
On the Implementation of Cylindrical Algebraic Coverings

for Satisfiability Modulo Theories Solving

Gereon Kremer1, Erika Ábrahám2, Matthew England3, and
James H. Davenport4

1 Stanford University
gkremer@cs.stanford.edu

2 RWTH Aachen University
abraham@cs.rwth-aachen.de

3 Coventry University
Matthew.England@coventry.ac.uk

4 University of Bath
J.H.Davenport@bath.ac.uk

Abstract

We recently presented cylindrical algebraic
coverings: a method based on the theory of
cylindrical algebraic decomposition and suited
for nonlinear real arithmetic theory reasoning
in Satisfiability Modulo Theories solvers.

We now present a more careful implemen-
tation within cvc5, discuss some implementa-
tion details, and highlight practical benefits
compared to previous approaches, i.e., NLSAT
and incremental CAD. We show how this new
implementation simplifies proof generation for
nonlinear real arithmetic problems in cvc5 and
announce some very encouraging experimental
results that position cvc5 at the very front of
currently available SMT solvers for QF NRA.

1 Introduction

The Satisfiability Modulo Theories (SMT)
problem is concerned with deciding satisfia-
bility or unsatisfiability of first-order formulae
over a given theory, or a combination of multi-
ple theories. One theory of considerable inter-
est is nonlinear real arithmetic (NRA), where
atoms are sign constraints on polynomials with
rational coefficients. This theory had already
been studied extensively in the literature be-
fore the advent of SMT solving and a variety
of methods exists. The only complete decision
procedures that have found their way to prac-
tical use are all based on cylindrical algebraic

decomposition (CAD) [5], although CAD has
a worst-case running time that is doubly expo-
nential in the number of variables [6].

All SMT solvers that treat nonlinear real
arithmetic in a complete way are based on
CAD: yices and z3 both use NLSAT [8] while
SMT-RAT implements both NLSAT and an
incremental variant of CAD [10]. Unfortu-
nately, both these approaches have issues.
The NLSAT framework is sufficiently differ-
ent from the traditional CDCL(T) framework
to make a seamless integration into an exist-
ing CDCL(T)-style SMT solver virtually im-
possible: NLSAT is mostly separated from the
rest of the solver in SMT-RAT, yices, and z3.
Meanwhile, implementing CAD in an incre-
mental fashion [10] requires a great deal of ma-
chinery that may be prohibitive to implement.

A new decision procedure for NRA called
cylindrical algebraic coverings was recently
presented in [1]. It is heavily inspired by CAD
and inherits its theoretic properties: it is com-
plete, but also has doubly exponential worst-
case running time. It can easily be used as
a theory solver in the CDCL(T) framework
(in contrast to NLSAT), but is considerably
simpler to implement compared to the incre-
mental CAD approach from [10]. It has also
been observed that a trace of its computation
for UNSAT is much closer to human reasoning
compared to CAD [2], which makes it easier to
understand and also simplifies the automatic
generation of proofs of unsatisfiability.



Cylindrical Algebraic Coverings for SMT Solving Kremer, Ábrahám, Davenport, England

Contribution

This paper presents an implementation of the
cylindrical algebraic coverings method within
cvc5 (the new successor to CVC4 [3]), its abil-
ity to generate proofs, and its performance
compared to the approaches implemented in
SMT-RAT, yices and z3. In the following, we
assume some familiarity with [1].

2 Implementation

We have presented an initial implementation
of the cylindrical algebraic coverings method
within SMT-RAT in [1], which was still in an
experimental state. Since then, we have pro-
duced a more stable implementation within
cvc5 based on the algebraic routines from
libpoly [9]. The new implementation directly
follows the description in [1] with a few exten-
sions: generation of infeasible subsets, partial
theory checks, several variable ordering strate-
gies, and dynamic exclusion of non-integral
sample points for mixed-integer problems.

Most notably, though, we do not use our im-
plementation as a self-contained theory solver
but combine it with a linear arithmetic solver
in the spirit of [4]: our method is only executed
when the linearization of the input is satisfiable
and a “linear model” for this linearization has
been found. This not only avoids calling this
comparably expensive method in many cases,
but also allows for novel techniques like using
the linear model as a seed for the nonlinear
model we aim to construct. An extension to
allow for an incremental processing of consis-
tency checks is currently being worked on, but
is still in an early experimental state.

Infeasible subsets. Generating small infea-
sible subsets is known to be an effective tech-
nique to speed up SMT solvers. The aim is
to identify a small subset of the input con-
straints that is already unsatisfiable. We store
all contributing constraints for every interval
and simply collect all constraints for the inter-
vals that cover the first dimension to obtain
an infeasible subset. By checking constraints

against sample points in a fixed order and reg-
ularly pruning redundant intervals, we hope to
reduce this set of constraints. It is conceivable
to perform an a-posteriori analysis to obtain
an even smaller set of constraints, but this has
not been done yet. Note that this task seems to
be more involved than for a regular CAD as re-
futing a sample point by a different constraint
most likely changes the generated interval and
everything it was then used for.

Partial checks. The integration with the
linear arithmetic solver was originally intended
for an incremental linearization approach [4].
It is thus sufficient to issue a lemma that ex-
cludes the current linear model instead of per-
forming a full consistency check. Our method
can easily be adapted as every interval can be
formulated as a lemma. We have implemented
the possibility to terminate as soon as the first
interval has been constructed in the first di-
mension. If we make sure that we sample the
first variable according to the linear model,
this interval yields a lemma suitable for [4].
Note that it seems unlikely that this technique
has any benefits by itself, and an integration
with the linearization is not trivial: the lem-
mas would need to be linear to actually help
the linear solver, but the lemmas constructed
from our intervals are usually not linear.

Variable ordering. Finding a good vari-
able ordering is a notorious issue for all CAD-
based approaches, as it has huge impacts on
performance, with the right choice suscepti-
ble to slight changes to the input, and existing
heuristics oftentimes not very robust. We im-
plement a static ordering, as well as the heuris-
tics commonly called “Brown” and “Triangu-
lar” [7]. Additionally, we experimented with
a heuristic based on machine learning tech-
niques, but with very limited success.

Mixed-integer problems. Most imple-
mentations for CAD-based approaches try to
sample integer values whenever possible, sim-
ply to keep coefficients small. We do the same,
and thus we only select a non-integer sample

2



Cylindrical Algebraic Coverings for SMT Solving Kremer, Ábrahám, Davenport, England

when the surrounding interval has no integer.
In such a case, we can simply exclude the in-
terval in between the two neighbouring integer
values and provide corresponding polynomials
as characterization. Let for example x = 1.3
be a sample; then we exclude (1; 2) and use
{x− 1, x− 2} as characterization.

Incremental consistency checks. Our in-
tegration with the linear solver allows to use
the linear model as an initial model for our
method. The hope would be that the lineariza-
tion of the input describes the solution space
sufficiently well to direct us into the vicinity
of proper solutions by using the linear model.
In practice, however, seeding our method with
the linear model shows no benefit.

Additionally, we have an experimental im-
plementation that is more in line with the com-
mon understanding of incremental consistency
checks. Instead of only collecting the inter-
vals locally, we maintain the intervals in an
explicit tree that is retained across multiple
theory calls. This allows us to reuse whole sub-
trees and possibly avoid a lot of work. In its
current experimental state, though, this tech-
nique has not shown a substantial benefit.

3 Proof Generation

There is a new infrastructure in cvc5 to gener-
ate formal proofs for almost every aspect of its
solving process. We use this to generate proofs
for cylindrical algebraic coverings that roughly
follow the ideas from [2]. In contrast to proofs
generated in other parts of cvc5, they are not
detailed enough to allow for an automatic ver-
ification by, e.g., Isabelle/HOL. They are al-
ready useful, though, in that they decompose
the overall proof into meaningful proof steps
and allow for consistency checks like connect-
edness and structural soundness. We intend to
make these proofs more detailed in the future.

Consider the following formula:

(x > 0) ∧ (y < 0) ∧ (x · y = 0).

The proof steps related to our approach are
given below, while the actual proof generated

by cvc5 contains a lot of additional reasoning
steps. Note that it makes use of “root predi-
cates” x ∼ rootk(p) that compare the kth root
of p in x over the current assignment to x, and
that the proof does not contain intervals that
were generated, but ultimately are not neces-
sary to build the proof.

• Consider x > 0, derive x 6∈ (−∞, 0] which
is represented by x > root1(x).

• Guess x = 1 (abstracted by x > root1(x)).

– Consider y < 0, derive y 6∈ [0,∞) which
is represented by y < root1(y).

– Consider x · y = 0, derive y 6∈ (−∞, 0)
which is represented by y ≥ root1(x · y).

– We combine y < root1(y) and y ≥
root1(x · y) to refute x > root1(x).

• We combine x > 0 and ¬(x > root1(x))
to derive false.

The abstraction of x = 1 (x > root1(x)) is not
known when the solver guesses the value for x:
it is computed when x = 1 is refuted and this
branch of the proof is closed.

4 Experiments

We have already shown in Section 7 of [1]
that a very preliminary implementation of
the cylindrical algebraic coverings approach
in SMT-RAT outperforms a rather elaborate
incremental CAD implementation and is al-
most competitive with the NLSAT variant
from SMT-RAT. We now show that a more
careful implementation of the cylindrical al-
gebraic coverings method can compete with
other state-of-the art implementations. We use
the QF NRA benchmark set from SMT-LIB and
use Intel Xeon E5-2620 processors with a time-
out of ten minutes.

We compare the current implementation
within cvc5 with z3 4.8.10, yices 2.6.2, the
implementation of cylindrical algebraic cover-
ings within SMT-RAT, the incremental lin-
earization approach for QF NRA that was al-
ready present in CVC4, and cvc5 without any
nonlinear reasoning technique.

3



Cylindrical Algebraic Coverings for SMT Solving Kremer, Ábrahám, Davenport, England

Solver sat unsat overall

cvc5 (cdcac) 5021 5377 10398
yices 4904 5437 10341
z3 5093 5195 10288
SMT-RAT 4438 4435 8873
cvc5 (inc. lin.) 3283 5385 8668
cvc5 (no nl) 2203 3271 5474

Figure 1: Experimental results

Figure 1 shows that the new approach signif-
icantly outperforms the incremental lineariza-
tion approach, and that it even has a small lead
over both yices and z3, the two best solvers in
the SMT competition 2020. We verify that it
is indeed the new approach that makes cvc5 so
powerful for QF NRA by comparing to two other
configurations of cvc5 for QF NRA.

5 Summary and Future

We have described some implementation de-
tails for cylindrical algebraic coverings in cvc5,
and how they can simplify automatic proof
generation. The experimental results look very
promising, in particular as some common op-
timization techniques are not used yet.

We aim to further improve our implementa-
tion by: generating better infeasible subsets;
better integrate with the existing lineariza-
tion approach to make use of partial checks;
find better variable orderings; and improve the
handling of incremental consistency checks.

References

[1] Erika Ábrahám, James H. Davenport,
Matthew England, and Gereon Kremer. De-
ciding the consistency of non-linear real arith-
metic constraints with a conflict driven search
using cylindrical algebraic coverings. Jour-
nal of Logical and Algebraic Methods in Pro-
gramming, 119(100633), 2021. doi:10.1016/

j.jlamp.2020.100633.

[2] Erika Ábrahám, James H. Davenport, Gereon
Kremer, and Zak Tonks. New opportuni-
ties for the formal proof of computational

real geometry? In Satisfiability Checking
and Symbolic Computation Workshop, vol-
ume 2752 of CEUR Workshop Proceedings,
2020. URL: http://ceur-ws.org/Vol-2752/
paper13.pdf.

[3] Clark W. Barrett, Christopher L. Con-
way, Morgan Deters, Liana Hadarean, De-
jan Jovanovic, Tim King, Andrew Reynolds,
and Cesare Tinelli. CVC4. In Com-
puter Aided Verification, volume 6806 of
LNCS, pages 171–177, 2011. doi:10.1007/

978-3-642-22110-1_14.

[4] Alessandro Cimatti, Alberto Griggio, Ahmed
Irfan, Marco Roveri, and Roberto Sebastiani.
Incremental linearization for satisfiability and
verification modulo nonlinear arithmetic and
transcendental functions. ACM Transactions
on Computational Logic, 19:1–52, 2018. doi:
10.1145/3230639.

[5] George E. Collins. Quantifier Elimination
for Real Closed Fields by Cylindrical Alge-
braic Decomposition. In Proceedings 2nd. GI
Conference Automata Theory & Formal Lan-
guages, pages 134–183, 1975.

[6] James H. Davenport and Joos Heintz. Real
Quantifier Elimination is Doubly Exponen-
tial. J. Symbolic Comp., 5:29–35, 1988.

[7] Matthew England, Russell Bradford,
James H. Davenport, and David Wilson.
Choosing a variable ordering for truth-table
invariant cylindrical algebraic decomposition
by incremental triangular decomposition.
In International Congress on Mathematical
Software, volume 8592 of LNCS, 2014.
doi:10.1007/978-3-662-44199-2_68.

[8] Dejan Jovanović and Leonardo de Moura.
Solving non-linear arithmetic. In Au-
tomated Reasoning, volume 7364 of
LNCS, pages 339–354, 2012. doi:

10.1007/978-3-642-31365-3_27.

[9] Dejan Jovanović and Bruno Dutertre.
Libpoly: A library for reasoning about
polynomials. In Satisfiability Modulo
Theories, volume 1889 of CEUR Work-
shop Proceedings, 2017. URL: http:

//ceur-ws.org/Vol-1889/paper3.pdf.

[10] Gereon Kremer and Erika Ábrahám. Fully
incremental cylindrical algebraic decompo-
sition. Journal of Symbolic Computation,
100:11–37, 2020. doi:10.1016/j.jsc.2019.

07.018.

4

https://doi.org/10.1016/j.jlamp.2020.100633
https://doi.org/10.1016/j.jlamp.2020.100633
http://ceur-ws.org/Vol-2752/paper13.pdf
http://ceur-ws.org/Vol-2752/paper13.pdf
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1145/3230639
https://doi.org/10.1145/3230639
https://doi.org/10.1007/978-3-662-44199-2_68
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/978-3-642-31365-3_27
http://ceur-ws.org/Vol-1889/paper3.pdf
http://ceur-ws.org/Vol-1889/paper3.pdf
https://doi.org/10.1016/j.jsc.2019.07.018
https://doi.org/10.1016/j.jsc.2019.07.018

	Introduction
	Implementation
	Proof Generation
	Experiments
	Summary and Future

