UNSAT cases these additional clauses become mutually exclusive, in effect the cells generated
cover all possible space in R™. However, as these may not be arranged cylindrically, this may
not be trivial to check from the output. We note also the more efficient algorithm to compute
these single CAD cells in [BK15], and the new type of decomposition they inspired in [Brol5].

Another new approach was presented recently in [r’\l)l\lK?l]: conflict driven cylindrical al-
gebraic covering (CDCAC). Like NLSAT this produces a covering of R" to show unsatisfiability.
Essentially, a depth first search is performed according to the theory variables. Conflicts over
particular assignments are generalised to cells until a covering of a dimension is obtained, and
then this covering is generalised to a cell in the dimension below. In this procedure the covering
itself is explicit and easy to verify. Further, CDCAD computes the covering relative to a set
of constraints to check their consistency independent of the Boolean search, meaning it can be
more easily integrated into an CDCL(T)-style SMT solver and combined with its other theory
solving modules than NLSAT, which is a solving framework on its own.

Both NLSAT and CDCAC rely on CAD theory to conclude that the generalisations of
conflicts from models to cells are valid, and so the verification of such theory is still a barrier
to verifiable proofs. But unlike CAD itself, the conflicts that are being generalized are local for
both NLSAT and CDCAC which may allow for simpler verification, or verification in certain
cases. In particular, it was observed in [ADE*20] that a trace of the computation from CDCAC
appears far closer to a human derived proof than any of the other algorithms discussed here.
Whether this means it will be more susceptible to machine verification remains to be seen.

4 Other approaches for QF _NRA

We wrote earlier that all solvers tackling QF_NRA in a complete manner rely on CAD based ap-
proaches, as these are the only complete methods that have been implemented. However, there
are also a variety of incomplete methods. These include incremental linearisation [CGIT 18],
interval constraint propagation [TVO17], virtual substitution [Wei97], subtropical satisfiability
[FOSV17] and Grobuner bases [HEDP16].

These alternative methods tend to be far more efficient than CAD based ones and so an
optimised solver may try these first. Further, they may often be used to solve sub-problems
or simplify the input to CAD. To obtain fully verified proofs for QF_NRA problems, we may
thus need to generate proofs for these methods as well and furthermore integrate them into or
combine them with the CAD proofs.

3But not necessarily one that would be produced within any entire CAD for the problem.
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