Cylindrical Algebraic Coverings for Quantifiers

Gereon Kremer, Jasper Nalbach

August 12, 2022
SC² © FLoC, Haifa
Familiar with Cylindrical Algebraic Coverings?
This works just as you would expect.
Also: no implementation or experiments
Thanks to Dagstuhl Seminar 22072

Disclaimer & Acknowledgements
Familiar with Cylindrical Algebraic Coverings? This works just as you would expect.
Familiar with Cylindrical Algebraic Coverings? This works just as you would expect.

Also: no implementation or experiments
Familiar with Cylindrical Algebraic Coverings?
This works just as you would expect.

Also: no implementation or experiments

Thanks to Dagstuhl Seminar 22072
The Circle of Life – NRA edition

Cylindrical Algebraic Coverings for Quantifiers

Gereon Kremer | Stanford University | August 12, 2022
The Circle of Life – NRA edition
Guess partial assignment

\[s_1 \times \cdots \times s_k \times s_{k+1} \]
Guess partial assignment

\[s_1 \times \cdots \times s_k \times s_{k+1} \]

Refute partial assignment using intervals

\[s \notin s_1 \times \cdots \times s_k \times (a, b) \]
\textbf{Guess partial assignment}

\[s_1 \times \cdots \times s_k \times s_{k+1} \]

\textbf{Refute partial assignment using intervals}

\[s \notin s_1 \times \cdots \times s_k \times (a, b) \]

\textbf{Lift covering to lower dimension}

\[s_1 \times \cdots \times s_k \times \{(-\infty, a), [a, b], \ldots (z, \infty)\} \rightarrow s_1 \times \cdots \times s_{k-1} \times (\alpha, \beta) \]
Guess partial assignment

\[s_1 \times \cdots \times s_k \times s_{k+1} \]

Refute partial assignment using intervals

\[s \not\in s_1 \times \cdots \times s_k \times (a, b) \]

Lift covering to lower dimension

\[s_1 \times \cdots \times s_k \times \{(-\infty, a), [a, b], \ldots (z, \infty)\} \rightarrow s_1 \times \cdots \times s_{k-1} \times (\alpha, \beta) \]

Eventually get satisfying assignment or a covering in first dimension

\[s = s_1 \times \cdots \times s_n \quad \text{or} \quad s_1 \not\in \{(-\infty, a), [a, b], \ldots (z, \infty)\} \]

[Ábrahám et al. 2021] [Kremer et al. 2021]
\[c_1 : 4 \cdot y < x^2 - 4 \quad c_2 : 4 \cdot y > 4 - (x - 1)^2 \quad c_3 : 4 \cdot y > x + 2 \]
Cylindrical Algebraic Coverings – example

\[c_1 : 4 \cdot y < x^2 - 4 \quad c_2 : 4 \cdot y > 4 - (x - 1)^2 \quad c_3 : 4 \cdot y > x + 2 \]

No constraint for \(x \)
Cylindrical Algebraic Coverings – example

\[c_1 : 4 \cdot y < x^2 - 4 \quad c_2 : 4 \cdot y > 4 - (x - 1)^2 \quad c_3 : 4 \cdot y > x + 2 \]

No constraint for \(x \)

Guess \(x \mapsto 0 \)
\[c_1 : 4 \cdot y < x^2 - 4 \quad \quad c_2 : 4 \cdot y > 4 - (x - 1)^2 \quad \quad c_3 : 4 \cdot y > x + 2 \]

No constraint for \(x \)

Guess \(x \mapsto 0 \)

\[c_1 \rightarrow y \notin (-1, \infty) \]
\[c_1 : 4 \cdot y < x^2 - 4 \quad c_2 : 4 \cdot y > 4 - (x - 1)^2 \quad c_3 : 4 \cdot y > x + 2 \]

No constraint for \(x \)

Guess \(x \mapsto 0 \)

\(c_1 \mapsto y \notin (-1, \infty) \)

\(c_2 \mapsto y \notin (-\infty, 0.75) \)
\[c_1 : 4 \cdot y < x^2 - 4 \quad c_2 : 4 \cdot y > 4 - (x - 1)^2 \quad c_3 : 4 \cdot y > x + 2 \]

No constraint for \(x \)

Guess \(x \mapsto 0 \)

\[c_1 \rightarrow y \notin (-1, \infty) \]
\[c_2 \rightarrow y \notin (-\infty, 0.75) \]
\[c_3 \rightarrow y \notin (-\infty, 0.5) \]
Cylindrical Algebraic Coverings – example

\[c_1 : 4 \cdot y < x^2 - 4 \]
\[c_2 : 4 \cdot y > 4 - (x - 1)^2 \]
\[c_3 : 4 \cdot y > x + 2 \]

No constraint for \(x \)
Guess \(x \mapsto 0 \)
\[c_1 \rightarrow y \notin (-1, \infty) \]
\[c_2 \rightarrow y \notin (-\infty, 0.75) \]
\[c_3 \rightarrow y \notin (-\infty, 0.5) \]

Construct covering \((-\infty, 0.5), (-1, \infty)\)
\[c_1 : 4 \cdot y < x^2 - 4 \quad c_2 : 4 \cdot y > 4 - (x - 1)^2 \quad c_3 : 4 \cdot y > x + 2 \]

No constraint for \(x \)

Guess \(x \mapsto 0 \)

\[c_1 \rightarrow y \notin (-1, \infty) \]
\[c_2 \rightarrow y \notin (-\infty, 0.75) \]
\[c_3 \rightarrow y \notin (-\infty, 0.5) \]

Construct covering \((-\infty, 0.5), (-1, \infty)\)
\[c_1 : 4 \cdot y < x^2 - 4 \quad c_2 : 4 \cdot y > 4 - (x - 1)^2 \quad c_3 : 4 \cdot y > x + 2 \]

No constraint for \(x \)

Guess \(x \mapsto 0 \)

\[c_1 \rightarrow y \not\in (-1, \infty) \]
\[c_2 \rightarrow y \not\in (-\infty, 0.75) \]
\[c_3 \rightarrow y \not\in (-\infty, 0.5) \]

Construct covering
\[(-\infty, 0.5), (-1, \infty) \]

Construct interval for \(x \)
\[x \not\in (-2, 3) \]
\[c_1 : 4 \cdot y < x^2 - 4 \quad c_2 : 4 \cdot y > 4 - (x - 1)^2 \quad c_3 : 4 \cdot y > x + 2 \]

No constraint for \(x \)

Guess \(x \mapsto 0 \)

\(c_1 \rightarrow y \notin (-1, \infty) \)
\(c_2 \rightarrow y \notin (-\infty, 0.75) \)
\(c_3 \rightarrow y \notin (-\infty, 0.5) \)

Construct covering \((-\infty, 0.5), (-1, \infty)\)

Construct interval for \(x \)

\(x \notin (-2, 3) \)

New guess for \(x \)
We want to characterize both true and false regions of quantified formulae.
We want to characterize both true and false regions of quantified formulae.

Core change

Instead of a model return *satisfying interval with suitable characterization.*
We want to characterize both true and false regions of quantified formulae.

Core change

Instead of a model return *satisfying interval with suitable characterization*.

Challenges:

- **Boolean structure?**
 → consider constraints of (suitable) implicants

- **Model construction?**
 → reconstruct from characterization of true region.

- **Interval in dimension zero?**
 → just a technicality, use \top, \bot

- **Termination guarantees?**
 → still the same
∀x. ∃y. y > 3.5 - 2(x - 4)^2 \quad (x - 2)^2 + (y - 2)^2 - 1 > 0 \quad y < 3 + 0.25(x - 4)^2
∀x.∃y. \quad y > 3.5 - 2(x - 4)^2 \quad (x - 2)^2 + (y - 2)^2 - 1 > 0 \quad y < 3 + 0.25(x - 4)^2

forall(s = ())
\(\forall x. \exists y. \quad y > 3.5 - 2(x - 4)^2 \quad (x - 2)^2 + (y - 2)^2 - 1 > 0 \quad y < 3 + 0.25(x - 4)^2 \)
∀x.∃y. y > 3.5 - 2(x - 4)^2 \quad (x - 2)^2 + (y - 2)^2 - 1 > 0 \quad y < 3 + 0.25(x - 4)^2

forall(s = ())
exists(s = (2))
SAT @ s = (2, 3.5)
\[\forall x. \exists y. y > 3.5 - 2(x - 4)^2 \quad (x - 2)^2 + (y - 2)^2 - 1 > 0 \quad y < 3 + 0.25(x - 4)^2 \]

forall(s = ())
exists(s = (2))
SAT @ s = (2, 3.5)
SAT @ s \times (1, 3)
∀x.∃y. y > 3.5 - 2(x - 4)^2 \quad (x - 2)^2 + (y - 2)^2 - 1 > 0 \quad y < 3 + 0.25(x - 4)^2

forall(s = (\))
exists(s = (2))
SAT @ s = (2, 3.5)
SAT @ s \times (1, 3)
exists(s = (4))
∀x.∃y. y > 3.5 - 2(x - 4)^2 \quad (x - 2)^2 + (y - 2)^2 - 1 > 0 \quad y < 3 + 0.25(x - 4)^2

forall(s = ())
exists(s = (2))
SAT @ s = (2, 3.5)
SAT @ s \times (1, 3)
exists(s = (4))
UNSAT @ s \times (3, \infty)
UNSAT @ s \times (-\infty, 3.5)
\[\forall x. \exists y. \quad y > 3.5 - 2(x - 4)^2 \quad (x - 2)^2 + (y - 2)^2 - 1 > 0 \quad y < 3 + 0.25(x - 4)^2 \]

forall(s = ())
exists(s = (2))
SAT @ s = (2, 3.5)
SAT @ s \times (1, 3)
exists(s = (4))
UNSAT @ s \times (3, \infty)
UNSAT @ s \times (-\infty, 3.5)
UNSAT @ s \times (3.5, 4.5)
\[\forall x. \exists y. \quad y > 3.5 - 2(x - 4)^2 \quad (x - 2)^2 + (y - 2)^2 - 1 > 0 \quad y < 3 + 0.25(x - 4)^2 \]

\[
\begin{align*}
&\text{forall}(s = ()) \\
&\text{exists}(s = (2)) \\
&\quad \text{SAT @ } s = (2, 3.5) \\
&\quad \text{SAT @ } s \times (1, 3) \\
&\quad \text{exists}(s = (4)) \\
&\quad \text{UNSAT @ } s \times (3, \infty) \\
&\quad \text{UNSAT @ } s \times (-\infty, 3.5) \\
&\quad \text{UNSAT @ } s \times (3.5, 4.5) \\
&\text{UNSAT}
\end{align*}
\]
Consider free variables first

Use previous approach for bounded variables

Collect all SAT regions for free variables

Use solution formula construction from [Brown 1999]

Return disjunction of all SAT regions
Cylindrical Algebraic Coverings for Quantifiers

Conclusion

- Cylindrical Algebraic Coverings can be adapted to quantifiers and QE
- It mostly works as you would think it does
- A number of subtle challenges
- Provides for a few nice generalizations
- No implementation yet
Cylindrical Algebraic Coverings can be adapted to quantifiers and QE
It mostly works as you would think it does
A number of subtle challenges
Provides for a few nice generalizations
No implementation yet

Thank you for your attention!
Any questions?
References

