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A billion SMT queries a day

Neha Rungta | August 18, 2022

CAV keynote lecture by the director of
applied science for AWS Identity
explains how AWS is making the power
of automated reasoning available to all
customers.

AUTOMATED REASONING
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= are there packages that satisfy all dependencies?

= is there an input that leads to a segfault?

= are there values where an LLVM optimization is incorrect?
= is there an unexpected way to access an S3 bucket?
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bool is not enough

= package versions (— 0.8.15)
= program variables (— 42, "foobar", 0.12345)
= pattern matching (— "arn:aws:ec2:*:*:instance/*")

boolean expression instead of boolean variable

= 0.8.15 <= x <= 1.0.0

= x kx >y +1

= 0.123 + x == 0.345 | y

= concat(x, "bar") == "foobar"

= matches(r"foo.*bar", "foobaz")

Ja € BVea, b € FPg4. tofp(bvxor(a, toubv(b))) > b
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SMT solving in a nutshell

x>0A(x2>0Vx<O)A(x><0Vx=3)A(—x>0V-x3<0)

@ SAT, x — 3

{x>0,-x3<0,x=3,x%> 0} SAT + x—3

Theory solvers
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= SAT: NP complete o2
= UF: SAT + congruence closure

= AX: via UF, limited overhead

= BV: via SAT, sometimes quadratic formula growth 0@e™)

= FP: via BV, formula growth, all bits significant +e
= LRA: SAT + simplex +0(2")
= LIA: SAT + simplex + integrality

= NRA: SAT + computer algebra +0(2%")

= NIA: undecidable
= S: almost immediately undecidable
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= SAT: NP complete o2
= UF: SAT + congruence closure

= AX: via UF, limited overhead

= BV: via SAT, sometimes quadratic formula growth 0@e™)

= FP: via BV, formula growth, all bits significant +e
= LRA: SAT + simplex +0(2")
= LIA: SAT + simplex + integrality

= NRA: SAT + computer algebra +0(2%")

= NIA: undecidable

= S: almost immediately undecidable

but: (surprisingly?) good performance in practice!



Formal verification?

formal guarantees

= no statistical guarantees

= no “probably correct”

= no “we haven't found anything”

= no “that’s close to a solution”

= no “it works, except in these cases”

solver says

= sat: the model satisfies the formula

= unsat: there is no model

» (unknown for undecidable logics and incomplete theory solvers)
= otherwise file a bug!



Beyond satisfiability

= variable assignments X =7
= unsat cores why UNSAT?
= quantifiers Vx3dy
= optimization minimize x x y
= interpolants 1= = v
= formal proofs verify UNSAT
= synthesis o(expr’)



SMT ecosystem

solvers usually open-source
= cvch (Stanford, lowa) github.com /cvc5/cvch
= yices (SRI) github.com /SRI-CSL /yices2
= 23 (Microsoft Research) github.com/Z3Prover/z3
= ... bitwuzla, colibri, dreal, iprover, ismt, mathsat, opensmt,

ostrich, q3b, rasat, smtinterpol, smtrat, stp, vampire, yaga ...
SMT-COMP: yearly competition smt-comp.github.io
SMT-LIB: smtlib.cs.uiowa.edu

= benchmarks: >200k inputs from >80 logics
= input language: SMT-LIB 2.6, soon SMT-LIB 3.0
= tooling: syntax highlighting, parser, debugger, ...


https://github.com/cvc5/cvc5
https://github.com/SRI-CSL/yices2
https://github.com/Z3Prover/z3
https://smt-comp.github.io
https://smtlib.cs.uiowa.edu

Case study: CBMC // verification of C and C++

int puts(const char *s) { ... }
int main(int argc, char *xargv) {
puts(argv([2]);
return O;

}

cbmc file.c --bounds-check --pointer-check ...

[main.pointer_dereference.6] line 3 dereference failure:

pointer outside object bounds in argv[(signed long int)2]

Go gle Scholar cbmc model checker

Articles out 3.880 results (0,05 sec
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y: RoboCup Logistics // multi-robot planning

CO0 production:

|

(DS

(b @l @

Action
Retrieve base with cap from shelf at CS
Prepare CS to retrieve cap %

<]

Feed base into CS

Discard cap-less base

Prepare BS to provide black base

Retrieve base from BS

Prepare CS to mount cap _I_’
Feed black base to CS ;

Retrieve black base with cap from CS O O
Prepare DS for slide specified in order

Deliver to DS

doi.org/10.1007/s10796-018-9858-3

o e SN0 W

=S
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Case study: LifeJacket // LLVM optimizations

float y = +0.0 - (-x);
float y_ = x; // equivalent?

// T
// T

-0.0: y == +0.0, y_ == -0.0
-0.0: 1/y == +inf, 1/y_ == -inf

Alive + LifeJacket:

= user implements LLVM optimization pass

= Alive encodes optimization into SMT formula
= 23 solves SMT formula

= 43 passes verified

= 8 bugs identified
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Case study: Zephyrus 2 // automatic cloud deployments

Depoloyable Components Location (e.g, VMs, PCs, ...)
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Case study: Amazon // automatic policy checks

Runtime policy check with Zelkova

. Amazon S3 notification trigger
. Identify resource policies
. Look up baseline for the account

. Invoke Zelkova to compare policies | T
from snapshot vs. baseline

. Send alert if = .E, .@ —.aws

. Auto-remediate to

e nvent

amazon.science/blog/a-billion-smt-queries-a-day
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Case study: Certora // verification of smart contracts

= (ko]

° K .TAC )-{ VC generation l—»' <> I—|5M1'So|ve|—>' <> L Analyze
SMT2 BUG REPORT

C preserving
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Any questions?

gereon.kremer—+froscon@gmail.com gereon-kremer.de

TTTTTT
thd

hybrld, e

® caNVR

@ certora
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