
ddSMT 2.0: Better Delta Debugging for the
SMT-LIBv2 Language and Friends ?

Gereon Kremer[0000−0002−0393−5739], Aina Niemetz(B)[0000−0003−2600−5283], and
Mathias Preiner[0000−0002−7142−6258]

Stanford University, Stanford, USA
{gkremer, niemetz, preiner}@cs.stanford.edu

Abstract. Erroneous behavior of verification back ends such as SMT
solvers require effective and efficient techniques to identify, locate and
fix failures of any kind. Manual analysis of large real-world inputs usu-
ally becomes infeasible due to the complex nature of these tools. Delta
Debugging has emerged as a valuable technique to automatically reduce
failure-inducing inputs while preserving the original erroneous behav-
ior. We present ddSMT 2.0, the successor of the delta debugger ddSMT.
ddSMT is the current de-facto standard delta debugger for the SMT-
LIBv2 language. Our tool improves and extends core concepts of ddSMT
and extends input language support to the entire family of SMT-LIBv2
language dialects. In addition to its ddmin-based main minimization
strategy, it implements an alternative, orthogonal strategy based on hi-
erarchical input minimization. We combine both strategies into a hybrid
strategy and show that ddSMT 2.0 significantly improves over ddSMT
and other delta debugging tools for SMT-LIBv2 on real-world examples.

1 Introduction

In recent years, a growing number of formal methods applications (e.g., [6, 8])
rely on Satisfiability Modulo Theories (SMT) solvers as the back end. Current
state-of-the-art SMT solvers are typically complex pieces of software, and de-
bugging erroneous behavior requires effective and efficient techniques to analyze
failure-inducing input with the purpose of identifying and locating the cause
of the failure. Manual analysis of real-world problems that trigger a particular
unwanted behavior is very often infeasible for large inputs, mainly due to the
complex nature of these tools.

Erroneous behavior is never only triggered by a single unique input, but
by a class of inputs that share a common trait. Extracting a minimal working
example, i.e., an input that is as small as possible but still triggers the original
faulty behavior, from such a class of inputs usually significantly decreases the
time to identify and locate the cause of the failure. While ideally, the notion of
size of an input directly correlates to the effort required to determine the failure

? This work was supported in part by DARPA (award no. FA8650-18-2-7861) and
ONR (award no. N68335-17-C-0558).

2 G. Kremer, A. Niemetz, M. Preiner

cause, in practice this is hard to quantify. We instead use metrics such as file
size, number of language constructs, and solver runtime until the failure occurs.

Finding such minimal working examples, however, is a problem of its own.
Manual minimization is typically infeasible in practice, simply due to the large
number of possible simplifications that may even depend on each other. Delta
debugging techniques, on the other hand, provide automated means to minimize
failure-inducing inputs. This typically entails to first read some input, apply a
set of rules to simplify the input, and then check that the modified input still
triggers the original behavior. Delta debugging in its simplest form [24] extracts
a minimal working example by omitting parts of the input that are irrelevant
for triggering the original faulty behavior. More input language specific tools
perform additional simplifications to further minimize the input. All of these
simplifications are typically performed until a fixed point is reached.

For the design of a delta debugger, this process raises a number of questions:
How does the debugging tool check for “same behavior” of a tool on some in-
put? Which simplification rules should be employed and how should they be
combined? To what (syntactic and semantic) degree should the delta debugger
itself understand the input language? In this paper, we address these questions in
the context of delta debugging for the SMT-LIBv2 language and its dialects with
our delta debugger ddSMT 2.0, the successor of ddSMT [18]. In the following,
we will refer to ddSMT 2.0 as ddSMTv2, and to its predecessor as ddSMTv1.

Related Work. Generic delta debugging tools that are agnostic to the input lan-
guage can be surprisingly efficient for some use cases. For minimizing SMT-LIB
input, however, their usefulness is usually rather modest. One such generic tool
is linedd [4], which solely performs line-based simplifications. The first delta de-
bugging tool specific to the SMT-LIB language was presented in [7] as deltaSMT
and targeted SMT-LIBv1 [22]. Three years later, the SMT community adopted
a new input language SMT-LIBv2. In 2013, an updated version of deltaSMT [10]
extended the tool syntactically for SMT-LIBv2 compliance, but limited to the
feature set of the SMT-LIBv1 language and without full SMT-LIBv2 support.
Note that this updated version is not available anymore. In the same year, dd-
sexpr [5], a generic hierarchical delta debugger for S-expressions (and thus ap-
plicable to the SMT-LIB language family), and ddSMTv1 [18], a delta debugger
specific to the SMT-LIBv2 language, were presented. The latter implements a
variant of Zeller’s ddmin algorithm [24] and is considered as the current de-facto
standard delta debugger in the SMT community. The only other delta debugging
tool specific to the SMT-LIBv2 language we are aware of is delta [15], a hierar-
chical delta debugger shipped together with the SMT solver SMT-RAT [9]. A
reimplementation of delta in Python is available as pyDelta at [14].

Contributions. In this paper, we present ddSMTv2, a delta debugging tool for
the SMT-LIBv2 [2] language and its dialects. It supports the entirety of the
SMT-LIBv2 standard as well as non-standardized extensions and derived for-
mats such as the SyGuS input language [21]. Our tool is agnostic to future

ddSMT 2.0 3

extensions of the standard in the sense that it does not require any modifica-
tions for basic support. It is easy to extend, and extensions will only be required
for simplifications that are specific to new language features or a certain dialect
of the SMT-LIBv2 language. In this sense it will also immediately support the
SMT-LIBv3 [1] language, which is currently under development.

ddSMTv2 is the successor of the delta debugger ddSMTv1 [18] and incor-
porates, improves and extends its core concepts. It also implements an im-
proved variant of the hierarchical approach of pyDelta as an alternative, orthog-
onal strategy, and allows to combine these two strategies in a hybrid manner.
ddSMTv2 is intended to overcome major weaknesses of ddSMTv1, which is lim-
ited to the SMT-LIBv2 language and does not support the full set of standardized
background theories or language extensions to the point where it is even unable
to parse the input file. ddSMTv2 further extends the set of theory-specific sim-
plifications over both ddSMTv1 and pyDelta, which allows to exploit even more
minimization opportunities.

ddSMTv2 is implemented in Python and can be installed via pip3 install

ddsmt. Its documentation is available at [11], and its source code is available
under version 3 of the GNU General Public License (GPLv3) at [13].

2 Detecting Failure-Inducing Inputs

An SMT solver is a fully automated tool to determine the satisfiability of a first
order logic formula modulo some background theories and their combinations.
For satisfiable inputs, SMT solvers optionally allow to query a model, whereas
for unsatisfiable inputs, some optionally generate a proof of unsatisfiability. Ad-
ditionally, SMT solvers usually provide a plethora of configuration options.

Within the SMT community, the notion of failure is generally defined as any-
thing from abnormal termination or crashes (including segmentation faults and
assertion failures), to performance regressions (one solver performs significantly
worse on an input than a reference solver), unsoundness (answering sat instead
of unsat and vice versa), incorrect models or incorrect proofs of unsatisfiabil-
ity. In the following, we define a failure-inducing input to an SMT solver as an
SMT-LIB input that triggers a failure. In particular, we do not consider options
configured via command line as part of the input.

Strategies to determine if a minimized input still triggers the original faulty
behavior typically differ depending on the kind of the failure. For abnormal
termination or crashes, it is usually sufficient to compare the exit code of the
solver call, optionally with additional comparisons of output on the standard
output and error channels. For failures that generate error messages that include
memory addresses, it is often useful to not compare the full output, but to only
match against a specific phrase that occurs in the original error output.

By default, ddSMTv2 does exactly that: it determines if a simplified input
has the same erroneous behavior as the original input by comparing the exit
code and the output on the standard output and error channels for equality.

4 G. Kremer, A. Niemetz, M. Preiner

Standard output and error output can optionally be ignored or matched against
user-defined strings via command line options.

Performance regressions are more tricky and typically involve helper scripts
that call two solver configurations with some time limit and return a specific
exit code in case the performance regression is triggered. The delta debugger will
then minimize the input based on this exit code. Inputs that trigger unsoundness
failures can be dealt with in a similar way. For inputs that reveal performance
regressions and unsound answers, ddSMTv2 provides easy-to-use wrapper scripts
that can also be adapted to more specific use cases.

Incorrect models and incorrect proofs are more involved since they typically
require some checking mechanism to determine if a generated model or proof
is incorrect. Most SMT solvers implement such mechanisms and will throw an
assertion failure in debug mode when such a failure is detected. For cases that
are not detected by the solver itself, external checking tools are required. Imple-
menting such checks is considered out of scope for a debugging tool due to their
complex nature.

3 Simplification Rules and Staged Simplification

Historically, the set of simplification rules for delta debugging has been in general
rather small and mainly limited to removing or reordering parts of the input.
Adding structural and semantic simplifications on top of these basic transfor-
mations has proved successful for the SMT-LIB language, and greatly improves
performance over language agnostic minimization techniques. The delta debug-
gers deltaSMT, delta and ddSMTv1 all support structural and semantic simpli-
fications, albeit to a varying degree. Of these three, ddSMTv1 implements the
largest set of language-specific simplifications. The SMT-LIB-agnostic delta de-
bugger ddsexpr, on the other hand, performs structural simplifications only.

Additionally, it is beneficial to devise a strategy for when to apply which kind
of simplification rules to which part of the input in order to avoid generating
useless test cases. An example for a useless test case is when the declaration of a
constant is removed before removing all occurrences of this constant. Such a test
case is useless because it is almost guaranteed to fail due to a parse error in the
solver instead of triggering the original faulty behavior. It is further beneficial
to perform simplifications that promise larger overall reduction (e.g., removal of
commands) early on, in order to reduce the burden of more local, theory-specific
simplifications (e.g., replacing terms with default values of the same sort).

We require that applying a simplification rule indeed simplifies the input
and that it is not possible to cycle between applications of simplification rules in
order to ensure termination of the minimization procedure. Generally, we define
simplification in terms of measuring the input size in bytes or in the number of S-
expressions. We supplement this with specific syntactic and semantic properties,
e.g., the number of variable binders in a quantified formula, or the degree of
“sortedness” of children of an S-expression. Intuitively, we say that given an
input A, a simplification rule yields a simpler input B if the constructs in B are

ddSMT 2.0 5

simpler according to some metric specific to the rule, or if B is smaller than A in
terms of size. As an example for such a metric, consider a simplification rule that
replaces a value with another value. Such a transformation is only interpreted as
simpler if the value to be replaced does not already fall into the class of simpler
values, e.g., for integer values we define the set of simpler values as {0, 1}. Thus,
replacing value 1234 with 0 is a simplification, but replacing 1 with 0 is not.

In ddSMTv2, possible input simplifications are generated by so-called mu-
tators, which implement simplification rules. They either perform small local
changes to a given S-expression, or introduce global modifications on the input
based on that S-expression. Each mutator implements a filter method, which
checks if the mutator is applicable to the given S-expression. If this is the case,
the mutator can be queried to suggest (a list of) possible local and global simplifi-
cations. Mutators are not required to be equivalence or satisfiability preserving.
They may extract semantic information from the input when needed, e.g., to
infer the sort of a term, to query the set of declared or defined symbols, to ex-
tract indices of indexed operators, and more. ddSMTv2 applies a considerably
larger set of simplifications than ddSMTv1 and currently implements 48 mu-
tators, which range from generic simplifications on S-expressions that require
no understanding of SMT-LIB, to more theory-specific mutators that make full
use of SMT-LIB semantics. Each of these mutators is enabled by default and
can optionally be disabled. Extending ddSMTv2 with a new simplification boils
down to implementing a filter method and methods to query local and/or global
mutations in a new mutator class, and registering this class as an active mutator.

4 Parsing and Input Representation

While the question about the syntactic and semantic degree of understanding
of the input language may seem silly at first glance, it is indeed warranted and
actually crucial for the overall design of the delta debugger. The two extreme
cases are aiming at full understanding of the language, and no understanding,
i.e., treating the input as a sequence of bytes. The trade-off at hand is mainly
between the ability to easily devise language compliant simplifications, and the
burden of infrastructure required for parsing and representing the input, which
is an additional burden on maintenance in case the input language changes.

Both deltaSMT and ddSMTv1 aim at full understanding, while most of the
others try for some intermediate level of abstraction, i.e., a level that does not
require full understanding of the input language but allows for smarter sim-
plifications than just manipulating bytes. The line-based delta debugger linedd
minimizes input by removing lines, whereas ddsexpr is syntax-aware in the sense
that it understands S-expressions, but without any SMT-LIBv2 specific seman-
tics. Both delta and pyDelta extend understanding of S-expressions with some
semantic properties, however, in the case of delta only to a very basic degree
(it is, e.g., not even aware of sorts). Outside of the context of the SMT-LIBv2
language, applying an intermediate abstraction approach was successful for the
original ddmin algorithm [24], which considers change sets (e.g., commits or in-

6 G. Kremer, A. Niemetz, M. Preiner

dividual hunks of a commit), and in [23], where the authors use local semantics
of certain C++ constructs. Another example is presented in [16], which exploits
the hierarchical structure of an input, independent of the concrete semantics.

Our main target language is SMT-LIBv2, which is a hierarchically structured
language where, to cite the SMT-LIBv2 standard [2], “every expression [. . .] is
a legal S-expression of Common Lisp”. In contrast to ddSMTv1, in ddSMTv2 we
aim for an intermediate level of abstraction to ease the burden on infrastructure
and maintenance and choose to use S-expressions as the main representation of
the input, just like ddsexpr does. However, additionally, we extract a comprehen-
sive set of semantic properties to allow for SMT-LIBv2 specific and compliant
simplifications. Language compliant transformations are a requirement for the
specific use case of minimizing SMT-LIBv2 input to debug erroneous behavior
of SMT solvers. This is mainly to avoid generating nonsensical test cases, i.e.,
test cases that an SMT solver will refuse to parse. Even when such test cases
are refused immediately, if the overwhelming majority of generated test cases is
nonsensical it can significantly impact the efficiency of our debugging tool. Note
that we explicitly do not disallow delta debugging non-compliant input.

ddSMTv2 features a simple S-expression parser and represents S-expressions
as a lightweight wrapper around built-in Python tuples and strings. Seman-
tic information is recovered in an ad-hoc manner after parsing. This allows for
minimal infrastructure and maintenance overhead for input parsing and repre-
sentation. The parser component of ddSMTv2 has less than 100 LOC, and the
ad-hoc semantic analysis accounts for less than 400 LOC. Adding support for
new versions, dialects or non-standardized extensions of the SMT-LIB language
does not require any changes to the parser.

This is in stark contrast to deltaSMT and ddSMTv1, which both aim to get
a full understanding of the input, with all its negative consequences: deltaSMT
dedicates about 50% (more than 2000 LOC) of its Java code base and ddSMTv1
even over 80% (3000 LOC) of its Python code base to parsing and input repre-
sentation. Note that the former targets SMT-LIBv1, whereas the latter provides
full SMT-LIBv2 support for most of the standardized theories. In both tools,
parsing is a disproportionate part of the code base and extending the tools to
support new theories or language constructs usually requires extensive modifica-
tions to their input parsers. These modifications have significantly complicated
or even inhibited the development of these tools in the past: adding support
for the theory of floating-point arithmetic in ddSMTv1 required touching more
than 1000 LOC; deltaSMT, on the other hand, has never seen full support of
SMT-LIBv2 and fails to parse almost all inputs from our test set.

5 Delta Debugging Strategies

Our delta debugger ddSMTv2 implements two minimization strategies which we
call ddmin and hierarchical. These two can be combined into a third strategy
called hybrid, which aims to utilize the best of both worlds. All three strategies

ddSMT 2.0 7

Algorithm 1: Main loop of ddmin strategy.

Input: S-Expression input
1 do // run to fixed point

2 simplified := False
3 for M ∈ mutators do
4 sexprs := {e | e ∈ input ∧ filterM (e)}, size := |sexprs|
5 while size > 0 do
6 for subset ∈ partition(sexprs, size) do
7 candidate := applyM (input, subset)
8 if check result(candidate) then
9 input := candidate, simplified := True

10 sexprs := {e | e ∈ input ∧ filterM (e)}, size := size/2

11 while simplified
12 return input

use the same input representation and have access to the same pool of available
mutators. However, they differ in how they apply mutators to simplify the input.

Strategy ddmin. Our ddmin strategy implements a variant of the minimiza-
tion strategy of ddSMTv1 and tries to perform simplifications on multiple S-
expressions in the input in parallel. Algorithm 1 shows the main loop of this
strategy. For each active mutator M , the algorithm first collects all S-expressions
in the input that can be simplified by M (Line 4). Simplifications are applied
and checked in a fashion similar to Zeller’s original ddmin algorithm [24]: the set
of S-expressions sexprs is partitioned into subsets of size size; each S-expression
e ∈ subset is substituted in input (Line 7) with a simplification suggested by M ;
the resulting simplified input candidate is then checked if it still triggers the
original behavior (Line 8). Once all subsets of a given size are checked, sexprs
is updated based on the current input and partitioned into smaller subsets. As
soon as all subsets of size 1 were checked, the algorithm repeats these steps with
the next available mutator. The main loop of strategy ddmin is run until a fixed
point is reached, i.e., the input cannot be further simplified. Strategy ddmin ap-
plies mutators in two stages. The first stage targets top-level S-expressions (e.g.,
specific kinds of SMT-LIB commands) until a fixed point to aggressively simplify
the input before applying more expensive mutators in the second stage.

Strategy hierarchical. The main loop of the hierarchical strategy performs a simple
breadth-first traversal of the S-expressions in the input, and applies all enabled
mutators to every S-expression, as shown in Algorithm 2. Once a simplification
is found (Line 7), all pending checks for the current S-expression are aborted
and the breadth-first traversal continues with the simplified S-expression sexpr
(Line 9). This process is repeated until a fixed point is reached, i.e., until no
further simplifications are found for any S-expression. The main simplification
loop (Line 3) is applied multiple times, with varying sets of mutators. In the
initial stages, strategy hierarchical aims for aggressive minimization using only

8 G. Kremer, A. Niemetz, M. Preiner

Algorithm 2: Core simplification loop of hierarchical strategy

Input: S-Expression input
1 do // run to fixed point

2 simplified := False
3 for sexpr ∈ input do // BFS traversal

4 for M ∈ mutators do
5 if ¬filterM (sexpr) then continue
6 for candidate ∈ applyM (input, sexpr) do
7 if check result(candidate) then
8 input := candidate, simplified := True
9 continue with simplified sexpr in Line 3

10 while simplified
11 return input

a small set of selected mutators, in the next-to-last stage it employs all but a
few mutators that usually only have cosmetic impact, and in the last stage it
includes all mutators. We observed that breadth-first traversal yields significantly
better results than a depth-first traversal, most probably since it tends to favor
simplifications on larger subtrees of the input.

Strategy hybrid. This strategy combines strategies ddmin and hierarchical in a
sequential portfolio manner. It first applies ddmin until a fixed point is reached,
and then calls strategy hierarchical on the simplified input. We chose this order
of strategies after observing in our experiments that ddmin is usually faster in
simplifying input, while hierarchical often yields smaller inputs.

6 Experimental Evaluation

We compare the different strategies implemented in ddSMTv2 against the ex-
isting delta debuggers ddsexpr, ddSMTv1, delta, linedd, and pyDelta. For this
purpose, we compiled a set of SMT-LIB and SyGuS test cases from different
sources. Every test case consists of an input file, a solver binary and command
line configuration options for that binary. Our set of test cases includes those
used in [18] and instances reported in bug reports of the SMT solvers Bitwu-
zla [19], CVC4 [3], Yices [12], and Z3 [17]. The test cases from [18] include issues
encountered with development versions of the SMT solvers Boolector [20] and
CVC4. Note that we excluded 9 test cases from this set because they did not
trigger any faulty behavior on our experimental setup. In total, we collected
244 test cases consisting of inputs that trigger assertion failures, unexpected be-
havior or wrong solver answers. We performed all experiments on a cluster with
Intel Xeon E5-2620v4 CPUs with 2.1GHz and 128GB memory and used a 1 hour
wall-clock time limit and 8GB of memory for each delta debugger/test case pair.
Table 1 summarizes the results on all 244 test cases.

A first immediate observation is the value of a simpler and more generic
parser: ddSMTv1 fails to parse more than 20% of the inputs, mostly due to the

ddSMT 2.0 9

dd
se

xp
r

dd
S

M
T

v1

de
lt

a

lin
ed

d

py
D

el
ta

dd
m

in

hi
er

.

hy
br

id

Parse Errors 0 54 1 0 0 0 0 0
Incorrect Output 0 0 1 1 1 0 0 0
Timeouts 155 81 128 3 126 6 122 6
Any Simplification 219 175 114 209 119 242 242 242
Smallest Output 2 10 0 3 58 89 59 168
Avg. Reduction (%) -40 -63 +288 -26 -4 -75 +571 -77
Avg. Reduction w/o ERR (%) -40 -80 +291 -26 -4 -75 +571 -77
Avg. Reduction w/o TO/ERR (%) -32 -73 +617 -26 -57 -76 -59 -79

Table 1: Results summarized over all 244 test cases.

lack of support for newer standard and non-standard SMT-LIBv2 constructs. Ex-
amples include the check-sat-assuming command, algebraic datatypes, some
operators of the theory of strings, the SyGuS language extension, and the non-
standardized extension to encode problems of separation logic. We also observe
that each strategy of ddSMTv2 simplifies significantly more inputs than any
other tool. The only inputs that could not be simplified by ddSMTv2 were al-
ready very small (83 and 98 bytes). Strategy hybrid achieves the smallest output
on 168 test cases (more than two thirds) and an average reduction in file size by
77% (79% not counting timeouts), while only timing out on 6 test cases.

Some debuggers increase the input size (in bytes), indicated by positive reduc-
tions. Eliminating let binders or inlining function definitions frequently increase
the size of the input. A positive reduction occurs if the debugger times out while
performing such simplifications, or if it is unable to find viable simplifications
after the input size increased. In rare individual cases, incorrect outputs were
produced that did not trigger the issue under investigation. This happened be-
cause of the unchecked removal of unused variables (delta), incorrect handling
of timeouts (linedd) and defective handling of quoted symbols (pyDelta).

The hybrid strategy performs significantly better than ddSMTv1, even on the
set of instances that both can reduce without any timeout or error. On these
commonly reduced instances (107), the results from hybrid are smaller in most
cases (99), and on average smaller by about a third.

On inputs that both ddmin and hybrid reduce without timeout or error (238),
the hybrid strategy produces smaller outputs on 125 cases and never generates
larger results. On average, over all 238 inputs the outputs are about 5% smaller.
This may seem marginal, but can make a big difference for users in practice.

Figures 1–2 show the direct comparison of ddmin, hierarchical, hybrid and
ddSMTv1 in terms of output size and overall runtime as scatter plots, where a dot
represents a test case and dots on the “T” lines correspond to timeouts. While
strategy hierarchical tends to produce smaller output files, it is considerably
slower than ddmin and runs into the time limit on 116 more test cases. As a
result of this observation, we combined both strategies into the hybrid strategy,

10 G. Kremer, A. Niemetz, M. Preiner

0 25 50 75

0

25

50

75

100T

100

T

ddmin

h
ie
ra
rc
h
ic
a
l

0 25 50 75

0

25

50

75

100T

100

T

hybrid

b
e
st
(d
d
m
in
,h

ie
r.
)

0 25 50 75

0

25

50

75

100T

100

T

ddSMTv1

h
yb

ri
d

Fig. 1: Output size (in % of original size).

1 10 60 600

1

10

60

600

1hT

1h
T

ddmin

h
ie
ra
rc
h
ic
a
l

1 10 60 600

1

10

60

600

1hT

1h
T

hybrid

b
e
st
(d
d
m
in
,h

ie
r.
)

1 10 60 600

1

10

60

600

1hT

1h
T

ddSMTv1

h
yb

ri
d

Fig. 2: Overall runtime (in seconds).

which first uses ddmin to quickly reduce the input before applying hierarchical to
achieve maximum reduction. Comparing hybrid to the best of strategies ddmin
and hierarchical, we see that hybrid usually achieves the smallest output and is
only slower on test cases that are comparably fast to minimize. If the runtime
of ddSMTv2 exceeds a few minutes, there is no discernible performance penalty.

In comparison to ddSMTv1, strategy hybrid obtains significantly smaller out-
put files on almost all inputs while having a similar runtime on inputs where
ddSMTv1 terminates within the given time limit.

All strategies allow to use multiple worker processes to perform checks asyn-
chronously. Though there is potential for significant runtime improvements, the
current impact is rather limited. With 8 worker processes, hierarchical achieves on
average a 2x speedup, and up to 6x speedup on a few instances. Both ddmin and
hybrid, on the other hand, slow down on average (by 25% and 9%, respectively).

7 Conclusion

We have presented ddSMTv2, a delta debugger for the SMT-LIBv2 language
and its dialects. Our tool improves substantially over its predecessor ddSMTv1,
which is the current de-facto standard in the SMT community for delta debug-
ging SMT-LIB input. We have shown how a more generic parser approach not
only lowers the maintenance overhead of the tool itself, but also makes the delta
debugger more robust and easier to extend for future SMT-LIB extensions. Our
experimental evaluation has shown that ddSMTv2 significantly outperforms ex-
isting delta debugging tools on a variety of real-world test cases from different

ddSMT 2.0 11

SMT solvers. Further, our experiments suggest that combining different mini-
mization strategies is beneficial in practice to quickly obtain small output files.

References

1. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Version 3.0 - Preliminary
Proposal (2021), http://smtlib.cs.uiowa.edu/version3.shtml

2. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories (Edinburgh, UK) (2010)

3. Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6806,
pp. 171–177. Springer (2011). https://doi.org/10.1007/978-3-642-22110-1 14

4. Bayless, S.: linedd (2015), https://github.com/sambayless/linedd

5. Biere, A.: ddsexpr (2013), http://fmv.jku.at/ddsexpr

6. Bjørner, N.: SMT in verification, modeling, and testing at microsoft. In: Biere, A.,
Nahir, A., Vos, T.E.J. (eds.) Hardware and Software: Verification and Testing - 8th
International Haifa Verification Conference, HVC 2012, Haifa, Israel, November 6-
8, 2012. Revised Selected Papers. Lecture Notes in Computer Science, vol. 7857,
p. 3. Springer (2012). https://doi.org/10.1007/978-3-642-39611-3 3

7. Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: Proceed-
ings of the 7th International Workshop on Satisfiability Modulo Theories. pp. 1–5
(2009)

8. Cook, B.: Formal reasoning about the security of amazon web services. In: Chock-
ler, H., Weissenbacher, G. (eds.) Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 10981, pp. 38–47. Springer (2018). https://doi.org/10.1007/978-
3-319-96145-3 3

9. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an
open source C++ toolbox for strategic and parallel SMT solving. In: Heule, M.,
Weaver, S.A. (eds.) Theory and Applications of Satisfiability Testing - SAT 2015 -
18th International Conference, Austin, TX, USA, September 24-27, 2015, Proceed-
ings. Lecture Notes in Computer Science, vol. 9340, pp. 360–368. Springer (2015).
https://doi.org/10.1007/978-3-319-24318-4 26

10. Dobal, F.: DeltaSMT for SMT-LIBv2 (2013), updated version of [7], unavailable

11. Aina Niemetz and Mathias Preiner and Gereon Kremer: ddSMTv2 documentation,
https://ddsmt.readthedocs.io

12. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer Aided Ver-
ification - 26th International Conference, CAV 2014, Held as Part of the Vi-
enna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8559, pp. 737–744. Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9 49

13. Aina Niemetz and Mathias Preiner and Gereon Kremer: ddSMTv2, https://

github.com/ddsmt/ddsmt

14. Kremer, G.: pyDelta (2021), https://github.com/nafur/pydelta

http://smtlib.cs.uiowa.edu/version3.shtml
https://doi.org/10.1007/978-3-642-22110-1_14
https://github.com/sambayless/linedd
http://fmv.jku.at/ddsexpr
https://doi.org/10.1007/978-3-642-39611-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-24318-4_26
https://ddsmt.readthedocs.io
https://doi.org/10.1007/978-3-319-08867-9_49
https://github.com/ddsmt/ddsmt
https://github.com/ddsmt/ddsmt
https://github.com/nafur/pydelta

12 G. Kremer, A. Niemetz, M. Preiner

15. Kremer, G., Nalbach, J.: delta, https://github.com/smtrat/smtrat/tree/

master/src/delta, SMT-RAT’s delta debugger
16. Misherghi, G., Su, Z.: HDD: hierarchical delta debugging. In: Osterweil, L.J., Rom-

bach, H.D., Soffa, M.L. (eds.) 28th International Conference on Software Engineer-
ing (ICSE 2006), Shanghai, China, May 20-28, 2006. pp. 142–151. ACM (2006).
https://doi.org/10.1145/1134285.1134307

17. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24

18. Niemetz, A., Biere, A.: ddSMT: a delta debugger for the SMT-LIB v2 format. In:
Proceedings of the 11th International Workshop on Satisfiability Modulo Theories,
SMT. pp. 8–9 (2013)

19. Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. CoRR
abs/2006.01621 (2020), https://arxiv.org/abs/2006.01621

20. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. J. Satisf. Boolean Model. Com-
put. 9(1), 53–58 (2014). https://doi.org/10.3233/sat190101

21. Raghothaman, M., Reynolds, A., Udupa, A.: The SyGuS Language Standard Ver-
sion 2.0. Tech. rep. (2019), https://sygus.org/assets/pdf/SyGuS-IF_2.0.pdf

22. Ranise, S., Tinelli, C.: The SMT-LIB Standard: Version 1.2. Tech. rep., Department
of Computer Science, The University of Iowa (2006), https://smtlib.cs.uiowa.
edu/papers/format-v1.2-r06.08.30.pdf

23. Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., Yang, X.: Test-case
reduction for C compiler bugs. In: Vitek, J., Lin, H., Tip, F. (eds.) ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, Beijing, China - June 11 - 16, 2012. pp. 335–346. ACM (2012).
https://doi.org/10.1145/2254064.2254104

24. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Software Eng. 28(2), 183–200 (2002). https://doi.org/10.1109/32.988498

https://github.com/smtrat/smtrat/tree/master/src/delta
https://github.com/smtrat/smtrat/tree/master/src/delta
https://doi.org/10.1145/1134285.1134307
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://arxiv.org/abs/2006.01621
https://doi.org/10.3233/sat190101
https://sygus.org/assets/pdf/SyGuS-IF_2.0.pdf
https://smtlib.cs.uiowa.edu/papers/format-v1.2-r06.08.30.pdf
https://smtlib.cs.uiowa.edu/papers/format-v1.2-r06.08.30.pdf
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1109/32.988498

	ddSMT 2.0: Better Delta Debugging for the SMT-LIBv2 Language and Friends

