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ABSTRACT
Usual formulations of the fundamental theorem of linear program-
ming only consider weak inequalities as side conditions.

While this suffices for solving linear programs with the Sim-
plex algorithm, when we want to check the satisfiability of general

quantifier-free linear real arithmetic formulas via Satisfiability Mod-
ulo Theories (SMT ) solving, we need to extend the Simplex method

to be able to handle strict inequalities, too.
In this paper we formalize such an extension, which has been

successfully used in SMT solving even before a correctness proof

has been given by King in his dissertation in the year 2014. Our

contribution is an alternative correctness formalization which is

analogous to the original theorem, and a corresponding proof that

better highlights the inherent nature of the problem.

CCS CONCEPTS
•Hardware→ Theorem proving and SAT solving; • Comput-
ing methodologies → Exact arithmetic algorithms; • Theory of
computation → Linear programming.
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1 PROBLEM STATEMENT
Satisfiability Modulo Theories (SMT ) solving uses a special frame-

work to check the satisfiability of quantifier-free first-order logic

formulas, which are Boolean combinations of constraints from

a theory. To check the satisfiability of such formulas with SMT

solving, a SAT solver determines truth values for the involved con-

straints such that the Boolean structure is satisfied, and consults

a theory solver to check the consistency of this truth assignment
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in the underlying theory, i.e. to check the satisfiability of a set (or
conjunction) of constraints.

In quantifier-free linear real arithmetic (QF_LRA, the SMT com-

munity’s synonym for linear algebra), formulas combine constraints

of the form 𝑝 ∼ 𝑏, where 𝑝 is a linear expression over real-valued

variables and rational coefficients, 𝑏 is a rational constant and ∼ is

a weak (≤, ≥, =) or strict (<, >, ≠) relation symbol. In a QF_LRA

theory solver, for checking the consistency of weak constraints, we

can employ the Simplex algorithm [5, 6, 14], which was preceded

by Kantorovich’s method for problems of special type [19, 26]. The

Simplex method builds on the foundation of the fundamental theo-
rem of linear programming. In its generality, Simplex can do even

more: it can solve linear programs, i.e. optimize a linear objective

function under the side condition that certain weak linear inequali-

ties are satisfied. If the side conditions admit a solution then their

solution set is a (non-empty) polyhedron. Intuitively, the funda-

mental theorem states that we can restrict the search for an optimal

solution to the vertices of this polyhedron, as one of those vertices

evaluates the objective function to its optimal value. In the context

of SMT solving where we do not require optimality, an adaption

known as the general Simplex algorithm [11] has been proposed.

This algorithm uses the fundamental theorem in the sense that

every satisfiable system has a basic feasible solution and iterates

over intersections of constraint-defining hyperplanes until it finds

a vertex or detects that there is none.

When speaking about the Simplex algorithm, for some applica-

tions we are happy with approximate solutions, which makes the

distinction of strict and weak constraints uninteresting. In contrast

to that, in SMT solving, which has applications e.g. in program ver-

ification, exact solutions are required, satisfying the weak as well

as the strict constraints. Note that even if syntactically only weak

constraints appear in an input formula, solutions to its Boolean

structure might require some of these weak constraints to be vio-

lated, indirectly resulting in strict inequalities.

We note that there exists research for dealing with strict inequal-

ities [17, 21]; thus this work might be also of interest for research

areas apart from SMT solving.

The fundamental theorem is not immediately applicable to prob-

lems involving strict constraints: the boundaries of a solution set

might be open, thus the vertices of its closure are not necessar-

ily solutions. Still, if the problem is solvable, then there exists a

solution in an infinitesimal-environment of a vertex of the closure.
To find such a solution, Dutertre and de Moura proposed in 2006

[10, 11] an elegant reduction: Strict constraints are replaced by

weak constraints containing an infinitesimal 𝜀. Solutions are then

searched in the transformation and translated back to the original

system. This approach is implemented in SMT solvers like Yices
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[10], OpenSMT [18], CVC4 [1], Z3 [7] and SMT-RAT [4] and is even

extended for infinity ∞ to represent unbounded objectives in opti-

mization [2]; further transcendental extensions of the real closed
field in the context of SMT solving are examined in [8].

While this extension seems natural, its correctness proof is non-

trivial. A first formal proof has been given in 2014 by King [20],

tailored specifically to the general Simplex method. In this paper

we formalize and prove a more general statement, applicable to

any procedure that relies on the general theorem of linear program-

ming. Beyond its general nature, our proof helps to understand the

mechanisms and elegantly illustrates the nature of the problem. A

more in-depth comparison of the proof of King and our proof is

given in Section 4.

We first introduce some mathematical foundations in Section 2.

Then we present the transformation and our extension of the the-

orem in Section 3. Finally, advantages of the construction and its

alternatives as well as related work and applications are discussed

in Section 4.

2 PRELIMINARIES
Let F be a field, (U, <) an ordered vector space over F (or F -vector

space) and 𝑋={𝑥1, . . ., 𝑥𝑛} be a set of U-valued variables
1
. We will

use U>0 = {𝑎∈U | 𝑎>0} and similarly for other value restrictions.

We call 𝑝 = 𝑎1·𝑥1 + . . . + 𝑎𝑛 ·𝑥𝑛 with 𝑎1, . . ., 𝑎𝑛 ∈ F and 𝑏 ∈ U
a linear (F -)combination of 𝑋 , and 𝑝∼𝑏 with a relation symbol ∼∈
{=, ≤, ≥, <, >,≠} a linear constraint (over (U, <) in variables X). An
equation is a linear constraint where ∼ is the equality relation =. A

constraint 𝑝 ∼ 𝑏 is called weak if ∼∈ {=, ≤, ≥} and strict otherwise.
Linear combinations 𝑝 and constraints 𝑐 can be evaluated under

an assignment 𝛼 : 𝑋 → U the standard way. We denote by 𝛼 (𝑝) ∈
U the value of 𝑝 under 𝛼 . For a constraint 𝑐 of the form 𝑝 ∼ 𝑏, we

write 𝛼 |= 𝑐 to state that 𝛼 (𝑝) ∼ 𝑏; we call 𝛼 a solution of 𝑐 . The

solutions of 𝑐 build its solution set sol(𝑐) = {𝛼 : 𝑋 → U | 𝛼 |= 𝑐}.
A constraint is satisfiable iff its solution set is not empty.

A system (of linear constraints over (U, <)) is a finite set 𝐶 =

{𝑝1∼1𝑏1, . . . , 𝑝𝑚∼𝑚𝑏𝑚} of linear constraints for some𝑚 ∈ N. We

define sol(𝐶) = ∩𝑐∈𝐶 sol(𝑐) and 𝑃𝐶 = {𝑝 | (𝑝∼𝑏) ∈ 𝐶}. A system

𝐶 is satisfiable iff sol(𝐶) not empty.

A set {𝑝1, . . ., 𝑝𝑚} of linear F -combinations of 𝑋 is linearly inde-
pendent iff 𝑓1·𝑝1+. . .+𝑓𝑚 ·𝑝𝑚=0 ⇔ 𝑓1= . . . =𝑓𝑚=0 for all 𝑓1, . . . , 𝑓𝑚 ∈
F . A system 𝐶 of linear constraints is linearly independent iff 𝑃𝐶
is linearly independent. The rank of 𝐶 is defined as rank(𝐶) =

max { |𝐶 ′ | | 𝐶 ′ ⊆ 𝐶,𝐶 ′
linearly independent}. The set𝔙𝐶 contains

allmaximal linearly independent subsets of𝐶 , that are all sets𝑉 ⊆ 𝐶

such that |𝑉 | = rank(𝑉 ) = rank(𝐶).
A formula𝜑 in (quantifier-free) linear real arithmetic is a Boolean

combination of linear constraints 𝑝∼𝑏 over (R, <)whereR is viewed
as a Q-vector space and 𝑏 ∈ Q. Note that such a formula 𝜑 has a

solution over (R, <) iff it has a solution over (Q, <).

2.1 The fundamental theorem of linear
programming

As for SMT solving only the existence of a solution for the side

conditions is of interest, we present a variant of the corresponding

1
This is partly unconventional, but required for formal reasons as we will see in

Section 3.3.
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Figure 1: Illustration of Theorem 2.1.

part of the fundamental theorem of linear programming, which builds
the basis for the Simplex algorithm [5, 6, 14] as presented in [22].

Let 𝑐 be a weak linear constraint 𝑝 ∼ 𝑏, then 𝑐 denotes the

equation 𝑝 = 𝑏. Given a set 𝑉 of weak linear constraints, we define

𝑉̃ := {𝑐 | 𝑐 ∈ 𝑉 }. Geometrically, sol(𝑐) is a halfspace, sol(𝑐) is its
bounding hyperplane, and sol(𝑉̃ ) consists of the intersection points
of these bounding hyperplanes for the constraints in 𝑉 .

Theorem 2.1 (Adaption of the fundamental theorem of

linear programming). Let𝐶 be a system of weak linear constraints
over (U, <) in 𝑋 . Then 𝐶 is satisfiable iff there exists a maximal
linearly independent subset 𝑉 ∈ 𝔙𝐶 of 𝐶 such that

∃𝛼 : 𝑋 → U . 𝛼 |= 𝑉̃ ∪𝐶.

A formal proof is given in [24]; here, we give an intuition. While

the backward direction is trivial, an intuitive illustration for the

forward direction is shown in Figure 1. A constraint 𝑝 ∼ 𝑏 is called

tight under an assignment 𝛼 iff 𝛼 (𝑝) = 𝑏. Observe that a solution 𝛼

is a vertex of the solution set of a system𝐶 iff all constraints of a set

𝑉 ∈ 𝔙𝐶 are tight under 𝛼 (e.g. 𝛼3 in Fig. 1), but not all assignments

which make rank(𝐶) many constraints tight are solutions (e.g. 𝛽 in

Fig. 1).

Starting from any solution, we construct the set 𝑉 from the

theorem as follows: We move the solution towards a direction until

a constraint that defines a face of the solution polyhedron becomes

tight (but is still satisfied); this step is iterated maintaining that all

tight constraints remain tight, thus moving the solution on their

boundaries. This is done until the solution cannot be moved along

the boundaries of the tight constraints - which means that the set

of tight constraints are a maximal linearly independent subset of 𝐶 .

3 EXTENSION FOR STRICT INEQUALITIES
We will first formally introduce the transformation replacing strict

constraints by weak ones and show some basic relationships be-

tween the solution sets of the original and the transformed system

in Section 3.1. Then, we present an intermediate theorem in Sec-

tion 3.2, before we introduce an infinitesimal to obtain the main

statement in Section 3.3.



For simplicity, we formalize our statements for the relations

≤ and < only; their generalization is straightforward by replac-

ing each equality 𝑝=𝑏 by a pair of constraints 𝑝≥𝑏 and 𝑝≤𝑏, and
transforming each 𝑝>𝑏 resp. 𝑝≥𝑏 to −𝑝<−𝑏 resp. −𝑝≤−𝑏. Handling
disequalities using ≠ will be dealt with at the end of this section.

3.1 Transformation
Definition 3.1. Let𝐶 be a system of linear constraints over (U, <)

in 𝑋 with ∼∈ {≤, <} for all (𝑝 ∼ 𝑏) ∈ 𝐶 . Using a fresh variable

𝜀 ∉ 𝑋 , we define the system 𝐶𝑤 of linear constraints over (U, <)
in 𝑋 ∪ {𝜀} as

𝐶𝑤 = {𝑝 + 𝜀 ≤ 𝑏 | (𝑝 < 𝑏) ∈ 𝐶} ∪ {𝑝 ≤ 𝑏 | (𝑝 ≤ 𝑏) ∈ 𝐶}

Under the assumption 𝜀 > 0, the systems 𝐶 and 𝐶𝑤 are satisfi-

ability equivalent: in 𝐶𝑤 we replace each strict constraint 𝑝 < 𝑏

by a weak counterpart 𝑝 + 𝜀 ≤ 𝑏, where the new variable 𝜀 puts a

lower bound on the distance of 𝑝 to its upper bound 𝑏. Thus we

can reduce the satisfiability problem for 𝐶 to that of 𝐶𝑤 under the

additional condition 𝜀 > 0. We formalize this relationship in the

following two lemmas.

For a function 𝑓 : 𝐴 → 𝐵 and a set 𝐴′ ⊆ 𝐴, let 𝑓 ⇂𝐴′ : 𝐴′ → 𝐵

with 𝑓 ⇂𝐴′ (𝑎) = 𝑓 (𝑎) for all 𝑎 ∈ 𝐴′
, denote the restriction of 𝑓 to

𝐴′
. For 𝑎 ∉ 𝐴 and 𝑏 ∈ 𝐵, 𝑓 [𝑎 ↦→ 𝑏] : (𝐴 ∪ {𝑎}) → 𝐵 denotes the

extension of 𝑓 such that 𝑓 [𝑎 ↦→ 𝑏] (𝑎) = 𝑏 and 𝑓 [𝑎 ↦→ 𝑏] (𝑎′) =

𝑓 (𝑎′) for all 𝑎′ ∈ 𝐴.

It is easy to see that a solution for 𝐶𝑤 with positive 𝜀 is already

a solution for 𝐶:

Lemma 3.2. Let 𝐶 be a system of linear constraints over (U, <)
in 𝑋 . Then for any 𝛼𝑤 : (𝑋 ∪ {𝜀}) → U such that 𝛼𝑤 (𝜀) > 0 and
𝛼𝑤 |= 𝐶𝑤 ,

𝛼𝑤⇂𝑋 |= 𝐶.

For the converse direction, we show that a solution for 𝐶 can be

extended with a strictly positive value for 𝜀 satisfying 𝐶𝑤 . In fact,

we prove something stronger, that is, there exists a value 𝑔 for 𝜀

such that any value between 0 and 𝑔 satisfies 𝐶𝑤 .

Lemma 3.3. Let 𝐶 be a system of linear constraints over (U, <) in
𝑋 . Then for any 𝛼 : 𝑋 → U such that 𝛼 |= 𝐶 ,

∃𝑔 ∈ U>0 . ∀𝑒 ∈ U(0,𝑔] . 𝛼 [𝜀 ↦→ 𝑒] |= 𝐶𝑤 .

Proof. Note that for (𝑝𝑖 ≤ 𝑏𝑖 ) ∈ 𝐶 ∩𝐶𝑤 , 𝛼 [𝜀 ↦→ 𝑒] |= 𝑝𝑖 ≤ 𝑏𝑖
for all 𝑒 ∈ U; in particular, if 𝐶𝑤 = 𝐶 , then 𝛼 [𝜀 ↦→ 𝑒] |= 𝐶𝑤

for all 𝑒 ∈ U, thus any 𝑔 can be taken as witness. Otherwise, let

(𝑝𝑖 + 𝜀 ≤ 𝑏𝑖 ) ∈ 𝐶𝑤 , thus (𝑝𝑖 < 𝑏𝑖 ) ∈ 𝐶 . Then by assumption,

𝛼 (𝑝𝑖 ) < 𝑏𝑖 ⇔ 0 < 𝑏𝑖 − 𝛼 (𝑝𝑖 ) =: 𝑔𝑖 .
For all 𝑒 ∈ U with 0 < 𝑒 ≤ 𝑔𝑖 we have 𝛼 (𝑝𝑖 ) = 𝑏𝑖 −𝑔𝑖 < 𝑏𝑖 − 𝑒 and

therefore

𝛼 [𝜀 ↦→ 𝑒] |= 𝑝𝑖 + 𝜀 ≤ 𝑏𝑖 .

Thus, for all 𝑒 ∈ U such that 0 < 𝑒 ≤ 𝑔 := min({𝑔𝑖 | (𝑝𝑖 + 𝜀 ≤ 𝑏𝑖 ) ∈
𝐶𝑤} ∪ {1}), it holds 𝛼 [𝜀 ↦→ 𝑒] |= 𝐶𝑤 . □

We illustrate this relationship in the following example.

Example 3.4. Consider 𝐶 = {−𝑥1 < 0, −𝑥2 < 0, 𝑥2 < 2} and its

transformation𝐶𝑤 = {−𝑥1+𝜀 ≤ 0, −𝑥2+𝜀 ≤ 0, 𝑥2+𝜀 ≤ 2}. Figure 2a
depicts sol(𝐶𝑤) restricted to 𝜀 > 0, which has a convex tent-shaped

form: the open grey area depicts the two-dimensional solutions of

𝐶 , where the tent’s roof is the upper bound on 𝜀 w.r.t. the values

for 𝑥1 and 𝑥2, in order to satisfy 𝐶𝑤 .

Lemma 3.2 states that any solution of𝐶𝑤 (red point) is a solution

of𝐶 after projecting out 𝜀. Lemma 3.3 states that for any solution of

𝐶 (purple point on the horizontal plane), any point strictly above it

(to satisfy 𝜀 > 0) up to and including the tent’s roof (on the dashed

red line) is a satisfying solutions of 𝐶𝑤 .

Now consider the system 𝐶 ′ = {−𝑥1 < 0, −𝑥2 < 0, 2 · 𝑥2 < 4}
and its transformation𝐶 ′

𝑤 = {−𝑥1+𝜀 ≤ 0, −𝑥2+𝜀 ≤ 0, 2𝑥2+𝜀 ≤ 4},
which is the same as above except that the last constraint is scaled

by a factor of 2. Although the solution set of 𝐶 and 𝐶 ′
are identical,

the solution set of 𝐶𝑤 and 𝐶 ′
𝑤 are not, as depicted in Figure 2b.

3.2 Intermediate theorem
In this section we characterize solutions of 𝐶 that are arbitrarily

close to a vertex of the closure of sol(𝐶). This set is obtained by the
application of Theorem 2.1 to the transformed system 𝐶𝑤 .

Example 3.5. Figure 2c depicts again the system fromExample 3.4

but without plotting the right tent wall for a better view. Assume a

solution for 𝐶𝑤 with a value 𝑔 > 0 for 𝜀. Fixing the value 𝑔 for 𝜀,

the solution space in the variables 𝑥1 and 𝑥2 is the horizontal cut

surface of the tent at 𝜀 = 𝑔. According to the fundamental theorem,

there exists a solution which is a vertex of this cut, on a ridge at

𝜀 = 𝑔 (red point). As already seen, the projection of this solution

(purple point, dashed red line) is a solution of 𝐶 . The same holds

for any value 0 < 𝑒 ≤ 𝑔 for 𝜀, resulting in solutions for𝐶 arbitrarily

close to a vertex of the closure of sol(𝐶) (dashed purple line).

Theorem 3.6. Let 𝐶 be a system of linear constraints over (U, <)
in 𝑋 . Then 𝐶 is satisfiable if and only if there exists 𝑉 ⊆ 𝐶𝑤 with
|𝑉 | = rank(𝐶) such that 𝑃𝑉 ∪ {𝜀} is linearly independent and

∃𝑔 ∈ U>0 . ∀𝑒 ∈ U(0,𝑔] . ∃𝛼 : 𝑋 → U . 𝛼 [𝜀 ↦→ 𝑒] |= 𝑉̃ ∪𝐶𝑤 .

Proof. For the backward direction, we choose witnesses for

𝑔 > 0, 𝑒 ∈ (0, 𝑔] and 𝛼 to obtain an assignment 𝛼 |= 𝐶𝑤 with

𝛼 (𝜀) = 𝑒 > 0. By Lemma 3.2, it follows that 𝐶 is satisfiable. The

forward direction is proven as follows:

∃𝛼 : 𝑋 → U . 𝛼 |= 𝐶
(1)
=⇒ ∃𝛼 : 𝑋 → U . ∃𝑔 ∈ U>0 . ∀𝑒 ∈ U(0,𝑔] . 𝛼 [𝜀 ↦→ 𝑒] |= 𝐶𝑤

=⇒ ∃𝛼 : 𝑋 → U . ∃𝑔 ∈ U>0 . ∀𝑒 ∈ U(0,𝑔] .
𝛼 [𝜀 ↦→ 𝑒] |= 𝐶𝑤 ∪ {𝜀 = 𝑒}

=⇒ ∃𝑔 ∈ U>0 . ∀𝑒 ∈ U(0,𝑔] .
∃𝛼 : 𝑋 ∪ {𝜀} → U . 𝛼 |= 𝐶𝑤 ∪ {𝜀 = 𝑒}

(2)
=⇒ ∃𝑔 ∈ U>0 . ∀𝑒 ∈ U(0,𝑔] . ∃𝑉 ∈ 𝔙𝐶𝑤∪{𝜀=𝑒 } .

∃𝛼 : 𝑋 ∪ {𝜀} → U . 𝛼 |= 𝑉̃ ∪𝐶𝑤 ∪ {𝜀 = 𝑒}
=⇒ ∃𝑔 ∈ U>0 . ∀𝑒 ∈ U(0,𝑔] . ∃𝑉 ∈ 𝔙𝐶𝑤∪{𝜀=𝑒 } .

∃𝛼 : 𝑋 → U . 𝛼 [𝜀 ↦→ 𝑒] |= 𝑉̃ ∪𝐶𝑤

(3)
=⇒ ∃𝑔 ∈ U>0 . ∀𝑒 ∈ U(0,𝑔] .

∃𝑉 ′ ⊆ 𝐶𝑤 . ( |𝑉 ′ |= rank(𝐶) ∧ (𝑃𝑉 ′ ∪ {𝜀} lin. indep.)∧
∃𝛼 : 𝑋 → U . 𝛼 [𝜀 ↦→ 𝑒] |= ˜𝑉 ′ ∪𝐶𝑤)

(4)
=⇒ ∃𝑉 ′ ⊆ 𝐶𝑤 . ( |𝑉 ′ |= rank(𝐶) ∧ (𝑃𝑉 ′ ∪ {𝜀} lin. indep.)∧

∃𝑔 ∈U>0 . ∀𝑒 ∈U(0,𝑔] .
∃𝛼 : 𝑋 → U . 𝛼 [𝜀 ↦→ 𝑒] |= ˜𝑉 ′ ∪𝐶𝑤)
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Figure 2: Illustration of Definition 3.1

(1) Lemma 3.3

(2) The consequence results from the application of Theorem 2.1

to the term ∃𝛼 : 𝑋 ∪ {𝜀} → U . 𝛼 |= 𝐶𝑤 ∪ {𝜀 = 𝑒}. That
means, for every 𝑒 witnessing the left statement, we can find

a satisfying vertex of the system𝐶𝑤∪{𝜀 = 𝑒}; thus, we apply
the theorem simultaneously to all those systems.

(3) Let𝑔 ∈ U>0 such that the left statement holds. Let 𝑒 ∈ U(0,𝑔]
and 𝑉 ∈ 𝔙𝐶𝑤∪{𝜀=𝑒 } . We now construct a witness for 𝑉 ′

.

First note that rank(𝐶𝑤∪{𝜀 = 𝑒}) = rank(𝐶)+1 as𝐶𝑤∪{𝜀 =
𝑒} contains one variable 𝜀 more than 𝐶 and at least one

constraint 𝜀 = 𝑒 in this variable. Thus, we set 𝑉 ′ = 𝑉 \ {𝑐}
for a constraint 𝑐 such that 𝑃𝑉 ′ ∪ {𝜀} is linearly independent,
which is chosen as follows:

Let 𝑉 = {𝑝1 ∼1 𝑏1, . . . , 𝑝𝑘 ∼𝑘 𝑏𝑘 }. By the choice of 𝑉 , 𝜀 = 𝑒

linearly depends on𝑉 , that is there exists a unique 𝑓1, . . . , 𝑓𝑘
such that 𝜀 = 𝑓1 · 𝑝1 + . . . + 𝑓𝑘 · 𝑝𝑘 and 𝑓𝑖 ≠ 0 for at least

one 𝑖 ∈ [𝑘]. Choosing 𝑐 = (𝑝𝑖 ∼𝑖 𝑏𝑖 ) guarantees the linear
independence of 𝑃𝑉 ′ ∪{𝜀} (as otherwise,𝑉 would be linearly

dependent).

(4) Let 𝑔 ∈ U>0 such that the left statement holds. Let 𝑒 ∈
U(0,𝑔] . Let𝑊𝑒 ≠ ∅ denote the set of possible choices of 𝑉 ′

.

Since𝐶𝑤 is finite, also𝑊𝑒 is finite. Lemma 3.7 below implies

that if there is a𝑉 ′ ∈𝑊𝑒 such that𝑉 ′ ∉𝑊𝑒′ for some 𝑒 ′ < 𝑒 ,

then 𝑉 ′ ∉ 𝑊𝑒′′ for all 𝑒
′′ < 𝑒 ′. It follows that there exists

𝑔′ ∈ (0, 𝑔] such that for 𝑒, 𝑒 ′ ∈ (0, 𝑔′], it holds𝑊𝑒 = 𝑊𝑒′ .

Thus, for any set 𝑉 ′ ∈𝑊𝑒 =𝑊𝑒′ , 𝑔
′
satisfies the statement.

It follows that the implication holds. □

Lemma 3.7. Let 𝑉 ⊆ 𝐶𝑤 with |𝑉 | = rank(𝐶) such that 𝑃𝑉 ∪ {𝜀}
is linearly independent. Let 𝑒, 𝑒 ′ ∈ U such that 0 < 𝑒 ′ < 𝑒 . Let
𝛼 : 𝑋 ∪ {𝜀} → U such that 𝛼 |= 𝑉̃ ∪ 𝐶𝑤 ∪ {𝜀 = 𝑒}. Furthermore,
assume there exists no 𝛼 ′ such that 𝛼 ′ |= 𝑉̃ ∪𝐶𝑤 ∪ {𝜀 = 𝑒 ′}.

Then for every 𝑒 ′′ ∈ U, 𝑒 ′′ < 𝑒 ′ and every assignment 𝛼 ′′ it holds
𝛼 ′′ ̸ |= 𝑉̃ ∪𝐶𝑤 ∪ {𝜀 = 𝑒 ′′}.

Proof. Let 𝑉 = {𝑝𝑖 ≤ 𝑏𝑖 | 𝑖 = 1, . . . , 𝑘}, 𝑒 , 𝑒 ′ and 𝛼 as specified

in the Lemma 3.7. Furthermore, let 𝛼 ′, 𝛼 ′′
: 𝑋 ∪ {𝜀} → U such that

𝛼 ′ |= 𝑉̃ ∪ {𝜀 = 𝑒 ′} but 𝛼 ′ ̸ |= 𝐶𝑤 , and 𝛼
′′ |= 𝑉̃ ∪ {𝜀 = 𝑒 ′′}. Note that

such 𝛼 ′
and 𝛼 ′′

exist, since 𝑃𝑉 ∪ {𝜀} is linearly independent.

Let (𝑝 ≤ 𝑏) ∈ 𝐶𝑤 such that 𝛼 ′(𝑝) > 𝑏. Note that from 𝛼 ′ |= 𝑉̃

it follows that (𝑝 ≤ 𝑏) ∉ 𝑉 . As 𝑉 ∪ {𝜀 = 𝑒} is a maximal linearly

independent subset of 𝐶𝑤 , there exist 𝑓1, . . . , 𝑓𝑘 , 𝑓𝜀 ∈ F not all 0

such that

𝑝 = 𝑓1 · 𝑝1 + . . . + 𝑓𝑘 · 𝑝𝑘 + 𝑓𝜀 · 𝜀
and as 𝛼 |= 𝑉̃ ∪ {𝜀 = 𝑒},

𝛼 (𝑝) = 𝑓1 · 𝛼 (𝑝1)︸︷︷︸
=𝑏1

+ . . . + 𝑓𝑘 · 𝛼 (𝑝𝑘 )︸︷︷︸
=𝑏𝑘

+𝑓𝜀 · 𝛼 (𝜀)︸︷︷︸
=𝑒

.

Analogous statements hold for 𝛼 ′
and 𝛼 ′′

. From these statements

together with the observation that 𝛼 (𝑝𝑖 ) = 𝛼 ′(𝑝𝑖 ) = 𝛼 ′′(𝑝𝑖 ) = 𝑏𝑖

for 𝑖 = 1, . . . , 𝑘 (due to the satisfaction of 𝑉̃ ) it follows that

𝛼 ′(𝑝) − 𝛼 (𝑝) = 𝑓𝜀 · (𝑒 ′ − 𝑒) and 𝛼 ′′(𝑝) − 𝛼 ′(𝑝) = 𝑓𝜀 · (𝑒 ′′ − 𝑒 ′).
As by assumption, 𝛼 (𝑝)≤𝑏 and 𝛼 ′(𝑝)>𝑏, it holds 𝛼 ′(𝑝) − 𝛼 (𝑝) > 0,

i.e. 𝑓𝜀 · (𝑒 ′ − 𝑒) > 0 and thus using 𝑒 ′ < 𝑒 we get 𝑓𝜀 < 0. Taking into

account that 𝑒 ′′ < 𝑒 ′, it holds 𝛼 ′′(𝑝) − 𝛼 ′(𝑝) = 𝑓𝜀 · (𝑒 ′′ − 𝑒 ′) > 0 as

well. Finally, we can conclude

𝛼 ′′(𝑝) = 𝛼 ′(𝑝)︸︷︷︸
>𝑏

+𝛼 ′′(𝑝) − 𝛼 ′(𝑝)︸            ︷︷            ︸
>0

> 𝑏

and thus, 𝛼 ′′ ̸ |= 𝑝 ≤ 𝑏. □

Example 3.8. We illustrate the steps in the proof of Theorem 3.6

on the example 𝐶 = {−2 · 𝑥1 < 0,− 1

2
· 𝑥1 < 2} respectively

𝐶𝑤 = {−2 · 𝑥1 + 𝜀 ≤ 0︸            ︷︷            ︸
𝑐1

, −1

2

· 𝑥1 + 𝜀 ≤ 2︸             ︷︷             ︸
𝑐2

}.

By Implication (1), if 𝐶 is satisfiable, then 𝐶𝑤 ∧ 𝜀 > 0 (depicted

in Figure 3a) is as well, and for any solution of the latter, its 𝜀-

component can be made arbitrarily small while still remaining in

the solution set. The 𝜀-component of the depicted point corresponds

to the quantified variable 𝑔 ∈ U>0 from the statement and for the

points below to the variable 𝑒 ∈ U(0,𝑔] respectively.
Now, we apply the fundamental theorem of linear programming.

To do so, we introduce an artificial constraint 𝜀 = 𝑒 , thus for every

such point, we obtain a restricted system. Figure 3b depicts these

systems for some possible values 𝑒 .



𝑥1

𝜀
𝑐1

𝑐2

𝜀 > 0

𝜀 = 𝑔

(a) Any point strictly between a point (red) in the solution set (grey)
of𝐶𝑤 ∧𝜀 > 0 and its projection onto the 𝑥1 axis is a solution (dashed
line).

𝑥1

𝜀
𝑐1

𝑐2

𝜀 > 0

𝜀 = 𝑔

𝜀 = 𝑒

𝜀 = 𝑒

𝜀 = 𝑒

(b) For any value for 𝜀 less or equal to 𝑔 and greater than 0, a satisfy-
ing solution can be found.

𝑥1

𝜀
𝑐1

𝑐2

𝜀 > 0

𝜀 = 𝑔

𝜀 = 𝑒

𝜀 = 𝑒

𝜀 = 𝑒

(c) For any value for 𝜀 less or equal to𝑔 and greater than 0, a satisfying
solution on a ridge of the solution set can be found.

𝑥1

𝜀
𝑐1

𝑐2

𝜀 > 0

𝜀 = 𝑔

(d) If 𝑔 is chosen small enough, for any value for 𝜀 less or equal to
𝑔 and greater than 0, a satisfying solution on the same ridge can be
found.

Figure 3: Illustration of the proof of Theorem 3.6

Implication (2) is the application of the fundamental theorem of

linear programming to each of those systems. By doing so, we know

that for every value 𝑒 below 𝑔, we can find a satisfying solution

with 𝜀-component 𝑒 on the ridge of the original polyhedron, as

depicted in Figure 3c.

The aim of the last steps in Implications (3) and (4) is to choose

the set 𝑉 defining the ridge of the polyhedron independently from

the choice of 𝑔. To do so, we prove that there is a sufficiently small

𝑔 such that we can reside on the same ridge for decreasing 𝜀-values

- especially for arbitrarily small values of 𝜀. Intuitively this is clear:

Given a ridge that we moved along (making 𝜀 smaller) but is cut

off by another ridge at some point, we will never move along this

ridge again; this is exactly, what is proven in Lemma 3.7. As there

are only finitely many constraints, the set of ridges that we can

move along is also finite. Thus, we obtain the desired statement,

graphically depicted in Figure 3d.

3.3 Infinitesimal arithmetic
The characterization given by Theorem 3.6 allows to find solutions

arbitrarily close to a vertex. Finally, by employing infinitesimal

arithmetic, we obtain a formalism allowing to find those solutions

algorithmically.

We introduce a common transcendental extension of the real

closed field for an infinitesimal value. For exhaustive theoretical

foundations we refer for example to [8]; this extension has also

been examined in the context of linear programming [6, 12].

Definition 3.9 (Infinitesimal). Let (U, <) be an ordered vector

space over F . We define 𝜀 as positive infinitesimal, that is

∀𝑐 ∈ U>0 . 0 < 𝜀 < 𝑐.

The extension of U for 𝜀 is the vector space U[𝜀] = {𝑎 + 𝑏 · 𝜀 |
𝑎, 𝑏 ∈ U} over F with operations

• + : U[𝜀] × U[𝜀] → U[𝜀] with
(𝑎1 + 𝑏1 · 𝜀) + (𝑎2 + 𝑏2 · 𝜀) = (𝑎1 + 𝑎2) + (𝑏1 + 𝑏2) · 𝜀

• · : F ×U[𝜀] → U[𝜀] with 𝑐 · (𝑎 + 𝑏 · 𝜀) = 𝑐 · 𝑎 + 𝑐 · 𝑏 · 𝜀
We define the extension of (U, <) for 𝜀 as the ordered vector

space (U[𝜀], <) over F with < ⊆ U[𝜀] × U[𝜀] such that

(𝑎1 + 𝑏1 · 𝜀) < (𝑎2 + 𝑏2 · 𝜀) iff 𝑎1 < 𝑎2 ∨ (𝑎1 = 𝑎2 ∧ 𝑏1 < 𝑏2) .



For a system 𝐶 of linear constraints over (U, <) in 𝑋 ∪ {𝜀}, 𝐶∗

denotes 𝐶 interpreted as system over (U[𝜀], <) in 𝑋 .

Theorem 3.10 (Main theorem). Let 𝐶 be a system of linear
constraints over (U, <) in 𝑋 . Then𝐶 is satisfiable if and only if there
exists a maximal linearly independent subset 𝑉 ∈ 𝔙𝐶∗

𝑤
of 𝐶∗

𝑤 such
that

∃𝛼∗ : 𝑋 → U[𝜀] . 𝛼∗ |= 𝑉̃ ∪𝐶∗
𝑤 .

Proof.

∃𝛼 : 𝑋 → U . 𝛼 |= 𝐶
(1)
⇔ ∃𝑉 ⊆ 𝐶𝑤 . ( |𝑉 | = rank(𝐶) ∧ (𝑃𝑉 ∪ {𝜀} lin. indep.)∧

∃𝑔 ∈ U>0 . ∀𝑒 ∈ U(0,𝑔] .
∃𝛼 : 𝑋 → U . 𝛼 [𝜀 ↦→ 𝑒] |= 𝑉̃ ∪𝐶𝑤)

(2)
⇔ ∃𝑉 ∈ 𝔙𝐶∗

𝑤
.

∃𝑔 ∈ U>0 . ∀𝑒 ∈ U(0,𝑔] .
∃𝛼∗ : 𝑋 → U[𝜀] . (𝛼∗ |= 𝑉̃ ∧ (𝜑𝑒 ◦ 𝛼∗) [𝜀 ↦→ 𝑒] |= 𝐶𝑤)

(3)
⇔ ∃𝑉 ∈ 𝔙𝐶∗

𝑤
.

∃𝛼∗ : 𝑋 → U[𝜀] . (𝛼∗ |= 𝑉̃∧
∃𝑔 ∈ U>0 . ∀𝑒 ∈ U(0,𝑔] . (𝜑𝑒 ◦ 𝛼∗) [𝜀 ↦→ 𝑒] |= 𝐶𝑤)

(4)
⇔ ∃𝑉 ∈ 𝔙𝐶∗

𝑤
. ∃𝛼∗ : 𝑋 → U[𝜀] . (𝛼∗ |= 𝑉̃ ∧ 𝛼∗ |= 𝐶∗

𝑤)
where 𝜑𝑒 : U[𝜀] → U, 𝑎 + 𝑏 · 𝜀 ↦→ 𝑎 + 𝑏 · 𝑒 is the substitution
homomorphism for 𝑒 ∈ U.

(1) Theorem 3.6

(2) First note that rank(𝐶∗
𝑤) = rank(𝐶); moreover, the witnesses

for 𝑉 on both sides of the equivalence correspond to each

other: On the left side, it is a set of constraint with variables

in 𝑋 ∪ {𝜀}, on the right side the same constraints but seen

in variables 𝑋 assigned to values inU[𝜀].
Given this, the backward direction is already proven. For

the forward direction, there is more involved: As 𝑃𝑉 ∪ {𝜀}
is linearly independent, 𝑉̃ admits a solution for any value of

𝜀 (i.e. by the Rouché-Capelli theorem [25]). It is easy to see

that such a set of solutions in 𝑋 ∪ {𝜀} can be described by

an 𝛼∗ : 𝑋 → U[𝜀].
(3) The backward direction is trivial.

For the forward direction we note that given a fixed 𝑉 , the

set of assignments 𝛼∗ for which 𝛼∗ |= 𝑉̃ holds is independent

from the choice of 𝑔 and 𝑒 .

(4) The forward direction follows immediately from 𝜀 < 𝑔 for

all 𝑔 ∈ U>0.

For the backward direction, plugging in 𝛼∗ into𝐶∗
𝑤 results in

bounds on 𝜀, which are, by the semantics of < onU[𝜀], only
positive upper bounds or non-positive lower bounds. Thus,

𝑔 can be chosen as any value smaller than the smallest upper

bound (or as any positive value if no such bound exists).

□

While this formalism seems natural, there are some pitfalls in

understanding which choices for 𝑉 ∈ 𝔙𝐶∗
𝑤
are accepted by Theo-

rem 3.10. These are illustrated in the following example.

Example 3.11. Consider the system depicted in Figure 4a. Clearly,

either {𝑐1, 𝑐2}, {𝑐2, 𝑐3} or {𝑐1, 𝑐3} can be chosen for inducing the

vertex, which is also called a degenerate solution.

Figure 4b depicts the system after replacing 𝑐1 by a strict in-

equality respectively its weakened version (𝑐1)𝑤 . Now, {𝑐1, 𝑐2}
and {𝑐1, 𝑐3} represent different vertices while {𝑐2, 𝑐3} induces no
solution.

Figure 4c shows the system after replacing all constraints by

strict ones. Though the illustration suggests that any combination

of constraints induces the (same) vertex, this is not true in general.

As illustrated in Figure 4d, if we scale 𝑐1 by the factor
1

2
, only

{𝑐1, 𝑐2} and {𝑐1, 𝑐3} induce vertices while selecting {𝑐2, 𝑐3} violates
𝑐1. While this seems counter-intuitive at first sight, Theorem 3.10

guarantees the existence of a satisfying vertex w.r.t. infinitesimal

arithmetic if and only if the original system is satisfiable.

3.4 Equal and not-equal constraints
So far, we covered the relations ≤ and <. As already mentioned, ≥,
> and = can be equivalently expressed by ≤ and <, even though

for better efficiency, in practice these relations are rather handled

separately.

Dealing with disequalities 𝑝 ≠ 𝑏 is a bit more involved. Graphi-

cally, each disequality plits the solution set by a hyperplane into

two halves, sharing one open boundary but in different directions.

Algorithmically, both possibilities 𝑝 < 𝑏 and 𝑝 > 𝑏 need to be con-

sidered in order to achieve a conclusive answer to the satisfiability

question. This can be implemented by case splitting, checking both

branches individually; optimizations could use e.g. explanations of

unsatisfiability in certain branches in order to generalize the result

to other branches, or postpone branching in the computations as far

as possible by computing first without disequalities and considering

≠ constraints belatedly.

4 DISCUSSION AND RELATEDWORK
Theorem 3.10 admits the extension of any algorithm relying on

the fundamental theorem of linear programming (Theorem 2.1) for

strict inequalities: The original system needs to be transformed

into its weak version as in Definition 3.1. The arithmetic operations

and evaluation functions need to be extended for an infinitesimal

value 𝜀 with the semantics given in Definition 3.9. From there on,

Theorem 3.10 guarantees that everything works analogously as

for the case with weak inequalities and thus serves as a drop-in

extension.

4.1 Combinatorial complexity through strict
constraints

Example 3.11 shows that systems containing strict inequalities

might be more complex than their counterparts containing only

weak relations: While for the latter, any choice of the non-basis

yields a satisfying vertex, this is not necessarily the case if some of

these constraints are made strict. In fact, one could construct bad

examples that are trivial after replacing all strict relation symbols

by weak ones but harder to solve otherwise. However, this blow-up

is not greater than adding an additional variable to the problem.

4.2 Applications
Our approach enables decision procedures for weak inequalities

to handle also strict inequalities in the context of SMT solving,

without further modifications.



𝑐1

𝑐2

𝑐3

𝑥1

𝑥2

(a) “Overdetermined” vertex

𝑐1

𝑐2

𝑐3

𝑥1

𝑥2

(b) One strict constraint

𝑐1

𝑐2

𝑐3

𝑥1

𝑥2

(c) Only strict constraints

𝑐1

𝑐2

𝑐3

𝑥1

𝑥2

(d) Only strict constraints

Figure 4: Illustration of Theorem 3.10

4.2.1 Simplex in SMT solving. The classical approach for SMT solv-

ing is the DPLL(T) framework. A SAT solver searches for solutions
of the Boolean abstraction of the problem where every constraint

is replaced by a propositional variable, while a theory solver is em-

ployed regularly for checking the consistency of a (possibly partial)

Boolean solution with the underlying theory. Thus, the input to the

theory solver is a set of constraints containing all input constraints

whose abstraction variable is assigned to true and the negation of

all input constraints whose abstraction variable is set to false. The

theory either finds the current solution consistent, that is, all passed

constraints are satisfiable together, or an (as small as possible) set

of constraints that are unsatisfiable together is returned to the SAT

solver, which adds a formula excluding this selection to the input

formula.

For checking the consistency of linear constraints, there are two

common methods: The Fourier-Motzkin elimination [15, 23] is a

quantifier elimination method; while its original formulation only

assumes weak constraints, the extension for strict constraints is

rather trivial. However, due to its doubly exponential complexity,

it is not suitable for applications in the DPLL(T) context where the

state-of-the-art method is based on the general Simplex algorithm

[11]. Here, we give a simplified intuition using a notation that is

consistent with the notation of this paper.

Given a system 𝐶 of weak linear constraints, the algorithm can

be seen as a heuristic that solves a sequence of equation systems

𝑉̃1, . . . , 𝑉̃𝑘 where 𝑉𝑖 ⊆ 𝔙𝐶 . If in a step 𝑖 it holds sol(𝑉̃𝑖 ) |= 𝐶 , then

satisfiability of 𝐶 is proven. Otherwise the algorithm improves the

given solution by choosing 𝑉̃𝑖+1 = 𝑉̃𝑖 \ {𝑐 𝑗 } ∪ {𝑐 𝑗 ′} for some 𝑗 ≠ 𝑗 ′

such that𝑉𝑖+1 ⊆ 𝔙𝐶 still holds. Additionally, 𝑐 𝑗 ′ is chosen such that

it is violated in step 𝑖 and 𝑐 𝑗 , 𝑐 𝑗 ′ are satisfied in step 𝑖 + 1. If no such

constraint is found, unsatisfiability is returned.

The improvement of a solution is also called a pivot operation,
the elements of 𝑉̃𝑖 are called non-basis and the elements in 𝐶 \𝑉𝑖
are called basis. By representing the equation system in a tableau,
these pivot operations can be implemented efficiently avoiding the

need to solve the whole equation system 𝑉̃𝑖+1 from scratch. By a

heuristic selecting the pivots, it is made sure that no selection of

the non-basis is visited again, i.e. 𝑉̃𝑖 ≠ 𝑉̃𝑗 for all 𝑖 ≠ 𝑗 ; together with

Theorem 2.1, this implies completeness of the algorithm.

The splits caused by not-equal constraints can be deferred as

long as possible by only deciding for a case when the constraint

𝑝 ≠ 𝑏 is violated by the current solution and is picked for the next

pivot step.

4.2.2 An adaption of the general Simplex method. The formulation

presented in this paper was needed in Nalbach’s master thesis on

an adaption [24] of the general Simplex:

The idea in the thesis was to move the selection of the non-

basis 𝑉 into the SAT solver and to pass theory information as

additional lemmas to the SAT solver allowing for Boolean learning

and reasoning about the vertex selection. A theory call then not

only consists of a set of constraints to be satisfied, but also an

encoding of the vertex selection, thus the system 𝑉̃ ∪𝐶 is solved

by Gaussian elimination.

The general Simplex is able to transfer some theory-specific

knowledge between theory calls by starting from the tableau from

the previous call, keeping progress on small changes to the in-

put. This approach comes to its limits on instances with complex

Boolean structure, while the novel approach in the master’s thesis

learned combinatorial properties of the theory across theory calls.

Although the new approach did not compete with the general

Simplex in practise, the view of the Simplex algorithm as sequence

of equation systems as described above inspired the formulation of

the main theorem of this paper.

Our formulation of the fundamental theorem allows the exten-

sion of the general Simplex method as well as the adapted method

for strict inequalities. Similarly, further novel methods for solving

QF_LRA can be built on its foundation due to its generality.

4.2.3 Exact solutions for linear programming. Most linear program-

ming solvers use floating point arithmetic for efficiency but at the

cost of precision; this makes the study of strict inequalities unin-

teresting. However, there exist solvers that refine solutions [16]

or even employ exact rational arithmetic [3, 9] to increase preci-

sion. For scenarios where high or exact precision is required, the

presented construction could be of interest.

4.3 Alternative approaches
The presented transformation serves as an almost drop-in solution

for extending existing algorithms for strict inequalities. Here, we

present two alternative approaches that are also feasible, but re-

quire a more extensive adaption of the algorithms and thus leaving

some questions open. Furthermore note that as both alternatives

described below also introduce an additional variable 𝜀, the increase

in combinatorial complexity is the same as the method presented

in the previous section.

4.3.1 Transformation to maximization problem. Lemma 3.2 and

Lemma 3.3 already yield an obvious transformation of a system



𝐶 of linear constraints over (U, <) in variables 𝑋 to the linear

program max 𝜀 subject to 𝐶𝑤 .

𝐶 is satisfiable if and only if there exists a solution for 𝐶𝑤 with

a strictly positive value for 𝜀, that is, the outcome of the linear

program is positive.

4.3.2 Allow arbitrary positive values for 𝜀. Our approach interprets

𝜀 as an infinitesimal, which can be seen as a variable that can take

arbitrarily small values. Alternatively, one could interpret it as a

variable that can take any strictly positive value.

This can be achieved using a weaker version of Theorem 3.6: A

system 𝐶 is satisfiable iff there exists a subset 𝑉 ⊆ 𝐶𝑤 such that

|𝑉 | = rank(𝐶) and 𝑃𝑉 ∪ {𝜀} is linearly independent such that

∃𝑔 ∈ U>0 . ∃𝛼 : 𝑋 → U . 𝛼 [𝜀 ↦→ 𝑔] |= 𝑉̃ ∪𝐶𝑤 .

Note that consistency of a system 𝑉̃ ∪ 𝐶𝑤 can be checked by

application of Gaussian variable elimination. The resulting system

𝐶
𝑉̃
then only contains 𝜀 as a single variable, its constraints thus are

weak lower and upper bounds on 𝜀. Thus 𝑉̃ ∪𝐶𝑤 is consistent if and

only if there exists a positive value 𝑔 for satisfying these bounds.

4.4 Differences to King’s proof
The formulation of King’s work focusses on the extension of the

general Simplex method and thus is only applicable to this specific

method. This paper gives a more general formulation as an exten-

sion of (parts of) the fundamental theorem of linear programming;

while the two formulations are identical for the general Simplex,

our generalization can be applied to other methods such as given

in Section 4.2.2 without crucial modifications to the method.

Although the idea of King’s proof can be applied also to the new

formulation, our proof employs a different idea than King’s proof

[20]: Both proofs use the same transformation of a system 𝐶 of

linear constraints to a system 𝐶∗
𝑤 with only weak constraints and

containing an infinitesimal 𝜀 with a special interpretation as given

in Definitions 3.1 and 3.9. Also, both use that any solution for 𝐶∗
𝑤

can be transformed to a solution for 𝐶 .

We gave a constructive proof stating that if a system 𝐶 of linear

constraints is satisfiable, then there also exists a solution for 𝐶∗
𝑤

which is in particular a vertex of the solution polyhedron (under

application of the fundamental theorem of linear programming).

The latter is the crucial step in the proof, as this enables restricting

the search to vertex candidates analogously to the fundamental

theorem of linear programming.

King [20] proves the contraposition: He applies Farkas’ lemma
[13] on the transformation 𝐶∗

𝑤 , implying that if the Simplex algo-

rithm detects a conflict, then 𝐶∗
𝑤 does not have a solution; then by

construction and the semantics of 𝜀, the original system 𝐶 is also

unsatisfiable.

Our constructive proof gives insight to the relation between a

system𝐶 and its transformation𝐶∗
𝑤 which is the main contribution

of this paper.

5 CONCLUSION
The presented transformation is an elegant way to extend algo-

rithms relying on the fundamental theorem of linear programming

for strict inequalities, which is commonly used for applications in

SMT solving. While there was already a proof for this method, we

gave an additional proof that shows the nature of the problem and

hopefully helps for deeper understanding its implications.
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