
Implementing arithmetic over algebraic numbers
A tutorial for Lazard’s lifting scheme in CAD

Gereon Kremer
Stanford University

Stanford, United States
gkremer@cs.stanford.edu

Jens Brandt
RWTH Aachen University

Aachen, Germany
jens.brandt@rwth-aachen.de

Abstract—Implementing techniques from computer algebra
often requires a multitude of foundational algorithms that are
neither easy to understand nor to implement. Despite great
interest from other communities, the difficulty to implement
novel techniques from computer algebra proves to be a signif-
icant hindrance, especially, when a modern computer algebra
system cannot be used.

We tackle cylindrical algebraic decomposition (CAD) as one
such example. CAD can be, for example, applied in satisfiability
modulo theories solving for nonlinear real arithmetic. However,
a recent advance in CAD, the Lazard’s lifting scheme, requires
additional algebraic techniques that are neither available in
these solvers, nor as stand-alone libraries. We close this gap
by showing how to use the CoCoALib library to implement
Lazard’s lifting scheme outside of a modern computer algebra
system like Maple.

Keywords-computer algebra; algebraic numbers; cylindrical
algebraic decomposition; Lazard lifting; satisfiability modulo
theories; CoCoALib

I. INTRODUCTION

Among the many theories that satisfiability modulo the-
ories solvers (SMT) tackle, nonlinear real arithmetic is
arguably one of the most difficult ones, at least from a
theoretical point of view. Its mathematical counterpart, the
theory of the reals, has seen a lot of results, though only
few made it into practically useful tools.

While the theory of the reals is decidable in a con-
structive manner, the first procedure by Tarski exhibits
non-elementary runtime complexity [28]. Other approaches
exist [12], [23], [5], but most have never been imple-
mented [13]. To the best of our knowledge, the CAD
approach is the only complete decision procedure used in
practice and it has taken about a decade to be imple-
mented [10], [11]. Once CAD had proven to be sufficiently
efficient in practice, it has been further improved, extended,
and adapted as well as implemented in a variety of tools,
among others, cvc5, Maple [8], Mathematica [27], QEPCAD
and QEPCAD B [6], SMT-RAT [17], and yices and z3 [14].

Given the overall complexity of both, the CAD theory and
the algorithms that are foundational to it, most literature on
CAD assumes a significant amount of algebraic machinery.
Constructing a CAD builds on the computation of subresul-
tant coefficients, (multivariate) polynomial greatest common

divisors, (multivariate) square-free factorization, and origi-
nally real root isolation of bivariate polynomials over a real
algebraic number as well as the reduction of a multiple real
algebraic extension to a simple extension [10]. While Collins
gives some hints and references on how to implement these,
later literature assumes that an implementation of these
methods is available [10].

Alas, this is not always the case: some computer algebra
systems have commercial licenses which is often not practi-
cable; many lack certain parts of the required algorithms;
some cannot be used easily as libraries without a major
impact on the implementation architecture; and some are
no longer maintained. Therefore, most SMT solvers use
their own implementations of the algebraic subroutines:
SMT-RAT relies on CArL (and partially CoCoALib [1])
while cvc5, yices, and z3 use libpoly [15]. Unfortunately,
most SMT solver researchers only have a limited back-
ground on computer algebra, and thus implementing new
theoretic results is a significant challenge.

Contribution: This work discusses an implementation
of one of the most important new developments in the
CAD community: Lazard’s lifting scheme [19]. It elimi-
nates polynomial factors that vanish over the current as-
signment, which is required for using Lazard’s projection
operator in a sound way. In particular, we show how the
concise mathematical algorithm can be implemented based
on CoCoALib [1] that is used in cvc5, the successor to
CVC4 [4]. We evaluate our implementation within cvc5 and
verify that using a sound implementation of Lazard’s lifting
scheme has no negative impact on the practical performance.

The level of abstraction aims to be understandable given a
limited amount of knowledge in computer algebra. However,
we assume some familiarity with CAD and its various
subroutines like projection and lifting.

II. LAZARD’S LIFTING SCHEME

The fundamental task of the lifting procedure in CAD
is to construct (n + 1)-dimensional sample points from an
n-dimensional real algebraic sample point a ∈ Qn

and a
polynomial q ∈ Q[x0, . . . , xn]. Conceptually, lifting works
by substituting a into q to obtain a univariate polynomial
in xn and then isolate its real roots. Lazard’s lifting scheme



enhances this simple procedure by eliminating certain factors
of q that make q vanish during lifting: assume q = f ·r where
f is a polynomial that vanishes identically over a, then the
real roots from r are lost and cannot be used to construct
(n+ 1)-dimensional sample points over a.

The core idea of Lazard’s lifting scheme is to process the
sample point a dimension-wise and, before substituting the
ith value into q, check whether q would vanish after this
substitution [19]. If so, we conclude that (xi − ai) divides
q and we set q to q/(xi − ai), i.e.

for i := 0 to n− 1 do
vi := argmaxv∈Z(xi − ai)

v divides q
q := q/(xi − ai)

vi

q := subst(ai, xi, q)
isolate real roots of q (now univariate in xn)

The real roots of the resulting polynomial q are then used
to construct sample points over a in n+ 1 dimensions.

III. ALGEBRA IN PRACTICE

While Lazard’s lifting scheme looks fairly innocent, it
has a subtle issue: it assumes that real algebraic numbers
are seamlessly integrated in the polynomial arithmetic, oth-
erwise substituting ai for xi may not be possible. Math-
ematically speaking, it assumes that we not only have
polynomial arithmetic over the rational field but also over
extensions of it. Note that the issue is not with implementing
polynomial arithmetic over these extension fields, as a proper
implementation of these extension fields’ operations is not
trivial in itself. We refer to [16, section 2.5] for a more
thorough discussion of the difficulties.

One important insight is that K(ai), the field extension of
K with ai, for some field K and a real algebraic number ai,
is isomorphic to the quotient ring K[xi]/〈pi〉, for pi ∈ K[xi]
the minimal polynomial of ai over K. Whenever we go
from K to K(ai), we thus construct K[xi]/〈pi〉 and map
all relevant polynomials into this quotient ring. While this
does not actually substitute ai into the polynomial q, it takes
care of all cancellations (c.f. [16, section 2.5.2.1]). The naive
recursive approach may fail, though: while we usually have
the minimal polynomial pi ∈ Q[xi] for ai over Q, Lazard’s
construction requires the minimal polynomial for ai over
the field K. The remedy is to factor pi over K and take the
unique factor that vanishes over ai to obtain the minimal
polynomial p∗i ∈ K[xi] for ai.

While this approach takes care of most issues with
Lazard’s lifting scheme, it ultimately generates a polynomial
q that was stripped of all factors that vanish over a, but may
still contain the variables x0, . . . , xn−1. We can use either
Gröbner bases with an appropriate term ordering or iterated
resultants to obtain a univariate polynomial q∗ ∈ Q[xn] such
that the real roots of q∗ are a superset of the real roots of
q over a, which is sufficient for our application (c.f. [16,
section 2.5.2.2]).

IV. RELATED WORK

Real algebraic numbers are a fundamental part of many
methods in computer algebra and related fields, and have
been studied extensively in the past. Unfortunately, such re-
search usually either takes real algebraic numbers for granted
or focusses on specific aspects of their implementation.

In many cases, real algebraic numbers are merely a
by-product of constructing extension fields or algebraic
closures, and their practical implementation is not dis-
cussed [22], [3], [29]. Literature about more complex al-
gorithms often assumes an existing implementation of real
algebraic numbers [2], [5], [8]. If they are the research
subject themselves, the discussion mostly focusses on very
specific operations and is never sufficient to allow for a
proper reimplementation [24], [9].

Inversely, implementations either exist in commercial
products (like Maple or Mathematica) or as third-party
extensions that are usually meant for a very specific purpose,
are no longer maintained, or lack proper documentation [25],
[21]. We thus observe a shortage of literature about real
algebraic numbers that is constructive and both detailed and
exhaustive enough for an effective and reasonably efficient
implementation of real algebraic numbers.

Collins and Loos propose to reduce a multiple extension to
a simple extension and then perform all arithmetic operations
in this simple extension [10], [20]. Elsewhere, individual
operations on real algebraic numbers for multiple extensions
are discussed [18], [26].

V. ALGEBRAIC SETUP

We first describe how the ideas from section III can
be implemented. A major part of this consists in figuring
out which computations are performed in which polynomial
ring, and how to properly map polynomials from one ring
into the other. We also use a subroutine that needs to deal
with real algebraic numbers in a numeric manner (c.f. [16,
section 2.5]) by checking which polynomial factor evaluates
to zero over the current assignment. This computation needs
to be performed outside of the presented framework, most
likely also outside of CoCoALib, e.g., using libpoly.

We start with a number of polynomial rings and mappings
between these, and then give a detailed description of a
C++ implementation of the procedure from section II. Let
n ∈ N, x0, . . . , xn be real variables, a0, . . . , an−1 ∈ Q real
algebraic numbers with minimal polynomials p0, . . . , pn−1
over Q. We define

K0 = Q, Ri = Ki[xi],

Ki+1 = Ri/〈p∗i 〉, Ji = Ki[xi, . . . , xn],

with p∗i minimal polynomials for ai over Ki.
We furthermore consider the Ki-linear mappings: next to

the quotient map Ri ↪→ Ki+1, we have the epimorphism
ϕi : Ji → Ji+1 and its right inverse Ci : Ji+1 → Ji that



K0 = Q J0 = K0[x0, . . . , xn]

R0 = K0[x0]

K1 = R0/〈p∗0〉 J1 = K1[x1, . . . , xn]

R1 = K1[x1]

K2 = R1/〈p∗1〉 J2 = K2[x2, . . . , xn]

R2 = K2[x2]

ϕ0

ϕ1

C0

C1

Figure 1. Schematic overview

maps each polynomial to the canonical representative of its
preimage under ϕi, i.e., the polynomial with smallest degree
in xi. A schematic overview of this setup is given in figure 1
and we conclude this section by an example.

Example: Let n = 1, x0, x1 be real variables and
a0 =

√
2 a real algebraic number with minimal polynomial

p0(x0) = x2
0 − 2 over Q. We obtain

K0 = Q, R0 = Q[x0], J0 = Q[x0, x1],

K1 = Q[x0]/〈x2
0 − 2〉 ∼= Q(

√
2), and

R1 = J1 = (Q[x0]/〈x2
0 − 2〉)[x1] ∼= Q(

√
2)[x1].

In this example, the epimorphism ϕ0 maps x0 ∈ J0 to
x0 + 〈x2

0 − 2〉 ∈ J1. This operation is isomorphic to the
substitution of x0 by

√
2, e.g., ϕ0((x

2
0 − 2)x1) = 0.

VI. IMPLEMENTATION

In this section, we use CoCoALib to present an implemen-
tation of the construction from section V. The code samples
are almost fully functional C++ source code snippets; the
only missing parts are those that need to be computed
outside of CoCoALib, e.g., numeric computations involving
real algebraic assignments.

The implementation is separated into four parts: creating
the extension fields Ki and polynomial rings Ri over them,
creating the polynomial rings Ji and mappings, imple-
menting the mapping Ci, and eliminating vanishing factors
according to section II.

First, we create the extension fields Ki, the polynomial
rings Ri and the minimal polynomials p∗i .

vector<RingElem> p; // p0 . . . pn−1
vector<ring> K; // K0 . . .Kn

vector<ring> R; // R0 . . . Rn

K[0] = RingQQ();

// assigned variables x0, . . . xn−1
for (size_t i = 0; i < n; ++i)
{
R[i] = NewPolyRing(K[i],

{NewSymbol()});
RingElem mipo = /* from Ri */;
auto facs = factor(mipo);
p[i] = /* fac that vanishes */;
K[i+1] = NewQuotientRing(R[i],

ideal(p[i]));
}

// free variable xn

R[n] = NewPolyRing(K[n], {NewSymbol()});

The variable mipo holds the minimal polynomial of ai
over Q. To obtain the vanishing factor stored in p[i],
we need to inspect the factors in facs.myFactors().
These factors contain one unique element that evaluates to
zero over the assignment given by a0, . . . , ai. Note that, to
simplify debugging, one can use symbol(name) instead
of NewSymbol() to have proper variable names when
printing CoCoALib objects.

Second, we construct the polynomial rings Ji as well
as the mappings from section V. Most can be obtained
directly from CoCoALib: Ki ↪→ Ri and Ki ↪→ Ji
using CoeffEmbeddingHom, and Ri ↪→ Ki+1 us-
ing QuotientingHom. For Ri ↪→ Ji, we need to
map xi manually by constructing the embedding using
PolyAlgebraHom where the single indeterminant of Ri is
mapped to the first indeterminant of Ji. A similar problem
arises for ϕi : Ji � Ji+1 where we need to provide a
mapping Ki ↪→ Ki+1 and the identity of the variables
xi+1, . . . , xn. We store the two mappings Ri ↪→ Ji and
ϕi : Ji � Ji+1 in RJ and JJ, respectively.

vector<ring> J; // J0 . . . Jn
vector<RingHom> RJ; // Ri ↪→ Ji
vector<RingHom> JJ; // Ji � Ji+1

// x0 . . . xn, in the loop xi . . . xn

vector<symbol> syms;
for (size_t i = 0; i <= n; ++i)
{

syms[i] = symbols(R[i])[0];
}



for (size_t i = 0; i <= n; ++i)
{
J[i] = NewPolyRing(K[i], syms, lex);
syms.erase(syms.begin());
RJ[i] = PolyAlgebraHom(R[i], J[i],

{indet(J[i], 0)});
if (i == 0) continue;
// Ki−1 ↪→ Ri−1
auto K2R = CoeffEmbeddingHom(R[i-1]);
// Ri−1 ↪→ Ki

auto R2K = QuotientingHom(K[i]);
// Ki ↪→ Ji
auto K2J = CoeffEmbeddingHom(J[i]);
// xi−1, xi . . . xn where xi−1 ∈ Ri−1
vector<RingElem> indets = {

K2J(R2K(indet(R[i-1], 0))) };
for (size_t j = 0; j < n-i; ++j)

indets.push_back(indet(J[i], j));
JJ[i] = PolyRingHom(J[i-1], J[i],
R2K(K2R), indets);

}

Third, we provide an auxiliary function for mapping
elements from Ji into J0 via the composition C0◦· · ·◦Ci−1,
compare section V. For this, it is sufficient to implement
every function Cj individually by manually deconstructing
p ∈ Jj+1 and reconstructing it in Jj . Therefore, we replace
every coefficient by its canonical representative and map the
kth indeterminant of Ji to the k+1st indeterminant of Ji−1.
We use this auxiliary function toJ0 in the final step of the
reduction where we compute a Gröbner basis over J0 to
obtain univariate polynomials.

RingElem pushDown(RingElem p, size_t i)
{

assert(owner(p) == J[i]);
RingElem res(J[i-1]); // 0 ∈ Ji−1
for (auto it = BeginIter(p);

!isEnded(it); ++it)
{

RingElem c = coeff(it);
c = CanonicalRepr(c); // Ki → Ri−1
c = RJ[i-1](c); // Ri−1 ↪→ Ji−1
auto pp = PP(it); // power product
vector<long> ind = IndetsIn(pp);
for (auto k = 0; k<ind.size(); ++k)
{ // map power product Ji → Ji−1

long e = exponent(pp, ind[k]);
auto in = indet(J[i-1], ind[k]+1);
c *= power(in, e);

}
res += c;

}
return res;

}

RingElem toJ0(RingElem p, size_t i)
{
for (; i > 0; --i) p = pushDown(p, i);
return p;

}

Fourth and last, everything is in place to eliminate the
vanishing factors from the input polynomial q(0) ∈ J0 via a
straight-forward implementation of the method described in
section II (c.f. [19]), resulting in q(n) ∈ Jn. We then map
q(n) and all pi into J0 using the auxiliary function toJ0 and
compute a reduced Gröbner basis of these polynomials. Con-
structing J0 with the lexicographical term ordering (c.f. [16,
section 2.5.2.2]) allows us to retrieve polynomials from the
Gröbner basis that are univariate in xn and characterize the
solution space of the input polynomials in xn. Therefore,
the projection of the real roots of q onto xn is contained in
the set of real roots of these univariate polynomials.

RingElem q = /* irreducible in J0 */;
for (size_t i = 0; i < n; ++i)
{

RingElem cur = RJ[i](p[i]); // pi ∈ Ji
while (IsDivisible(q, cur)) q /= cur;
q = JJ[i](q); // q ∈ Ji+1

}
assert(owner(q) == J.back()); // q ∈ Jn
vector<RingElem> id = { toJ0(q) };
for (size_t i = 0; i < n; ++i)
{

id.emplace_back(toJ0(p[i]));
}
auto basis = ReducedGBasis(ideal(id));
return { /* polynomials from basis that
are univariate in xn */ };

The retrieved polynomials serve as input for real root
isolation algorithms, and their real roots then are used in
the subsequent lifting process of CAD.

VII. PRACTICAL EFFICIENCY

In section VI, we described a basic implementation of
Lazard’s lifting scheme. However, the practical efficiency
can be further improved by the following techniques.

A. Reusability

We oftentimes want to process multiple polynomials
over the same sample point a (c.f. the outer loop in
get_unsat_intervals [2, algorithm 3]). The afore-
mentioned description nicely separates the construction of
all polynomial rings and mappings from the processing of a
polynomial q. In this case, we can thus construct the whole
algebraic setup once and execute Lazard’s lifting scheme
multiple times.



B. Skip levels

If the assignment ai is an element of Ki, we can set
Ki+1 = Ki and substitute xi directly by a polynomial
expression in a0, . . . , ai−1 with rational coefficients (c.f.
[16, algorithm 2.2]), i.e., there is no need for the complex
construction in section VI.

To identify such cases, it suffices to check whether the
minimal polynomial of ai over Ki is linear in xi, i.e., in
the implementation, we check whether p[i] is linear in xi.
In these cases, we copy K[i] to K[i+1] instead of using
NewQuotientRing and compute the assignment for xi as
the quotient of the constant term and the leading coefficient
of the polynomial p[i].

However, level skipping requires several other adaptions:

• The construction of JJ[i] is simplified: the coefficient
rings of Ji−1 and Ji are identical and JJ[i] can thus
be constructed as a PolyAlgebraHom that maps xi

to its assignment.
• When mapping the coefficients of p from Ki

to Ji−1 in the pushDown method, we can use
CoeffEmbeddingHom(J[i-1]) instead of obtain-
ing the canonical representative and applying the map-
ping RJ[i-1].

• In the actual reduction, we directly construct the (par-
tial) evaluation homomorphism hom on Ji that assigns
xi to its assignment as a PolyAlgebraHom. We
replace the divisibility check by IsZero(hom(q))
and use q = hom(q) to embed q into Ji+1.

Please note that we could increase the number of these
cases by selecting a suitable variable ordering. However,
the correctness of Lazard’s lifting scheme requires using
the same variable ordering as the overall CAD construction
(c.f. [16, section 5.3.2]).

C. Factorization

We feel that it is also worth mentioning that the discussed
methods exploit polynomial factorization beyond what is
necessary to identify the minimal polynomials pi over Ki.

Note that we assume in the code the input polynomial
q to be irreducible (in J0) and returned the polynomials
from the reduced Gröbner basis separately. We could accept
a reducible polynomial q, and return the product of all
univariate polynomials from the Gröbner basis. However,
keeping these factors separate makes sense in practice as
the real root isolation methods that eventually process these
polynomials may be able to retrieve rational roots more often
and are usually faster on polynomials of smaller degree.

Similarly, many operations on real algebraic numbers are
faster if their defining polynomials have smaller degrees, at
least if the implementation allows for defining polynomials
that are not irreducible.

Configuration Results
lifting projection sat unsat total

libpoly McCallum 5064 5378 10442
libpoly Lazard 5062 5377 10439
Lazard McCallum 5088 5370 10458
Lazard Lazard 5090 5371 10461

Figure 2. Experimental results

VIII. SOME EXPERIMENTS

We integrate our code in the implementation of cylindrical
algebraic coverings [2] in cvc5 and compare four configu-
rations that vary on the one hand in the lifting technique
(c.f. get_unsat_intervals [2]) and on the other hand
in which coefficients are included in the projection (c.f.
required_coefficients [2]).

To isolate the real roots of a polynomial, we ei-
ther use infeasible_regions from libpoly or a
reimplementation based on Lazard’s lifting as presented
in section VI. For the coefficient choice, we use
required_coefficients [2] which implements a
slight refinement of McCallum’s projection, or follow Brown
and McCallum’s refinement of Lazard’s projection (c.f. [7,
definition 4]).

The four configurations were tested on the SMT-LIB
benchmark set for QF_NRA, consisting of 11552 input files,
of which only 4752 ever made it to the nonlinear solver
within a time limit of ten minutes. All other instances
were solved by the simplex-based linear solver alone. About
99.6% of all variable assignments could be skipped as
discussed in section VII-B. Only 925 instances see any non-
direct assignments at all, which emphasizes the importance
of this optimization. The removal of vanishing factors, the
core improvement of Lazard’s lifting scheme, occurs on
only 664 instances where almost 750k vanishing factors are
removed altogether.

Figure 2 shows that employing Lazard’s lifting scheme
solves slightly more satisfiable instances than the others
while losing a few unsatisfiable ones. On commonly solved
instances, there is no discernible performance difference in
either computation time or memory usage. Using the smaller
projection sets from [7] has no significant impact, as the
two tested variants are identical on all but 52 input files,
corresponding to merely 0.45%.

Note that we have not seen a single incorrect result
in our experiments, although only the configurations that
use Lazard’s lifting scheme are technically sound. This is
consistent with previous experience [16], [17]: using an
incomplete combination of projection and lifting schemes
can only cause soundness issues by missing sample points
and incorrectly determine unsatisfiability. In practice, this is
only the case when all satisfying sample points are missed
in this way across all theory calls, which is highly unlikely.



These experiments thus verify, that using a proper im-
plementation of Lazard’s lifting scheme allows employing
Lazard’s projection operator in a sound way without nega-
tively affecting practical performance.

IX. CONCLUSION

We showed how one of the most significant recent ad-
vances for CAD, Lazard’s lifting scheme that allows to
use Lazard’s projection operator, can be implemented with
reasonable effort outside of a full-fledged computer algebra
system, instead using the free and open source C++ library
CoCoALib.

The experiments show that for most examples the as-
signments allow to avoid constructing the field extensions
as discussed in section VII-B. Even if they are necessary,
though, they have no discernible performance impact.

REFERENCES

[1] John Abbott and Anna M. Bigatti. CoCoALib: a C++ library
for doing Computations in Commutative Algebra. Available
at http://cocoa.dima.unige.it.

[2] Erika Ábrahám, James H. Davenport, Matthew England,
and Gereon Kremer. Deciding the consistency of non-
linear real arithmetic constraints with a conflict driven search
using cylindrical algebraic coverings. Journal of Logical
and Algebraic Methods in Programming, 119, 2021. doi:
10.1016/j.jlamp.2020.100633.

[3] Michael Artin. Algebra. Pearson, 2011.

[4] Clark W. Barrett, Christopher L. Conway, Morgan De-
ters, Liana Hadarean, Dejan Jovanovic, Tim King, Andrew
Reynolds, and Cesare Tinelli. CVC4. In Computer Aided
Verification, volume 6806 of LNCS, pages 171–177, 2011.
doi:10.1007/978-3-642-22110-1_14.

[5] Saugata Basu, Richard Pollack, and Marie-Françoise Roy.
On the combinatorial and algebraic complexity of quantifier
elimination. Journal of the ACM, 43:1002–1045, 1996.
doi:10.1145/235809.235813.

[6] Christopher W. Brown. QEPCAD B: A program for computing
with semi-algebraic sets using cads. ACM SIGSAM Bulletin,
37:97–108, 2003. doi:10.1145/968708.968710.

[7] Christopher W. Brown and Scott McCallum. Enhancements
to Lazard’s method for cylindrical algebraic decomposi-
tion. In Computer Algebra in Scientific Computing, volume
12291 of LNCS, pages 129–149, 2020. doi:10.1007/
978-3-030-60026-6_8.

[8] Changbo Chen, Marc Moreno Maza, Bican Xia, and Lu Yang.
Computing cylindrical algebraic decomposition via triangular
decomposition. In International Symposium on Symbolic
and Algebraic Computation, pages 95–102, 2009. doi:
10.1145/1576702.1576718.

[9] Cyril Cohen. Construction of real algebraic numbers in Coq.
In Interactive Theorem Proving, volume 7406 of LNCS, pages
67–82, 2012. doi:10.1007/978-3-642-32347-8_6.

[10] George E. Collins. Quantifier elimination for real closed fields
by cylindrical algebraic decomposition. In Automata Theory
and Formal Languages, volume 33 of LNCS, pages 134–183,
1975. doi:10.1007/3-540-07407-4_17.

[11] George E. Collins. The SAC-2 computer algebra sys-
tem. In European Conference on Computer Algebra, vol-
ume 204 of LNCS, pages 34–35, 1985. doi:10.1007/
3-540-15984-3_235.

[12] D. Yu. Grigor’ev and N.N. Vorobjov. Solving systems of
polynomial inequalities in subexponential time. Journal of
Symbolic Computation, 5:37–64, 1988. doi:10.1016/
S0747-7171(88)80005-1.

[13] Hoon Hong. Comparison of several decision algorithms for
the existential theory of the reals. RISC Report Series 91-41,
Johannes Kepler University, 1991.

[14] Dejan Jovanović and Leonardo de Moura. Solving non-linear
arithmetic. In International Joint Conference on Automated
Reasoning, volume 7364 of LNCS, pages 339–354, 2012.
doi:10.1007/978-3-642-31365-3_27.

[15] Dejan Jovanovic and Bruno Dutertre. Libpoly: A library
for reasoning about polynomials. In Satisfiability Modulo
Theories, volume 1889 of CEUR Workshop Proceedings,
2017. URL: http://ceur-ws.org/Vol-1889/paper3.pdf.

[16] Gereon Kremer. Cylindrical algebraic decomposition for
nonlinear arithmetic problems. Phd thesis, RWTH Aachen
University, 2020. doi:10.18154/RWTH-2020-05913.

[17] Gereon Kremer and Erika Ábrahám. Fully incremental
cylindrical algebraic decomposition. Journal of Symbolic
Computation, 100:11–37, 2020. doi:10.1016/j.jsc.
2019.07.018.

[18] Lars Langemyr. Algorithms for a multiple algebraic exten-
sion. In Effective Methods in Algebraic Geometry, pages 235–
248. 1991. doi:10.1007/978-1-4612-0441-1_16.

[19] Daniel Lazard. An improved projection for cylindri-
cal algebraic decomposition. In Algebraic Geometry and
its Applications, pages 467–476. 1994. doi:10.1007/
978-1-4612-2628-4_29.

[20] Rüdiger Loos. Computing in algebraic extensions. In
Computer Algebra: Symbolic and Algebraic Computation,
volume 4 of COMPUTING, pages 173–187. 1982. doi:
10.1007/978-3-7091-3406-1_12.

[21] Ulrich Loup and Erika Ábrahám. GiNaCRA: A C++ library
for real algebraic computations. In NASA Formal Methods,
volume 6617 of LNCS, pages 512–517, 2011. doi:10.
1007/978-3-642-20398-5_41.

[22] Ray Mines, Fred Richman, and Wim Ruitenburg. A Course
in Constructive Algebra. Springer, 1988. doi:10.1007/
978-1-4419-8640-5.

[23] James Renegar. A faster pspace algorithm for deciding the
existential theory of the reals. In Symposium on Founda-
tions of Computer Science, pages 291–295, 1988. doi:
10.1109/SFCS.1988.21945.

https://doi.org/10.1016/j.jlamp.2020.100633
https://doi.org/10.1016/j.jlamp.2020.100633
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1145/235809.235813
https://doi.org/10.1145/968708.968710
https://doi.org/10.1007/978-3-030-60026-6_8
https://doi.org/10.1007/978-3-030-60026-6_8
https://doi.org/10.1145/1576702.1576718
https://doi.org/10.1145/1576702.1576718
https://doi.org/10.1007/978-3-642-32347-8_6
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/3-540-15984-3_235
https://doi.org/10.1007/3-540-15984-3_235
https://doi.org/10.1016/S0747-7171(88)80005-1
https://doi.org/10.1016/S0747-7171(88)80005-1
https://doi.org/10.1007/978-3-642-31365-3_27
http://ceur-ws.org/Vol-1889/paper3.pdf
https://doi.org/10.18154/RWTH-2020-05913
https://doi.org/10.1016/j.jsc.2019.07.018
https://doi.org/10.1016/j.jsc.2019.07.018
https://doi.org/10.1007/978-1-4612-0441-1_16
https://doi.org/10.1007/978-1-4612-2628-4_29
https://doi.org/10.1007/978-1-4612-2628-4_29
https://doi.org/10.1007/978-3-7091-3406-1_12
https://doi.org/10.1007/978-3-7091-3406-1_12
https://doi.org/10.1007/978-3-642-20398-5_41
https://doi.org/10.1007/978-3-642-20398-5_41
https://doi.org/10.1007/978-1-4419-8640-5
https://doi.org/10.1007/978-1-4419-8640-5
https://doi.org/10.1109/SFCS.1988.21945
https://doi.org/10.1109/SFCS.1988.21945


[24] Renaud Rioboo. Towards faster real algebraic numbers.
Journal of Symbolic Computation, 36(3–4):513–
533, 2003. doi:https://doi.org/10.1016/
S0747-7171(03)00093-2.

[25] Eberhard Schrüfer. Algebraic number fields. https://reduce-
algebra.sourceforge.io/reduce38-docs/arnum.pdf.

[26] Adam Strzeboński and Elias Tsigaridas. Univariate real
root isolation in multiple extension fields. In International
Symposium on Symbolic and Algebraic Computation, pages
343–350, 2012. doi:10.1145/2442829.2442878.

[27] Adam W. Strzeboński. Solving systems of strict polynomial
inequalities. Journal of Symbolic Computation, 29:471–480,
2000. doi:10.1006/jsco.1999.0327.

[28] Alfred Tarski. A decision method for elementary algebra and
geometry. Technical report, RAND Corporation, 1951. URL:
https://www.rand.org/pubs/reports/R109.html.

[29] Joachim von zur Gathen and Jürgen Gerhard. Modern
Computer Algebra. Cambridge University Press, 2013. doi:
10.1017/CBO9781139856065.

https://doi.org/https://doi.org/10.1016/S0747-7171(03)00093-2
https://doi.org/https://doi.org/10.1016/S0747-7171(03)00093-2
https://doi.org/10.1145/2442829.2442878
https://doi.org/10.1006/jsco.1999.0327
https://www.rand.org/pubs/reports/R109.html
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1017/CBO9781139856065

	Introduction
	Lazard's lifting scheme
	Algebra in practice
	Related work
	Algebraic setup
	Implementation
	Practical efficiency
	Reusability
	Skip levels
	Factorization

	Some experiments
	Conclusion
	References

