back to the basics of NRA
 the heavy lifting nobody* talks about

Gereon Kremer

most SMT theories

number type is closed over the theory

most SMT theories

> number type is closed over the theory $$
\Leftrightarrow
$$ a model can be written as $\varphi:=\bigwedge_{i} x_{i}=c_{i}$

most SMT theories

number type is closed over the theory

$$
\begin{gathered}
\stackrel{\Leftrightarrow}{\text { a model can be written as } \varphi:=\bigwedge_{i} x_{i}=c_{i}} \\
\stackrel{\Leftrightarrow}{\text { definable values are in the language }}
\end{gathered}
$$

most SMT theories

number type is closed over the theory
\Leftrightarrow
a model can be written as $\varphi:=\bigwedge_{i} x_{i}=c_{i}$
\Leftrightarrow
definable values are in the language
this holds for: Boolean, arrays*, bit-vectors, data types, floating points, integer arithmetic, linear arithmetic, uninterpreted functions, strings

most SMT theories

number type is closed over the theory
\Leftrightarrow
a model can be written as $\varphi:=\bigwedge_{i} x_{i}=c_{i}$
\Leftrightarrow
definable values are in the language
this holds for: Boolean, arrays*, bit-vectors, data types, floating points, integer arithmetic, linear arithmetic, uninterpreted functions, strings

$$
\begin{aligned}
& x \geq 2 \wedge x+y=7 \wedge z>y \\
& x \mapsto 2 \quad y \mapsto 5 \quad z \mapsto 6
\end{aligned}
$$

nonlinear arithmetic

$$
x^{2}=2
$$

nonlinear arithmetic

$$
x^{2}=2 \wedge x>0
$$

$$
\begin{array}{r}
x^{2}=2 \wedge x>0 \\
x \mapsto \sqrt{2}
\end{array}
$$

$$
\begin{gathered}
x^{2}=2 \wedge x>0 \wedge y^{2}=3 \wedge y>0 \\
x \mapsto \sqrt{2}
\end{gathered}
$$

$$
\begin{gathered}
x^{2}=2 \wedge x>0 \wedge y^{2}=3 \wedge y>0 \\
x \mapsto \sqrt{2} \quad y \mapsto \sqrt{3}
\end{gathered}
$$

$$
\begin{gathered}
x^{2}=2 \wedge x>0 \wedge y^{2}=3 \wedge y>0 \wedge z=x+y \\
x \mapsto \sqrt{2} \quad y \mapsto \sqrt{3} \quad z \mapsto ?
\end{gathered}
$$

$$
\begin{gathered}
x^{2}=2 \wedge x>0 \wedge y^{2}=3 \wedge y>0 \wedge z=x+y \\
x \mapsto \sqrt{2} \quad y \mapsto \sqrt{3} \quad z \mapsto ? \\
\text { WolframAlpha: } z \mapsto \sqrt{5+2 \cdot \sqrt{6}}
\end{gathered}
$$

nonlinear arithmetic

$$
\begin{gathered}
x^{2}=2 \wedge x>0 \wedge y^{2}=3 \wedge y>0 \wedge z=x+y \\
x \mapsto \sqrt{2} \quad y \mapsto \sqrt{3} \quad z \mapsto ? \\
\text { WolframAlpha: } z \mapsto \sqrt{5+2 \cdot \sqrt{6}}
\end{gathered}
$$

let's open this box:

- what do $\sqrt{2}, \sqrt{3}$ and $\sqrt{5+2 \cdot \sqrt{6}}$ actually mean?
- what happens in WolframAlpha?
- what do we need to do in cvc5?

canonical representation

- $\sqrt{2}, \sqrt{3}$
- $\sqrt{8} \rightsquigarrow 2 \cdot \sqrt{2}$
- $\sqrt{1 / 2} \rightsquigarrow \sqrt{2} / 2$
- $\sqrt[4]{4} \rightsquigarrow \sqrt{2}$

canonical representation

- $\sqrt{2}, \sqrt{3}$
- $\sqrt{8} \rightsquigarrow 2 \cdot \sqrt{2}$
- $\sqrt{1 / 2} \rightsquigarrow \sqrt{2} / 2$
- $\sqrt[4]{4} \rightsquigarrow \sqrt{2}$
- $\sqrt{6}$ an $\sqrt{2} \cdot \sqrt{3}$
we know the rules

canonical representation

- $\sqrt{2}, \sqrt{3}$
- $\sqrt{8} \rightsquigarrow 2 \cdot \sqrt{2}$
- $\sqrt{1 / 2} \rightsquigarrow \sqrt{2} / 2$
- $\sqrt[4]{4} \rightsquigarrow \sqrt{2}$
- $\sqrt{6}$ an $\sqrt{2} \cdot \sqrt{3}$
we know the rules
- $\sqrt[4]{8}$ (n) $\sqrt{2 \cdot \sqrt{2}}$
do we?

canonical representation

- $\sqrt{2}, \sqrt{3}$
- $\sqrt{8} \rightsquigarrow 2 \cdot \sqrt{2}$
- $\sqrt{1 / 2} \rightsquigarrow \sqrt{2} / 2$
- $\sqrt[4]{4} \rightsquigarrow \sqrt{2}$
- $\sqrt{6} \rightarrow \sqrt{2} \cdot \sqrt{3}$
we know the rules
- $\sqrt[4]{8}$ mor $\sqrt{2 \cdot \sqrt{2}}$ do we?
- $\sqrt{5+2 \cdot \sqrt{6}}$ (n) $\sqrt{2}+\sqrt{3}$

canonical representation

- $\sqrt{2}, \sqrt{3}$
- $\sqrt{8} \rightsquigarrow 2 \cdot \sqrt{2}$
- $\sqrt{1 / 2} \rightsquigarrow \sqrt{2} / 2$
- $\sqrt[4]{4} \rightsquigarrow \sqrt{2}$
- $\sqrt{6}$ th $\sqrt{2} \cdot \sqrt{3}$
- $\sqrt[4]{8}$ n $\rightarrow \sqrt{2 \cdot \sqrt{2}}$
we know the rules do we?
- $\sqrt{5+2 \cdot \sqrt{6}}$ (n) $\sqrt{2}+\sqrt{3}$
- $\sqrt{8+2 \cdot \sqrt{15}} \stackrel{?}{=} \sqrt{3}+\sqrt{5}$
- solve $x^{2} y-x y^{2}+x=3$ under $x \mapsto \sqrt[3]{5}$
- $\exists a, b \in \mathbb{Q} . \quad \sqrt{3+\sqrt{3}}=a \cdot \sqrt{3-\sqrt{3}}+b$

canonical representation

- $\sqrt{2}, \sqrt{3}$
- $\sqrt{8} \rightsquigarrow 2 \cdot \sqrt{2}$
- $\sqrt{1 / 2} \rightsquigarrow \sqrt{2} / 2$
- $\sqrt[4]{4} \rightsquigarrow \sqrt{2}$

- $\sqrt[4]{8}$ n $\rightarrow \sqrt{2 \cdot \sqrt{2}}$
we know the rules do we?
- $\sqrt{8+2 \cdot \sqrt{15}} \stackrel{?}{=} \sqrt{3}+\sqrt{5}$
- solve $x^{2} y-x y^{2}+x=3$ under $x \mapsto \sqrt[3]{5}$
- $\exists a, b \in \mathbb{Q} . \quad \sqrt{3+\sqrt{3}}=a \cdot \sqrt{3-\sqrt{3}}+b$
\Rightarrow is there a closed computational framework?

real algebraic numbers

a real algebraic number $a \in \mathcal{R}$ is a real root of a polynomial $p \in \mathbb{Z}[x]$.

real algebraic numbers

a real algebraic number $a \in \mathcal{R}$ is a real root of a polynomial $p \in \mathbb{Z}[x]$. $p \neq 0$; equivalently $p \in \mathbb{Q}[x] ; \mathbb{Q} \subsetneq \mathcal{R} \subsetneq \mathbb{R}$; in general $\operatorname{roots}(p) \subset \mathbb{C}: x^{2}=-1$;

real algebraic numbers

a real algebraic number $a \in \mathcal{R}$ is a real root of a polynomial $p \in \mathbb{Z}[x]$. $p \neq 0$; equivalently $p \in \mathbb{Q}[x] ; \mathbb{Q} \subsetneq \mathcal{R} \subsetneq \mathbb{R}$; in general $\operatorname{roots}(p) \subset \mathbb{C}: x^{2}=-1$;
what is real algebraic but not rational?

real algebraic numbers

a real algebraic number $a \in \mathcal{R}$ is a real root of a polynomial $p \in \mathbb{Z}[x]$. $p \neq 0$; equivalently $p \in \mathbb{Q}[x] ; \mathbb{Q} \subsetneq \mathcal{R} \subsetneq \mathbb{R}$; in general $\operatorname{roots}(p) \subset \mathbb{C}: x^{2}=-1$; what is real algebraic but not rational? $\sqrt{2}, \sqrt{3}, \sqrt[4]{8}, \sqrt{8+2 \cdot \sqrt{15}}, \ldots$

real algebraic numbers

a real algebraic number $a \in \mathcal{R}$ is a real root of a polynomial $p \in \mathbb{Z}[x]$. $p \neq 0$; equivalently $p \in \mathbb{Q}[x] ; \mathbb{Q} \subsetneq \mathcal{R} \subsetneq \mathbb{R}$; in general $\operatorname{roots}(p) \subset \mathbb{C}: x^{2}=-1$; what is real algebraic but not rational? $\sqrt{2}, \sqrt{3}, \sqrt[4]{8}, \sqrt{8+2 \cdot \sqrt{15}}, \ldots$ what is real but not real algebraic?

real algebraic numbers

a real algebraic number $a \in \mathcal{R}$ is a real root of a polynomial $p \in \mathbb{Z}[x]$. $p \neq 0$; equivalently $p \in \mathbb{Q}[x] ; \mathbb{Q} \subsetneq \mathcal{R} \subsetneq \mathbb{R}$; in general $\operatorname{roots}(p) \subset \mathbb{C}$: $x^{2}=-1$; what is real algebraic but not rational? $\sqrt{2}, \sqrt{3}, \sqrt[4]{8}, \sqrt{8+2 \cdot \sqrt{15}}, \ldots$ what is real but not real algebraic? $\pi, e, 2^{\sqrt{2}}, \sin (a \in \mathcal{R}), \ln (a \in \mathcal{R}), \ldots$

real algebraic numbers

a real algebraic number $a \in \mathcal{R}$ is a real root of a polynomial $p \in \mathbb{Z}[x]$.
$p \neq 0$; equivalently $p \in \mathbb{Q}[x] ; \mathbb{Q} \subsetneq \mathcal{R} \subsetneq \mathbb{R}$; in general $\operatorname{roots}(p) \subset \mathbb{C}: x^{2}=-1$; what is real algebraic but not rational? $\sqrt{2}, \sqrt{3}, \sqrt[4]{8}, \sqrt{8+2 \cdot \sqrt{15}}, \ldots$ what is real but not real algebraic? $\pi, e, 2^{\sqrt{2}}, \sin (a \in \mathcal{R}), \ln (a \in \mathcal{R}), \ldots$
important observations for Real from SMT-LIB:

- all input constants are in \mathbb{Q}
- all definable numbers for $*$ LRA $*$ are in \mathbb{Q}
- *NRA* can define numbers in $\mathcal{R} \backslash \mathbb{Q}$
- all definable numbers for $* \mathrm{NRA} *$ are in \mathcal{R}

real algebraic numbers

a real algebraic number $a \in \mathcal{R}$ is a real root of a polynomial $p \in \mathbb{Z}[x]$.
$p \neq 0$; equivalently $p \in \mathbb{Q}[x] ; \mathbb{Q} \subsetneq \mathcal{R} \subsetneq \mathbb{R}$; in general $\operatorname{roots}(p) \subset \mathbb{C}: x^{2}=-1$; what is real algebraic but not rational? $\sqrt{2}, \sqrt{3}, \sqrt[4]{8}, \sqrt{8+2 \cdot \sqrt{15}}, \ldots$ what is real but not real algebraic? $\pi, e, 2^{\sqrt{2}}, \sin (a \in \mathcal{R}), \ln (a \in \mathcal{R}), \ldots$
important observations for Real from SMT-LIB:

- all input constants are in \mathbb{Q}
- all definable numbers for $*$ LRA $*$ are in \mathbb{Q}
- *NRA* can define numbers in $\mathcal{R} \backslash \mathbb{Q}$
- all definable numbers for $*$ NRA $*$ are in \mathcal{R}
\Rightarrow a closed computational framework for \mathcal{R} is necessary for NRA
\Rightarrow a closed computational framework for \mathcal{R} is sufficient for NRA
a mathematician's algebraic numbers
$\sqrt{2} \in \mathbb{Q}(\sqrt{2})$

a mathematician's algebraic numbers

$\sqrt{2} \in \mathbb{Q}(\sqrt{2})=\{a+b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\}$

a mathematician's algebraic numbers

$$
\sqrt{2} \in \mathbb{Q}(\sqrt{2})=\{a+b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\}=\mathbb{Q}(-\sqrt{2})
$$

a mathematician's algebraic numbers

$$
\sqrt{2} \in \mathbb{Q}(\sqrt{2})=\{a+b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\}=\mathbb{Q}(-\sqrt{2})=\mathbb{Q}(2 \cdot \sqrt{2})
$$

a mathematician's algebraic numbers

$\sqrt{2} \in \mathbb{Q}(\sqrt{2})=\{a+b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\}=\mathbb{Q}(-\sqrt{2})=\mathbb{Q}(2 \cdot \sqrt{2})=\mathbb{Q}(\sqrt{8})$
a mathematician's algebraic numbers

$$
\begin{aligned}
& \sqrt{2} \in \mathbb{Q}(\sqrt{2})=\{a+b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\}=\mathbb{Q}(-\sqrt{2})=\mathbb{Q}(2 \cdot \sqrt{2})=\mathbb{Q}(\sqrt{8}) \\
& \sqrt{2}+\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})
\end{aligned}
$$

a mathematician's algebraic numbers

$$
\begin{aligned}
& \sqrt{2} \in \mathbb{Q}(\sqrt{2})=\{a+b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\}=\mathbb{Q}(-\sqrt{2})=\mathbb{Q}(2 \cdot \sqrt{2})=\mathbb{Q}(\sqrt{8}) \\
& \sqrt{2}+\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2})(\sqrt{3})
\end{aligned}
$$

a mathematician's algebraic numbers

$$
\begin{gathered}
\sqrt{2} \in \mathbb{Q}(\sqrt{2})=\{a+b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\}=\mathbb{Q}(-\sqrt{2})=\mathbb{Q}(2 \cdot \sqrt{2})=\mathbb{Q}(\sqrt{8}) \\
\sqrt{2}+\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2})(\sqrt{3})=\mathbb{Q}(\sqrt{3})(\sqrt{2})
\end{gathered}
$$

a mathematician's algebraic numbers

$$
\begin{gathered}
\sqrt{2} \in \mathbb{Q}(\sqrt{2})=\{a+b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\}=\mathbb{Q}(-\sqrt{2})=\mathbb{Q}(2 \cdot \sqrt{2})=\mathbb{Q}(\sqrt{8}) \\
\sqrt{2}+\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2})(\sqrt{3})=\mathbb{Q}(\sqrt{3})(\sqrt{2})=\mathbb{Q}(\sqrt{6})
\end{gathered}
$$

a mathematician's algebraic numbers

$$
\begin{gathered}
\sqrt{2} \in \mathbb{Q}(\sqrt{2})=\{a+b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\}=\mathbb{Q}(-\sqrt{2})=\mathbb{Q}(2 \cdot \sqrt{2})=\mathbb{Q}(\sqrt{8}) \\
\sqrt{2}+\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2})(\sqrt{3})=\mathbb{Q}(\sqrt{3})(\sqrt{2})=\mathbb{Q}(\sqrt{6})
\end{gathered}
$$

$$
\text { what is } \mathbb{Q}(\sqrt{2}) \text { ? }
$$

a mathematician's algebraic numbers

$$
\begin{gathered}
\sqrt{2} \in \mathbb{Q}(\sqrt{2})=\{a+b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\}=\mathbb{Q}(-\sqrt{2})=\mathbb{Q}(2 \cdot \sqrt{2})=\mathbb{Q}(\sqrt{8}) \\
\sqrt{2}+\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2})(\sqrt{3})=\mathbb{Q}(\sqrt{3})(\sqrt{2})=\mathbb{Q}(\sqrt{6})
\end{gathered}
$$

$$
\text { what is } \mathbb{Q}(\sqrt{2}) ? \mathbb{Q}(\sqrt{2}) \cong \mathbb{Z}[x] /\left\langle x^{2}-2\right\rangle
$$

a mathematician's algebraic numbers

$$
\begin{gathered}
\sqrt{2} \in \mathbb{Q}(\sqrt{2})=\{a+b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\}=\mathbb{Q}(-\sqrt{2})=\mathbb{Q}(2 \cdot \sqrt{2})=\mathbb{Q}(\sqrt{8}) \\
\sqrt{2}+\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2})(\sqrt{3})=\mathbb{Q}(\sqrt{3})(\sqrt{2})=\mathbb{Q}(\sqrt{6})
\end{gathered}
$$

$$
\text { what is } \mathbb{Q}(\sqrt{2}) ? \mathbb{Q}(\sqrt{2}) \cong \mathbb{Z}[x] /\left\langle x^{2}-2\right\rangle
$$

what is $\sqrt{2}$?
a mathematician's algebraic numbers

$$
\begin{gathered}
\sqrt{2} \in \mathbb{Q}(\sqrt{2})=\{a+b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\}=\mathbb{Q}(-\sqrt{2})=\mathbb{Q}(2 \cdot \sqrt{2})=\mathbb{Q}(\sqrt{8}) \\
\sqrt{2}+\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2})(\sqrt{3})=\mathbb{Q}(\sqrt{3})(\sqrt{2})=\mathbb{Q}(\sqrt{6})
\end{gathered}
$$

$$
\text { what is } \mathbb{Q}(\sqrt{2}) ? \mathbb{Q}(\sqrt{2}) \cong \mathbb{Z}[x] /\left\langle x^{2}-2\right\rangle
$$

$$
\text { what is } \sqrt{2} ? \sqrt{2}=x
$$

a mathematician's algebraic numbers

$$
\begin{gathered}
\sqrt{2} \in \mathbb{Q}(\sqrt{2})=\{a+b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\}=\mathbb{Q}(-\sqrt{2})=\mathbb{Q}(2 \cdot \sqrt{2})=\mathbb{Q}(\sqrt{8}) \\
\sqrt{2}+\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2})(\sqrt{3})=\mathbb{Q}(\sqrt{3})(\sqrt{2})=\mathbb{Q}(\sqrt{6})
\end{gathered}
$$

$$
\text { what is } \mathbb{Q}(\sqrt{2}) ? \mathbb{Q}(\sqrt{2}) \cong \mathbb{Z}[x] /\left\langle x^{2}-2\right\rangle
$$

$$
\text { what is } \sqrt{2} \text { ? } \sqrt{2}=x \text { or } \sqrt{2}=-x
$$

a mathematician's algebraic numbers
$\sqrt{2} \in \mathbb{Q}(\sqrt{2})=\{a+b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\}=\mathbb{Q}(-\sqrt{2})=\mathbb{Q}(2 \cdot \sqrt{2})=\mathbb{Q}(\sqrt{8})$

$$
\begin{gathered}
\sqrt{2}+\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2})(\sqrt{3})=\mathbb{Q}(\sqrt{3})(\sqrt{2})=\mathbb{Q}(\sqrt{6}) \\
\text { what is } \mathbb{Q}(\sqrt{2}) ? \mathbb{Q}(\sqrt{2}) \cong \mathbb{Z}[x] /\left\langle x^{2}-2\right\rangle \\
\quad \text { what is } \sqrt{2} ? \sqrt{2}=x \text { or } \sqrt{2}=-x
\end{gathered}
$$

- operations are nice (just work in $\mathbb{Z}[x] /\left\langle x^{2}-2\right\rangle$)
- captures everything that is definable by equalities
- can not distinguish $\sqrt{2}$ from $-\sqrt{2} \ldots$
a mathematician's algebraic numbers
$\sqrt{2} \in \mathbb{Q}(\sqrt{2})=\{a+b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\}=\mathbb{Q}(-\sqrt{2})=\mathbb{Q}(2 \cdot \sqrt{2})=\mathbb{Q}(\sqrt{8})$

$$
\begin{gathered}
\sqrt{2}+\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2})(\sqrt{3})=\mathbb{Q}(\sqrt{3})(\sqrt{2})=\mathbb{Q}(\sqrt{6}) \\
\text { what is } \mathbb{Q}(\sqrt{2}) ? \mathbb{Q}(\sqrt{2}) \cong \mathbb{Z}[x] /\left\langle x^{2}-2\right\rangle \\
\quad \text { what is } \sqrt{2} ? \sqrt{2}=x \text { or } \sqrt{2}=-x
\end{gathered}
$$

- operations are nice (just work in $\mathbb{Z}[x] /\left\langle x^{2}-2\right\rangle$)
- captures everything that is definable by equalities
- can not distinguish $\sqrt{2}$ from $-\sqrt{2} \ldots$ "why would you?" - " $x>0$ " - "oh."

internal representation

a real algebraic number $a \in \mathcal{R}$ is a real root of a polynomial $p \in \mathbb{Z}[x]$.

internal representation

a real algebraic number $a \in \mathcal{R}$ is a real root of a polynomial $p \in \mathbb{Z}[x]$.

internal representation

a real algebraic number $a \in \mathcal{R}$ is a real root of a polynomial $p \in \mathbb{Z}[x]$.

".. that point between -2 and -1 where $p(x)=0 \ldots$..

internal representation

a real algebraic number $a \in \mathcal{R}$ is a real root of a polynomial $p \in \mathbb{Z}[x]$.

".. that point between -2 and -1 where $p(x)=0 \ldots$..
$a:=(p,(l, u))$

internal representation

a real algebraic number $a \in \mathcal{R}$ is a real root of a polynomial $p \in \mathbb{Z}[x]$.

".. that point between -2 and -1 where $p(x)=0 \ldots$...
$a:=(p,(l, u))$
with defining polynomial $p \in \mathbb{Z}[x]$, isolating interval $(l, u) \subset \mathbb{Q}$ and

$$
\exists x^{*} \in(l, u) \cdot\left(p\left(x^{*}\right)=0 \wedge \forall y \in(l, u) \cdot\left(y=x^{*} \vee p(y) \neq 0\right)\right)
$$

some examples

- $\sqrt{2}:\left(x^{2}-2,(1,2)\right)$
- $-\sqrt{2}:\left(x^{2}-2,(-2,-1)\right)$
- $\sqrt[4]{8}:\left(x^{4}-8,(1,2)\right)$

some examples

- $\sqrt{2}:\left(x^{2}-2,(1,2)\right)$
- $-\sqrt{2}:\left(x^{2}-2,(-2,-1)\right)$
- $\sqrt[4]{8}:\left(x^{4}-8,(1,2)\right)$
- $\sqrt{8+2 \cdot \sqrt{15}} \stackrel{?}{=} \sqrt{3}+\sqrt{5}$
$\sqrt{8+2 \cdot \sqrt{15}}:\left(x^{4}-16 x^{2}+4,(3,4)\right)$
$\sqrt{3}+\sqrt{5}:\left(x^{4}-16 x^{2}+4,(3,4)\right)$

remarks on the representation

- is there a canonical defining polynomial?

remarks on the representation

- is there a canonical defining polynomial? the minimal polynomial minimal degree, leading coefficient one requires factorization: difficult (not necessarily expensive)

remarks on the representation

- is there a canonical defining polynomial? the minimal polynomial minimal degree, leading coefficient one requires factorization: difficult (not necessarily expensive)
- is there a canonical isolating interval?

remarks on the representation

- is there a canonical defining polynomial? the minimal polynomial minimal degree, leading coefficient one requires factorization: difficult (not necessarily expensive)
- is there a canonical isolating interval?
no. is $(1,2)$ better or worse than $(1.4,1.5)$ for $\sqrt{2}$? we can (and have to) refine the interval occasionally
operations - simple equalities

$$
\left(x^{2}-2,(-2,-1)\right) \stackrel{?}{=}\left(x^{2}-2,(1,2)\right)
$$

operations - simple equalities

$$
\left(x^{2}-2,(-2,-1)\right) \stackrel{?}{=}\left(x^{2}-2,(1,2)\right)
$$

$$
\text { no: }(-2,-1) \cap(1,2)=\emptyset
$$

operations - simple equalities

$$
\left(x^{2}-2,(-2,-1)\right) \stackrel{?}{=}\left(x^{2}-2,(1,2)\right)
$$

no: $(-2,-1) \cap(1,2)=\emptyset$

$$
\left(x^{2}-2,(1,2)\right) \stackrel{?}{=}\left(x^{2}-3,(1,2)\right)
$$

operations - simple equalities

$$
\left(x^{2}-2,(-2,-1)\right) \stackrel{?}{=}\left(x^{2}-2,(1,2)\right)
$$

no: $(-2,-1) \cap(1,2)=\emptyset$

$$
\left(x^{2}-2,(1,2)\right) \stackrel{?}{=}\left(x^{2}-3,(1,2)\right)
$$

no: $\operatorname{gcd}\left(x^{2}-2, x^{2}-3\right)=1$

operations - simple equalities

$$
\left(x^{2}-2,(-2,-1)\right) \stackrel{?}{=}\left(x^{2}-2,(1,2)\right)
$$

no: $(-2,-1) \cap(1,2)=\emptyset$

$$
\left(x^{2}-2,(1,2)\right) \stackrel{?}{=}\left(x^{2}-3,(1,2)\right)
$$

no: $\operatorname{gcd}\left(x^{2}-2, x^{2}-3\right)=1$

$$
\left(x^{2}-2,(-2,1)\right) \stackrel{?}{=}\left(x^{2}-2,(-1,2)\right)
$$

operations - simple equalities

$$
\left(x^{2}-2,(-2,-1)\right) \stackrel{?}{=}\left(x^{2}-2,(1,2)\right)
$$

no: $(-2,-1) \cap(1,2)=\emptyset$

$$
\left(x^{2}-2,(1,2)\right) \stackrel{?}{=}\left(x^{2}-3,(1,2)\right)
$$

no: $\operatorname{gcd}\left(x^{2}-2, x^{2}-3\right)=1$

$$
\left(x^{2}-2,(-2,1)\right) \stackrel{?}{=}\left(x^{2}-2,(-1,2)\right)
$$

no: refine intervals until disjoint

operations - simple equalities

$$
\left(x^{2}-2,(-2,-1)\right) \stackrel{?}{=}\left(x^{2}-2,(1,2)\right)
$$

no: $(-2,-1) \cap(1,2)=\emptyset$

$$
\left(x^{2}-2,(1,2)\right) \stackrel{?}{=}\left(x^{2}-3,(1,2)\right)
$$

no: $\operatorname{gcd}\left(x^{2}-2, x^{2}-3\right)=1$

$$
\left(x^{2}-2,(-2,1)\right) \stackrel{?}{=}\left(x^{2}-2,(-1,2)\right)
$$

no: refine intervals until disjoint

$$
\left(x^{2}-2,(1,2)\right) \stackrel{?}{=}\left(x^{3}+x^{2}-2 x-2,(1.5,2.5)\right)
$$

operations - simple equalities

$$
\left(x^{2}-2,(-2,-1)\right) \stackrel{?}{=}\left(x^{2}-2,(1,2)\right)
$$

no: $(-2,-1) \cap(1,2)=\emptyset$

$$
\left(x^{2}-2,(1,2)\right) \stackrel{?}{=}\left(x^{2}-3,(1,2)\right)
$$

no: $\operatorname{gcd}\left(x^{2}-2, x^{2}-3\right)=1$

$$
\left(x^{2}-2,(-2,1)\right) \stackrel{?}{=}\left(x^{2}-2,(-1,2)\right)
$$

no: refine intervals until disjoint

$$
\left(x^{2}-2,(1,2)\right) \stackrel{?}{=}\left(x^{3}+x^{2}-2 x-2,(1.5,2.5)\right)
$$

yes: $\operatorname{gcd}(p, q)=x^{2}-2$; use $\left(x^{2}-2,(1.5,2.5)\right)$; refine until contained

operations - more

$$
a=\left(p_{a},\left(l_{a}, u_{a}\right)\right)<\stackrel{?}{,}>b=\left(p_{b},\left(l_{b}, u_{b}\right)\right)
$$

operations - more

$$
a=\left(p_{a},\left(l_{a}, u_{a}\right)\right)<?,>b=\left(p_{b},\left(l_{b}, u_{b}\right)\right)
$$

1. check for $a=b$
2. refine intervals until disjoint

operations - more

$$
a=\left(p_{a},\left(l_{a}, u_{a}\right)\right)<\stackrel{?}{,}>b=\left(p_{b},\left(l_{b}, u_{b}\right)\right)
$$

1. check for $a=b$
2. refine intervals until disjoint
$a+b, a \cdot b, \ldots$

operations - more

$$
a=\left(p_{a},\left(l_{a}, u_{a}\right)\right)<?,>b=\left(p_{b},\left(l_{b}, u_{b}\right)\right)
$$

1. check for $a=b$
2. refine intervals until disjoint
$a+b, a \cdot b, \ldots$
you can implement them... go read some papers.
what we actually want

$$
\begin{gathered}
x^{2}=2 \wedge x>0 \wedge y^{2}=3 \wedge y>0 \wedge z=x+y \\
x \mapsto \sqrt{2} \quad y \mapsto \sqrt{3} \quad z \mapsto ?
\end{gathered}
$$

$$
\begin{aligned}
x^{2}=2 \wedge x & >0 \wedge y^{2}=3 \wedge y>0 \wedge z=x+y \\
& x \mapsto \sqrt{2} \quad y \mapsto \sqrt{3} \quad z \mapsto ?
\end{aligned}
$$

find real roots of $q \in \mathbb{Z}[\bar{x}, y]$ with $\bar{x} \mapsto \overline{\mathcal{R}}$
what we actually want

$$
\begin{aligned}
x^{2}=2 \wedge x & >0 \wedge y^{2}=3 \wedge y>0 \wedge z=x+y \\
& x \mapsto \sqrt{2} \quad y \mapsto \sqrt{3} \quad z \mapsto ?
\end{aligned}
$$

find real roots of $q \in \mathbb{Z}[\bar{x}, y]$ with $\bar{x} \mapsto \overline{\mathcal{R}}$
have we made any progress here?
what we actually want

$$
\begin{gathered}
x^{2}=2 \wedge x>0 \wedge y^{2}=3 \wedge y>0 \wedge z=x+y \\
x \mapsto \sqrt{2} \quad y \mapsto \sqrt{3} \quad z \mapsto ?
\end{gathered}
$$

find real roots of $q \in \mathbb{Z}[\bar{x}, y]$ with $\bar{x} \mapsto \overline{\mathcal{R}}$
have we made any progress here?
solve this instead: $q=0 \wedge p_{\bar{x}}=0$ this is well-studied in computer algebra!

system of equalities via variable elimination

let $q \in \mathbb{Z}[\bar{x}, y]$ and $\alpha: \bar{x} \mapsto \mathcal{R}^{n}$

system of equalities via variable elimination

let $q \in \mathbb{Z}[\bar{x}, y]$ and $\alpha: \bar{x} \mapsto \mathcal{R}^{n}$
resultants

$$
\operatorname{res}_{y}(p, q)=r \in \mathbb{Z}[\bar{x}]
$$

$$
\forall \beta \cdot p(\beta)=q(\beta)=0 \Rightarrow r\left(\left.\beta\right|_{\mathcal{R}^{n}}\right)=0
$$

system of equalities via variable elimination

let $q \in \mathbb{Z}[\bar{x}, y]$ and $\alpha: \bar{x} \mapsto \mathcal{R}^{n}$
resultants

$$
\operatorname{res}_{y}(p, q)=r \in \mathbb{Z}[\bar{x}]
$$

$\forall \beta \cdot p(\beta)=q(\beta)=0 \Rightarrow r\left(\left.\beta\right|_{\mathcal{R}^{n}}\right)=0$
what we can do:

$$
\begin{aligned}
& q_{0}=q, q_{i}=\operatorname{res}_{x_{i}}\left(q_{i_{1}}, p_{x_{i}}\right) \\
& q^{*}=q_{n} \in \mathbb{Z}[y]
\end{aligned}
$$

system of equalities via variable elimination

let $q \in \mathbb{Z}[\bar{x}, y]$ and $\alpha: \bar{x} \mapsto \mathcal{R}^{n}$

resultants

$$
\operatorname{res}_{y}(p, q)=r \in \mathbb{Z}[\bar{x}]
$$

$\forall \beta \cdot p(\beta)=q(\beta)=0 \Rightarrow r\left(\left.\beta\right|_{\mathcal{R}^{n}}\right)=0$
what we can do:

$$
\begin{aligned}
& q_{0}=q, q_{i}=r e s_{x_{i}}\left(q_{i_{1}}, p_{x_{i}}\right) \\
& q^{*}=q_{n} \in \mathbb{Z}[y]
\end{aligned}
$$

Gröbner bases

$$
\begin{aligned}
& G B\left(\left\{p_{1}, \ldots\right\}\right)=\left\{q_{1}, \ldots\right\} \\
& \forall \beta \cdot \bar{p}(\beta)=0 \Leftrightarrow \bar{q}(\beta)=0
\end{aligned}
$$

system of equalities via variable elimination

let $q \in \mathbb{Z}[\bar{x}, y]$ and $\alpha: \bar{x} \mapsto \mathcal{R}^{n}$

resultants

$$
\operatorname{res}_{y}(p, q)=r \in \mathbb{Z}[\bar{x}]
$$

$\forall \beta \cdot p(\beta)=q(\beta)=0 \Rightarrow r\left(\left.\beta\right|_{\mathcal{R}^{n}}\right)=0$
what we can do:

$$
\begin{aligned}
& q_{0}=q, q_{i}=r e s_{x_{i}}\left(q_{i_{1}}, p_{x_{i}}\right) \\
& q^{*}=q_{n} \in \mathbb{Z}[y]
\end{aligned}
$$

$$
\begin{aligned}
& G B\left(\left\{p_{1}, \ldots\right\}\right)=\left\{q_{1}, \ldots\right\} \\
& \forall \beta \cdot \bar{p}(\beta)=0 \Leftrightarrow \bar{q}(\beta)=0
\end{aligned}
$$

Gröbner bases
what we can do:
compute $G=G B(q, \bar{p}$, lex $)$
$q^{*}=\prod_{g \in G \cap \mathbb{Z}[y]} q$

system of equalities via variable elimination

let $q \in \mathbb{Z}[\bar{x}, y]$ and $\alpha: \bar{x} \mapsto \mathcal{R}^{n}$
resultants

$$
\operatorname{res}_{y}(p, q)=r \in \mathbb{Z}[\bar{x}]
$$

$\forall \beta \cdot p(\beta)=q(\beta)=0 \Rightarrow r\left(\left.\beta\right|_{\mathcal{R}^{n}}\right)=0$

$$
\begin{aligned}
& G B\left(\left\{p_{1}, \ldots\right\}\right)=\left\{q_{1}, \ldots\right\} \\
& \forall \beta \cdot \bar{p}(\beta)=0 \Leftrightarrow \bar{q}(\beta)=0
\end{aligned}
$$

what we can do:

$$
\begin{aligned}
& q_{0}=q, q_{i}=\operatorname{res}_{x_{i}}\left(q_{i_{1}}, p_{x_{i}}\right) \\
& q^{*}=q_{n} \in \mathbb{Z}[y]
\end{aligned}
$$

$$
\forall \beta \cdot q(\beta)=0 \wedge \bar{p}(\beta)=0 \Rightarrow q^{*}\left(\left.\beta\right|_{\mathcal{R}}\right)=0
$$

system of equalities via variable elimination

let $q \in \mathbb{Z}[\bar{x}, y]$ and $\alpha: \bar{x} \mapsto \mathcal{R}^{n}$
resultants

$$
\begin{array}{cl}
\operatorname{res}_{y}(p, q)=r \in \mathbb{Z}[\bar{x}] & G B\left(\left\{p_{1}, \ldots\right\}\right)=\left\{q_{1}, \ldots\right\} \\
\forall \beta \cdot p(\beta)=q(\beta)=0 \Rightarrow r\left(\left.\beta\right|_{\mathcal{R}^{n}}\right)=0 & \forall \beta \cdot \bar{p}(\beta)=0 \Leftrightarrow \bar{q}(\beta)=0
\end{array}
$$

Gröbner bases
what we can do:

$$
\begin{aligned}
& q_{0}=q, q_{i}=\operatorname{res}_{x_{i}}\left(q_{i_{1}}, p_{x_{i}}\right) \\
& q^{*}=q_{n} \in \mathbb{Z}[y]
\end{aligned}
$$

what we can do:
compute $G=G B(q, \bar{p}$, lex $)$
$q^{*}=\prod_{g \in G \cap \mathbb{Z}[y]} q$

$$
\forall \beta \cdot q(\beta)=0 \wedge \bar{p}(\beta)=0 \Rightarrow q^{*}\left(\left.\beta\right|_{\mathcal{R}}\right)=0
$$

left to do: compute $\operatorname{roots}\left(q^{*}\right)=\bar{r}$, check whether $q(\alpha, r)=0$

take care

- $a=b=\sqrt{2} \cdot q=(a+b) \cdot c$

take care

- $a=b=\sqrt{2} \cdot q=(a+b) \cdot c$

$$
\begin{aligned}
& q_{0}=q \\
& q_{1}=\operatorname{res}_{a}\left(q_{0}, a^{2}-2\right) \\
& q_{2}=\operatorname{res}_{b}\left(q_{1}, b^{2}-2\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(a+b) \cdot c \\
& =\left(b^{2}-2\right) c^{2} \\
& =0
\end{aligned}
$$

take care

- $a=b=\sqrt{2} \cdot q=(a+b) \cdot c$

$$
\begin{aligned}
& q_{0}=q \\
& q_{1}=\operatorname{res}_{a}\left(q_{0}, a^{2}-2\right) \\
& q_{2}=\operatorname{res}_{b}\left(q_{1}, b^{2}-2\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(a+b) \cdot c \\
& =\left(b^{2}-2\right) c^{2} \\
& =0
\end{aligned}
$$

- $a=\sqrt[4]{2}, b=\sqrt{2} . q=\left(a^{2}+b\right) \cdot c$

take care

- $a=b=\sqrt{2} \cdot q=(a+b) \cdot c$

$$
\begin{aligned}
& q_{0}=q \\
& q_{1}=\operatorname{res}_{a}\left(q_{0}, a^{2}-2\right) \\
& q_{2}=\operatorname{res}_{b}\left(q_{1}, b^{2}-2\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(a+b) \cdot c \\
& =\left(b^{2}-2\right) c^{2} \\
& =0
\end{aligned}
$$

- $a=\sqrt[4]{2}, b=\sqrt{2} \cdot q=\left(a^{2}+b\right) \cdot c$

$$
\begin{aligned}
q_{0} & =q \\
q_{1} & =\operatorname{res}_{a}\left(q_{0}, a^{4}-2\right) \\
q_{2} & =\operatorname{res}_{b}\left(q_{1}, b^{2}-2\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(a^{2}+b\right) \cdot c \\
& =\left(b^{2}-2\right)^{2} c^{4} \\
& =0
\end{aligned}
$$

take care

- $a=b=\sqrt{2} \cdot q=(a+b) \cdot c$

$$
\begin{aligned}
& q_{0}=q \\
& q_{1}=\operatorname{res}_{a}\left(q_{0}, a^{2}-2\right) \\
& q_{2}=\operatorname{res}_{b}\left(q_{1}, b^{2}-2\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(a+b) \cdot c \\
& =\left(b^{2}-2\right) c^{2} \\
& =0
\end{aligned}
$$

- $a=\sqrt[4]{2}, b=\sqrt{2} \cdot q=\left(a^{2}+b\right) \cdot c$

$$
\begin{aligned}
q_{0} & =q \\
q_{1} & =\operatorname{res}_{a}\left(q_{0}, a^{4}-2\right) \\
q_{2} & =\operatorname{res}_{b}\left(q_{1}, b^{2}-2\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(a^{2}+b\right) \cdot c \\
& =\left(b^{2}-2\right)^{2} c^{4} \\
& =0
\end{aligned}
$$

q may nullify and roots may be lost! we can retain soundness, but comes with a cost. (\rightarrow projection operators)

avoid nullification using Lazard

Lazard's lifting schema:

$$
\begin{aligned}
& \text { for } i=0 \text { to } \\
& n \\
& v_{i} \\
&=\arg \max _{v \in \mathbb{Z}}\left(x_{i}-\alpha_{i}\right) \text { divides } q \\
& q=q /\left(x_{i}-\alpha_{i}\right)_{i}^{v} \\
& q=q\left[x_{i} / / \alpha_{i}\right]
\end{aligned}
$$

avoid nullification using Lazard

Lazard's lifting schema:

$$
\text { for } \begin{aligned}
i=0 & \text { to } n \\
& n \\
& v_{i}=\arg \max _{v \in \mathbb{Z}}\left(x_{i}-\alpha_{i}\right) \text { divides } q \\
& q=q /\left(x_{i}-\alpha_{i}\right)_{i}^{v} \\
q & =q\left[x_{i} / / \alpha_{i}\right]
\end{aligned}
$$

avoids nullification, allows for easier projection operators! solves all our problems...?

avoid nullification using Lazard

Lazard's lifting schema:

$$
\begin{aligned}
& \text { for } i=0 \text { to } n \\
& \\
& \qquad \begin{aligned}
v_{i} & =\arg \max _{v \in \mathbb{Z}}\left(x_{i}-\alpha_{i}\right) \text { divides } q \\
& q=q /\left(x_{i}-\alpha_{i}\right)_{i}^{v} \\
& =q\left[x_{i} / / \alpha_{i}\right]
\end{aligned}
\end{aligned}
$$

avoids nullification, allows for easier projection operators! solves all our problems...?

$$
q=q /\left(x_{i}-\alpha_{i}\right)_{i}^{v}
$$

avoid nullification using Lazard

Lazard's lifting schema:

$$
\begin{aligned}
& \text { for } i=0 \text { to } n \\
& \\
& \qquad \begin{aligned}
v_{i} & =\arg \max _{v \in \mathbb{Z}}\left(x_{i}-\alpha_{i}\right) \text { divides } q \\
& q=q /\left(x_{i}-\alpha_{i}\right)_{i}^{v} \\
& =q\left[x_{i} / / \alpha_{i}\right]
\end{aligned}
\end{aligned}
$$

avoids nullification, allows for easier projection operators!
solves all our problems...?

$$
q=q /\left(x_{i}-\alpha_{i}\right)_{i}^{v}
$$

underlying issue:
if p_{b} factors over $\mathbb{Q}(a), \mathbb{Q}(a, b) \not \not \mathbb{Z}\left[x_{a}, x_{b}\right] /\left\langle p_{a}, p_{b}\right\rangle$ general fix: factor p_{b}, use vanishing factor instead
not even a field factor over $\mathbb{Q}(\sqrt{2})$???

canonical representation - reprise

cvc5 requires a canonical form for terms, also arithmetic terms only reasonable canonical form: collapse all numbers into a single real algebraic numbers.

$$
\sqrt{11} \cdot(\sqrt[3]{3}+\sqrt{7})
$$

WolframAlpha:

$$
\begin{gathered}
\text { root of } x^{6}-462 x^{5}+88935 x^{4}-9154618 x^{3}+499624125 x^{2}- \\
18371409672 x+197628258916 \text { near } x=183.829
\end{gathered}
$$

canonical representation - reprise

cvc5 requires a canonical form for terms, also arithmetic terms only reasonable canonical form:
collapse all numbers into a single real algebraic numbers.

$$
\sqrt{11} \cdot(\sqrt[3]{3}+\sqrt{7})
$$

WolframAlpha:

$$
\begin{gathered}
\text { root of } x^{6}-462 x^{5}+88935 x^{4}-9154618 x^{3}+499624125 x^{2}- \\
18371409672 x+197628258916 \text { near } x=183.829
\end{gathered}
$$

```
cvc5:
<1*x^12 + (-462*x^10) + 88935*x^8 + (-9154618*x^6) + 499624125*x^4 + (-
18371409672*x^2) + 197628258916, (27/2, 55/4)>
```


conclusion

- nonlinear real arithmetic models are "special"
- representation is not (that) obvious
- arithmetic is not easy
not even conceptually
- some algebra is necessary
thank you for your attention!

nerd sniping

1. $q\left(\alpha_{a}, \alpha_{b}, c\right)=0 \stackrel{?}{\Rightarrow} a \in \mathbb{Q}(b) \vee b \in \mathbb{Q}(a)$
2. can we construct \mathcal{R} ?
3. why are there spurious roots after variable elimination?

nerd sniping - some answers

1. no; with $a=\sqrt{3+\sqrt{3}}, b=\sqrt{3-\sqrt{3}}$ although $a \notin \mathbb{Q}(b) \wedge b \notin \mathbb{Q}(a)$, $(a+b) \cdot c$ nullifies. the minimal polynomial is $x^{4}-6 x^{2}+6$ irreducible over \mathbb{Q} but factors into $(x+a)(x-a)\left(x^{2}+x-6\right)$ over $\mathbb{Q}(a) \cong \mathbb{Q}[a] /\left\langle a^{4}-6 a^{2}+6\right\rangle$.
2. conceptually yes, practically no. for starters, every prime p yields a new field extension $\mathbb{Q}(\sqrt{p})$ not covered by any $\mathbb{Q}(\sqrt{n}), n<p$.
3. both resultants and Gröbner bases actually argue about complex roots. complex roots in the input may give rise to real roots in the output.
