Satisfiability Modulo Theories

Using Open-Source to solve hard problems

Gereon Kremer
FrOSCon, August 5th, 2023

libsolv

Package dependency solver
using a satisfiability algorithm

libsolv is a library for solvin
openSUSE. v 9
packages and reading

repositories. The solver uses a
satisfiability algorithm.

openSUSE.

libsolv

Package dependency solver
ty algorithm

using a satisfial

libsolv is a library for solving
packages and reading
repositories. The solver uses a
satisfiability algorithm.

CBMC is a Bounded Model Checker for C and C++ programs. It
supports C89, C99, most of C11 and most compiler extensions
provided by gec and Visual Studio. A variant of CBMC that analyses
Java bytecode is available as JBMC.

CBMC verifies memory safety (which includes array bounds checks
and checks for the safe use of pointers), checks for exceptions,
checks for various variants of undefined behavior, and user-specified
assertions. Furthermore, it can check C and C++ for consistency with
other languages, such as Verilog. The verification is performed by
unwinding the loops in the program and passing the resulting equation
10 a decision procedure.

libsolv

Package dependency solver
using a satisfiability algorithm

libsolv is a library for solvin
openSUSE. v 9
packages and reading

repositories. The solver uses a
satisfiability algorithm.

VCC is a tool that proves correctness of annotated
concurrent C programs or finds problems in them.
VCC extends C with design by contract features, like
pre- and postcondition as well as type invariants.

c c Annotated programs are translated to logical formulas
using the Boogie tool, which passes them to an

automated SMT solver Z3 to check their validity.

CBMC is a Bounded Model Checker for C and C++ programs. It
supports C89, C99, most of C11 and most compiler extensions
provided by gec and Visual Studio. A variant of CBMC that analyses
Java bytecode is available as JBMC.

CBMC verifies memory safety (which includes array bounds checks
and checks for the safe use of pointers), checks for exceptions,
checks for various variants of undefined behavior, and user-specified
assertions. Furthermore, it can check C and C++ for consistency with
other languages, such as Verilog. The verification is performed by
unwinding the loops in the program and passing the resulting equation
10 a decision procedure.

libsolv
CBMC is a Bounded Model Checker for C and C++ programs. It
Package dependency solver Supports CB9, C99, most of C1L and most compiler extensions
¢ : provided by gec and Visual Studio. A variant of CBMC that analyses
using a satisfiability algorithm Java bytecode is available as JBMC.

i i CBMC verifies memory safety (which includes array bounds checks

npgnSUSE, libsolv is a library for solving and checks for the safe use of pointers), checks for exceptions,
packages and reading checks for various variants of undefined behavior, and user-specified

repositories. The solver uses a assertions. Furthermore, it can check C and C++ for consistency with

other languages, such as Verilog. The verification is performed by

satisfiability algorithm. unwinding the loops in the program and passing the resulting equation

10 a decision procedure.

LifeJacket: Verifying precise floating-point optimizations
inLLVM

Andres Notzli, Fraser Brown

. Optimizing foating-point arthmetic s vital because It s ublqutous, costy, and used in compute-
VCC is a tool that proves correctness of annotated Implementing . however, is diffcult, since

concurrent C programs or finds problems in them. foral
thelr transformations do not alter the output of . pmqvam Manual reasoning is error prone and

VICC extends C with design by contract features, like - e ot
pre- and postcondition as well as type invariants. wsing heories (SUT) soiers. We implement te
. approach n Liedacket, a system o y
using the Boogie tool, which passes them to an Bscover eightncorret ones, Inclucing hee previously unrepoted poblems, Ledacket s an
automated SMT solver Z3 to check their validity. he Alve systemfor op

libsolv

Package dependency solver
using a satisfiability algorithm

libsolv is a library for solving
packages and reading
repositories. The solver uses a
satisfiability algorithm.

openSUSE.

VCC is a tool that proves correctness of annotated
concurrent C programs or finds problems in them.
VCC extends C with design by contract features, like
pre- and postcondition as well as type invariants.

c c Annotated programs are translated to logical formulas
using the Boogie tool, which passes them to an

automated SMT solver Z3 to check their validity.

KLEE Symbolic Execution Engine

imic symbolic execution engine buit on op of the LM

e saurce lcense. For more nformation on what KL

CBMC is a Bounded Model Checker for C and C++ programs. It
supports C89, C99, most of C11 and most compiler extensions
provided by gec and Visual Studio. A variant of CBMC that analyses
Java bytecode is available as JBMC.

CBMC verifies memory safety (which includes array bounds checks
and checks for the safe use of pointers), checks for exceptions,
checks for various variants of undefined behavior, and user-specified
assertions. Furthermore, it can check C and C++ for consistency with
other languages, such as Verilog. The verification is performed by
unwinding the loops in the program and passing the resulting equation
10 a decision procedure.

LifeJacket: Verifying precise floating-point optimizations
inLLVM

Andres Notzli, Fraser Brown

Optimizing foating:point arthmetic Is vital because It s ubiquitous, costly, and used In compute-

Implementing however, i diffcutt since
ral f

her ransiomatons 6 ot aler th ot of program. Manual reasorng i eror prone and

i reasoning about
using th MT) solvers. We implement the

approach in Lfedacket, a system for

the LLVM assembly language. We have used LifeJacket {0 verify 43 LLVM oplimizations and to
aiscover elght Incorrect ones, Including three previously unreported problems. LifeJacket s an
ne Allve system

libsolv

Package dependency solver
using a satisfiability algorithm

libsolv is a library for solving
packages and reading
repositories. The solver uses a
satisfiability algorithm.

openSUSE.

VCC is a tool that proves correctness of annotated
concurrent C programs or finds problems in them.
VCC extends C with design by contract features, like
pre- and postcondition as well as type invariants.
Annotated programs are translated to logical formulas
using the Boogie tool, which passes them to an
automated SMT solver Z3 to check their validity.

cc

KLEE Symbolic Execution Engine

imic symbolic excuton engine built on op ofthe LUA complle nfasiructure, and avalabe under the

en saurce lcense. Formre inormation on what KLEE is and what it can do,seeth

CBMC is a Bounded Model Checkev for C and C++ programs. It
supports C89, C99, most of and most compiler extensions
provided by gce and Visual Shudior A varan; of Cam ot analyses
Java bytecode is available as JBMC.

CBMC verifies memory safety (which includes array bounds checks
and checks for the safe use of pointers), checks for exceptions,
checks for various variants of undefined behavior, and user-specified
assertions. Furthermore, it can check C and C++ for consistency with
other languages, such as Verilog. The verification is performed by
unwinding the loops in the program and passing the resulting equation
10 a decision procedure.

LifeJacket: Verifying precise floating-point optimizations
inLLVM

Andres Notzli, Fraser Brown

Optimizing foating:point arthmetic Is vital because It s ubiquitous, costly, and used In compute-

Implementing however, i diffcutt since
ral f

her ransiomatons 6 ot aler th ot of program. Manual reasorng i eror prone and

i reasoning about
using th MT) solvers. We implement the

approach in Lfedacket, a system for

the LLVM assembly language. We have used LifeJacket {0 verify 43 LLVM oplimizations and to
aiscover elght Incorrect ones, Including three previously unreported problems. LifeJacket s an

ne Allve system

A billion SMT queries a day

Neha Rungta | August 18, 2022

CAV keynote lecture by the director of
applied science for AWS Identity
explains how AWS is making the power
of automated reasoning available to all
customers.

AUTOMATED REASONING

Satisfiability?

Jda,b,c,d€B. (aVbV-c)A(=bVd)

find bool a,b,c,d such that (a || b || 'c) && (!'b || d)

Satisfiability?

Jda,b,c,d€B. (aVbV-c)A(=bVd)

find bool a,b,c,d such that (a || b || 'c) && (!'b || d)

= are there packages that satisfy all dependencies?

= is there an input that leads to a segfault?

= are there values where an LLVM optimization is incorrect?
= is there an unexpected way to access an S3 bucket?

Modulo Theories?

bool is not enough

= package versions (— 0.8.15)
= program variables (— 42, "foobar", 0.12345)
= pattern matching (— "arn:aws:ec2:*:*:instance/*")

Modulo Theories?

bool is not enough

= package versions (— 0.8.15)
= program variables (— 42, "foobar", 0.12345)
= pattern matching (— "arn:aws:ec2:*:*:instance/*")

boolean expression instead of boolean variable

= 0.8.15 <= x <= 1.0.0

= x kx >y +1

= 0.123 + x == 0.345 | y

= concat(x, "bar") == "foobar"

= matches(r"foo.*bar", "foobaz")

Ja € BVea, b € FPg4. tofp(bvxor(a, toubv(b))) > b

SMT solving in a nutshell

¥
@ SAT or UNSAT
Boolean model SAT + witness
‘ or
theory constraints UNSAT + reason

Theory solvers

SMT solving in a nutshell

x>0A(x2>0Vx<0)A(x3<0Vx=23)

@ SAT or UNSAT

Boolean model SAT + witness
‘ or
theory constraints UNSAT + reason

Theory solvers

SMT solving in a nutshell

x>0A(x2>0Vx<0)A(x3<0Vx=23)

@ SAT or UNSAT

SAT + witness
{x>0,x%>0} or
UNSAT + reason

Theory solvers

SMT solving in a nutshell

x>0A(x2>0Vx<0)A(x3<0Vx=23)

@ SAT or UNSAT

{x>0,x*>>0} SAT + x— 1

Theory solvers

SMT solving in a nutshell

x>0A(x2>0Vx<0)A(x3<0Vx=23)

@ SAT or UNSAT

{x>0,x>>0,x3<0} SAT + x— 1

Theory solvers

SMT solving in a nutshell

x>0A(x2>0Vx<0)A(x3<0Vx=23)

@ SAT or UNSAT

{x>0,x>>0,x3 <0} UNSAT + {x > 0,x3 < 0}

Theory solvers

SMT solving in a nutshell

x>0A(x2>0Vx<O)A(x><0Vx=3)A(—x>0V-x3<0)

@ SAT or UNSAT

{x>0,x>>0,x3 <0} UNSAT + {x > 0,x3 < 0}

Theory solvers

SMT solving in a nutshell

x>0A(x2>0Vx<O)A(x><0Vx=3)A(—x>0V-x3<0)

@ SAT or UNSAT

{x>0,-x3<0,x =3} UNSAT + {x > 0,x3 < 0}

Theory solvers

SMT solving in a nutshell

x>0A(x2>0Vx<O)A(x><0Vx=3)A(—x>0V-x3<0)

@ SAT or UNSAT

{x>0,-x3<0,x=3} SAT + x +— 3

Theory solvers

SMT solving in a nutshell

x>0A(x2>0Vx<O)A(x><0Vx=3)A(—x>0V-x3<0)

@ SAT or UNSAT

{x>0,-x3<0,x=3,x%> 0} SAT + x—3

Theory solvers

SMT solving in a nutshell

x>0A(x2>0Vx<O)A(x><0Vx=3)A(—x>0V-x3<0)

@ SAT, x — 3

{x>0,-x3<0,x=3,x%> 0} SAT + x—3

Theory solvers

rough OVerVieW very simplified, borderline incorrect

= SAT: NP complete o2
= UF: SAT + congruence closure

= AX: via UF, limited overhead

= BV: via SAT, sometimes quadratic formula growth 0@e™)

= FP: via BV, formula growth, all bits significant +e
= LRA: SAT + simplex +0(2")
= LIA: SAT + simplex + integrality

= NRA: SAT + computer algebra +0(2%")

= NIA: undecidable
= S: almost immediately undecidable

rough OVerVieW very simplified, borderline incorrect

= SAT: NP complete o2
= UF: SAT + congruence closure

= AX: via UF, limited overhead

= BV: via SAT, sometimes quadratic formula growth 0@e™)

= FP: via BV, formula growth, all bits significant +e
= LRA: SAT + simplex +0(2")
= LIA: SAT + simplex + integrality

= NRA: SAT + computer algebra +0(2%")

= NIA: undecidable

= S: almost immediately undecidable

but: (surprisingly?) good performance in practice!

Formal verification?

formal guarantees

= no statistical guarantees

= no “probably correct”

= no “we haven't found anything”

= no “that’s close to a solution”

= no “it works, except in these cases”

solver says

= sat: the model satisfies the formula

= unsat: there is no model

» (unknown for undecidable logics and incomplete theory solvers)
= otherwise file a bug!

Beyond satisfiability

= variable assignments X =7
= unsat cores why UNSAT?
= quantifiers Vx3dy
= optimization minimize x x y
= interpolants 1= = v
= formal proofs verify UNSAT
= synthesis o(expr’)

SMT ecosystem

solvers usually open-source
= cvch (Stanford, lowa) github.com /cvc5/cvch
= yices (SRI) github.com /SRI-CSL /yices2
= 23 (Microsoft Research) github.com/Z3Prover/z3
= ... bitwuzla, colibri, dreal, iprover, ismt, mathsat, opensmt,

ostrich, q3b, rasat, smtinterpol, smtrat, stp, vampire, yaga ...
SMT-COMP: yearly competition smt-comp.github.io
SMT-LIB: smtlib.cs.uiowa.edu

= benchmarks: >200k inputs from >80 logics
= input language: SMT-LIB 2.6, soon SMT-LIB 3.0
= tooling: syntax highlighting, parser, debugger, ...

https://github.com/cvc5/cvc5
https://github.com/SRI-CSL/yices2
https://github.com/Z3Prover/z3
https://smt-comp.github.io
https://smtlib.cs.uiowa.edu

Case study: CBMC // verification of C and C++

int puts(const char *s) { ... }
int main(int argc, char *xargv) {
puts(argv([2]);
return O;

}

cbmc file.c --bounds-check --pointer-check ...

[main.pointer_dereference.6] line 3 dereference failure:

pointer outside object bounds in argv[(signed long int)2]

Go gle Scholar cbmc model checker

Articles out 3.880 results (0,05 sec

10

y: RoboCup Logistics // multi-robot planning

CO0 production:

|

(DS

(b @l @

Action
Retrieve base with cap from shelf at CS
Prepare CS to retrieve cap %

<]

Feed base into CS

Discard cap-less base

Prepare BS to provide black base

Retrieve base from BS

Prepare CS to mount cap _I_’
Feed black base to CS ;

Retrieve black base with cap from CS O O
Prepare DS for slide specified in order

Deliver to DS

doi.org/10.1007/s10796-018-9858-3

o e SN0 W

=S

11

https://doi.org/10.1007/s10796-018-9858-3

Case study: LifeJacket // LLVM optimizations

float y = +0.0 - (-x);
float y_ = x; // equivalent?

// T
// T

-0.0: y == +0.0, y_ == -0.0
-0.0: 1/y == +inf, 1/y_ == -inf

Alive + LifeJacket:

= user implements LLVM optimization pass

= Alive encodes optimization into SMT formula
= 23 solves SMT formula

= 43 passes verified

= 8 bugs identified

12

Case study: Zephyrus 2 // automatic cloud deployments

Depoloyable Components Location (e.g, VMs, PCs, ...)
-——_——- = = - = = - T - -
v{p_frontend P backend N /5.3..!.3!'.9?_:!-..... F.?..Iargeﬂz
! g MU o &) User Constraints | [RAM:3750] ; | [RAM:3750]

| HTTP_Load Balancer i [Costios] | [Costnos]
! mySg'_||:I_| ------------------
RAM: 1000 C3 Iarge 3

\ wp_backend mysal =3 | I....
RAM: 3750
Ve T T e MysQL \, ; i

/
\ WordPress —
—
—
A g
<3 large 1
wp_backend mysql mysaql
(o— —C ¢ o—
00 =2 =3
WordPress_1 / I ySQL,
a3 large 2 =
H wp_frontend wp_backend: wp_backend mysql mysqd\
{ *— C o —C &
Bl =3 o0 =2 =3
HTTP_Load Balancer_ 1 WordPress_2 ySQL.
e3large3 ...
wp_backend mysaql
C o—
*© 22
fooeo....WordPress 3

doi.org/10.1007/978-3-310-47677-3_15 13

https://doi.org/10.1007/978-3-319-47677-3_15

Case study: Amazon // automatic policy checks

Runtime policy check with Zelkova

. Amazon S3 notification trigger
. Identify resource policies
. Look up baseline for the account

. Invoke Zelkova to compare policies | T
from snapshot vs. baseline

. Send alert if = .E, .@ —.aws

. Auto-remediate to

e nvent

amazon.science/blog/a-billion-smt-queries-a-day

https://www.amazon.science/blog/a-billion-smt-queries-a-day

Case study: Certora // verification of smart contracts

= (ko]

° K .TAC)-{ VC generation l—»' <> I—|5M1'So|ve|—>' <> L Analyze
SMT2 BUG REPORT

C preserving

5

Any questions?

gereon.kremer—+froscon@gmail.com gereon-kremer.de

TTTTTT
thd

hybrld, e

® caNVR

@ certora

16

mailto:gereon.kremer+froscon@gmail.com
https://gereon-kremer.de

