
The present work was submitted to the LuFG Theory of Hybrid Systems

MASTER OF SCIENCE THESIS

BITVECTORS IN SMT-RAT

AND THEIR APPLICATION TO

INTEGER ARITHMETICS

Andreas Krüger

Examiners:

Prof. Dr. Erika Ábrahám
Prof. Dr. Jürgen Giesl

Additional Advisor:

M.Sc. Gereon Kremer
Aachen, 08.10.2015

Abstract

One of the most prominent approaches in the field of software verification is based on the
problem of Satisfiability Modulo Theories (SMT). Deciding an SMT instance means deciding
whether a given first-order formula is satisfiable in the context of a fixed background theory.
A theory that is specifically designed for software and hardware verification purposes is the
theory of fixed-size bitvector logic (BV). It provides an expressive language to reason about
many operations that are implemented in state-of-the-art CPUs.

This thesis presents a novel module for the SMT toolbox SMT-RAT that can decide
the satisfiability of quantifier-free formulas in bitvector logic. It makes use of a reduction
to the well-known propositional satisfiability problem (SAT). This approach, which is often
referred to as flattening or bit-blasting, highly benefits from the successes in the development
of efficient SAT solvers throughout the last decades.

While flattening is the predominant method for deciding problems in bitvector logic, it is
also possible to transfer this idea to different SMT theories, which are less strongly related
to SAT. As the second part of this thesis, an application of bit-blasting to the theory of
nonlinear integer arithmetics (NIA) is presented, where the properties of integrality and
nonlinearity are typically a burden on classical arithmetic decision procedures. Especially
on small domains, an encoding to SAT can be a superior alternative.

Instead of directly encoding to SAT, a technique is demonstrated that reduces NIA prob-
lems on a small domain to bitvector arithmetic. We further explain how to apply Interval
Constraint Propagation (ICP) for reducing the complexity of the created bitvector formulas
and thereby improve the performance of the solver.

An evaluation shows that the newly created bitvector module in SMT-RAT already gives
decent performance results. On the NIA theory, the proposed reduction to bitvector arith-
metic proves to be highly competitive with common arithmetic decision procedures.

iv

v

Erklärung

Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstständig verfasst und noch nicht
anderweitig zu Prüfungszwecken vorgelegt habe. Alle benutzten Quellen und Hilfsmittel sind
angegeben, wörtliche und sinngemäße Zitate wurden als solche gekennzeichnet.

Andreas Krüger
Aachen, den 08. Oktober 2015

Danksagung

Ich danke den folgenden Personen für ihre Unterstützung während der Erstellung dieser Arbeit:

• Prof. Dr. Erika Ábrahám für die Möglichkeit, meine Masterarbeit in dem spannenden
Gebiet des SMT-Solvings zu verfassen, sowie für die hilfreichen Impulse und wertvollen
Ratschläge.

• Prof. Dr. Jürgen Giesl für die Bereitschaft, meine Arbeit als Zweitgutachter zu begleiten.

• Meinem Betreuer Gereon Kremer für die kontinuierliche Unterstützung, zahlreiche frucht-
bare Anregungen und den produktiven Austausch.

• Florian Corzilius für viel Hilfsbereitschaft und eine fortwährend sehr angenehme Zusam-
menarbeit.

• Meiner Familie, insbesondere meiner Frau Julia, meinen Eltern und meiner Schwiegermut-
ter, für den starken Rückhalt in dieser Zeit und während meines gesamten Studiums.

vi

Contents

1 Introduction 9

2 Background 13

2.1 SAT and SMT . 13
2.1.1 SAT and the DPLL Algorithm . 13
2.1.2 SMT and the DPLL(T) Algorithm . 15
2.1.3 SMT-LIB . 17

2.2 SMT-RAT . 18
2.3 Bitvector Arithmetic . 21

2.3.1 The SMT Logic QF_BV . 21
2.3.2 Decision Procedures . 26

2.4 Integer Arithmetic . 27
2.4.1 The SMT Logics QF_LIA and QF_NIA 28
2.4.2 Decision Procedures . 28

3 Solving Bitvector Arithmetic 31

3.1 BVModule Overview . 31
3.2 Encoding to SAT . 33

3.2.1 Functional Requirements . 33
3.2.2 Encoding Simple Terms . 34
3.2.3 Encoding Shifts . 36
3.2.4 Encoding Addition, Subtraction and Negation 38
3.2.5 Encoding Relational Operators . 41
3.2.6 Encoding Multiplication, Division and Remainder 42

3.3 Optimizations . 44

4 Solving Integer Arithmetic 47

4.1 IntBlastModule Overview . 47
4.2 Constraint Rewriting . 50
4.3 Encoding to Bitvector Arithmetic . 54

4.3.1 Annotated Bitvector Terms . 54
4.3.2 Integer Mapping Creation . 56
4.3.3 Translation of Constraint Trees . 59

4.4 Bounds from Interval Constraint Propagation . 64
4.4.1 Introduction to ICP . 64
4.4.2 Bound Generation for Polynomial Tree Nodes 66
4.4.3 Applying Inferred Bounds for Width Reduction 67

4.5 SMT-Compliance . 69
4.6 Optimizations . 71

viii Contents

5 Evaluation 73
5.1 SMT-COMP 2015 Results . 73
5.2 BVModule Evaluation . 74
5.3 IntBlastModule Evaluation . 74

6 Conclusion 77
6.1 Summary . 77
6.2 Future Work . 77

Bibliography 79

Chapter 1

Introduction

Throughout the last decades, the impact of technology on mankind has increased to an enormous
level. We live in a world where we are used to permanently interact with technical systems,
consciously or unconsciously, in almost every aspect of our everyday lives. One of the main drivers
for this ongoing development is the performance and availability of computerized systems. The
omnipresence of software has caused a trend to hand over more and more tasks to the control of
machines, since their actions are perceived as more reliable, more predictable and less error-prone
than human behavior. The development of self-driving cars or autonomously acting missiles, for
example, is a manifestation of the trust our society puts in technology.

However, this progression also burdens software engineers with a much higher responsibility
for their products, a challenge that is usually addressed by an exhaustive testing procedure as
an integral part of the software development process. Nonetheless, a characteristic of testing is
that it can only prove the presence of errors, not their absence. When it comes to heavily safety-
critical applications, it is desirable to obtain stronger statements on the accurate functioning
of software. This desire has given rise to the approach of verification, i.e. the application of
formal methods to software with the aim to prove its correctness on the basis of a mathematical
calculus.

The typical procedure of verification consists of three steps: First, the software to be verified
is transformed into a mathematical model. Afterwards, the properties that should be proven are
formalized on the basis of this model. Typical properties are the unreachability of certain states
that are attributed as bad or harmful, the absence of programming mistakes which can make
the system behavior nondeterministic, the correctness of the program output under all possible
inputs, or the fulfillment of liveness properties expressing that the system always responds within
a certain time frame.

Due to the variety of applications and programming languages, the set of constraints varies
within different domains and employed techniques. Since the choice of the mathematical model
used for verification purposes also determines the spectrum of statements which can be concluded
on its basis, it is a natural consequence that there is not a unique modeling scheme that is suited
for all practices. Instead, there is a multitude of logics and theories to choose from, under
consideration of their respective strengths and weaknesses.

A very important group of problems is the set of problems which ask for the satisfiability of
some first-order logic formula ϕ in the context of a given theory T . Depending on the concrete
application, different theories can be suitable as background theory T . Problems of arithmetic
nature, for example, may be described using a theory of arithmetics over integer or real num-

10 Chapter 1. Introduction

bers, while problems with a more logical than arithmetic character may be based on a theory
of uninterpreted functions. The union of all problems following this scheme is referred to as the
problem of Satisfiability Modulo Theory (SMT). It can be seen as a generalization of the fa-
mous satisfiability problem (SAT), which addresses the question of satisfiability of propositional
formulas.

During the last years, SAT and SMT solving have gained a lot of attraction. SAT is typically
well-known for its theoretical properties in the field of complexity theory: The SAT problem is
NP-complete, which states that it is an NP-hard problem on which all other NP-hard problems
can be reduced in polynomial time. It is one of the most important open questions of theoretical
computer science whether NP-complete problems like SAT can be solved efficiently, i.e. by a
polynomial algorithm on a deterministic Turing machine, but the commonly shared belief is that
this is not the case. However, this is a theoretical property concerning the SAT problem in its
general form, which does not imply that every SAT problem instance is hard to solve. In fact, a
lot of progress has been achieved in building automated solvers that operate efficiently on many
instances of SAT arising from practical problems.

The advances in the field of SAT solving have also contributed a lot to the area of SMT
solving. State-of-the-art SMT solvers are typically based on an internal SAT solver, equipped
with additional solvers for the specific background theory T . As a result of this setup, any per-
formance gains achieved in SAT solving also have a direct effect on the SMT solver performance.
In addition, there are also important developments in the field of SMT on its own: In 2003, an
international initiative named SMT-LIB [BST10] has been built, which aims at the establishment
of common standards in the field of SMT. A general syntax for SMT problem specification has
been developed, which is now widely supported by different SMT solvers. Moreover, a number
of background theories has been precisely specified in terms of their syntax and semantics.

These common standards allow for a direct comparison of SMT solvers, which is the goal of
the SMT-COMP contest [CDW15]: Since 2005, SMT solvers have the chance to participate in
this annual competition, in which their performance is evaluated on huge amounts of benchmarks
in various categories. The results of the last years make it evident that most solvers are still under
active development and that a lot of research is performed in the extension and improvement of
SMT solvers.

Starting in 2012, the research group Theory of Hybrid Systems at the RWTH Aachen, lead by
Prof. Dr. Erika Ábrahám, initiated the creation of an own SMT solving engine named SMT-RAT
(Satisfiability-Modulo-Theories Real Algebra Toolbox) [CKJ+15]. Built on C++, SMT-RAT is
provided as free software, designed with the objectives extensibility, modularity and flexibility in
mind. At its heart, it consists of several solver modules which can be composed to a user-defined
strategy. Depending on the configuration, the generated program is either a full-blown SMT
solver or only a theory solver which can be embedded into different SMT solving engines.

Regarding the project name SMT-RAT and its development history, it is obvious that SMT-
RAT started with a main focus on theories considering nonlinear real and integer arithmetics.
However, it is the ambition of the project to extend its capabilities towards other theories.
With the development of modules for linear arithmetics and for uninterpreted sort and function
symbols, a shift towards a more universal solver has begun. With the contributions of this thesis,
we want to further widen the scope of application of SMT-RAT by creating a designated module
for the theory of quantifier-free fixed-size bitvectors (QF_BV in SMT-LIB).

The theory of fixed-size bitvectors originates directly from the software and hardware ver-
ification domain. A bitvector is a vector of Boolean values and serves as the model of CPU
registers, variables or memory areas in general. With its rich set of predicate and function sym-

11

bols, the theory has been designed to support the simulation of a CPU, imitating the semantics
of many operators which can be found in programming languages. Bit-wise operators like AND
or XOR, for example, which are commonly used in software development for embedded systems,
are hard to represent using an arithmetic theory. In QF_BV, on the other hand, there is a direct
equivalent of these operators, such that the operations can be expressed without any encoding
overhead.

In addition to these function symbols for bit-wise computations, the theory also offers func-
tion symbols for arithmetic calculations, which are tailored to CPU simulation. The semantics
of operators like addition or multiplication differ from the semantics of their equivalents in arith-
metic theories in respect of handling very big or very small results: In arithmetic theories, the
domain is in general unbounded, allowing for arbitrarily high or low values. This setting dif-
fers from the situation in a CPU, where numbers are represented as finite bit-sequences with
a maximum length. If a computation result exceeds the limits for its representation, the most
significant bits are lost, resulting in what is typically referred to as an overflow. Overflows are
a common source of programming errors, which makes it crucial to model them accordingly. In
the theory of fixed-size bitvectors, overflow effects are directly modeled by the semantics of its
function symbols and require no extra encoding constraints. These properties make bitvector
logic a perfect fit for many verification purposes, especially in the field of low-level programming.

In the past, several strategies for solving problems in bitvector logic have been investigated.
Though, all state-of-the-art SMT solvers for bitvector logic ultimately use the same solving tech-
nique, namely an encoding to SAT. The encoding is performed by replacing each bitvector by
a vector of propositional variables and expressing all bitvector constraints as constraints on the
propositional level. Afterwards, a regular SAT solver searches for a solution on the generated
propositional constraints. Although the encoding of some operators creates a remarkable over-
head, the efficiency of modern SAT solving has made this approach feasible. Moreover, there is
currently no comprehensive alternative solving strategy that can handle the rich expressivity of
bitvector logic without restrictions. For that reason, the theory module for bitvector logic that
we developed in the context of this thesis is also based on the flattening approach. We applied
several optimizations to obtain a good resulting performance.

As a second big part of our work, we examined the bit-blasting technique from a more uni-
versal point of view. Although bit-blasting is typically employed to bitvector logic, the general
idea of encoding numeric calculations into SAT can also be adapted to other domains. Especially
regarding the original focus of SMT-RAT on nonlinear arithmetic problems, we explored whether
these kind of problems can also benefit from the bit-blasting strategy. Our studies are mainly
driven by two observations: Firstly, many typical solving strategies applied to linear and nonlin-
ear arithmetics are efficient on the domain of real numbers, but forfeit their good performance
when being applied to the domain of integers. The reason is that the solving strategies have
no inherent way of being restricted to integer results, which necessitates the usage of additional
algorithms like branch-and-bound. Secondly, among the satisfiable arithmetic problem instances,
there are many cases in which a solution also exists within relatively small bounds. This gives
rise for our development of IntBlast, an SMT-RAT module implementing a SAT-based solving
strategy for linear and nonlinear integer arithmetics.

Given an integer arithmetic problem, our IntBlast module restricts the range of all input
variables to a set of configurable cardinality by introducing new bounds. Within these bounds,
we translate the arithmetic constraints into equisatisfiable constraints in bitvector logic. These
constraints are checked for satisfiability using our previously developed module in combination
with a SAT solver. If a solution is found in the restricted search space, we know that the original
problem is satisfiable, and can provide a suitable model for it. If the restriction does not contain

12 Chapter 1. Introduction

a solution, we can propagate this information to further solving modules, which then perform a
search on the remaining search space by classical approaches. We believe that this composition
has the potential to combine the benefits of SAT-based solving and arithmetic-based solving to
obtain an improvement of the overall performance.

This thesis is organized as follows: Chapter 2 gives a brief introduction into the backgrounds of
SMT solving, in particular within SMT-RAT. We also compare the different strategies that have
been established for solving bitvector and integer arithmetic problems in Sections 2.3 and 2.4,
respectively. Chapter 3 is devoted to the first half of our work, namely the development of an
SMT-RAT module for solving problems in bitvector logic. After a short structural overview in
Section 3.1, we use Section 3.2 to describe the process of encoding bitvector logic into proposi-
tional logic in more detail. We conclude the chapter by illustrating a number of optimizations in
our implementation. On this basis, we present our new approach of bitvector-supported solving
of integer arithmetic problems in Chapter 4. While Section 4.1 gives a basic understanding of
how the module works and how it is composed internally, we use the following Sections to elabo-
rate on several implementation aspects in more detail. Chapter 5 contains the results of several
benchmarks to evaluate the performance of our approach. On this basis, we discuss the observed
figures and comment on several aspects. We conclude our thesis in Chapter 6 by giving a short
summary over our achievements and outlining proposals for future research.

Chapter 2

Background

In this chapter we give a short introduction into SMT solving both in general and in the SMT-
RAT solver. To this end, we define the notion of SMT problems and outline the DPLL(T)
algorithm, which is the most widespread solving approach. We then present some of the im-
portant structural components of the SMT-RAT solving engine and explain its concept of a
user-defined solving strategy. The two last sections are devoted to the two kinds of SMT log-
ics that are relevant for our thesis: At first, the quantifier-free logic of fixed-size bitvectors is
described, followed by an illustration of the quantifier-free logics of linear and nonlinear integer
arithmetic. For both cases, we establish basic syntax and semantics, and summarize typical
solving procedures.

2.1 SAT and SMT

2.1.1 SAT and the DPLL Algorithm

The Satisfiability Modulo Theory (SMT) problem is a generalization of the well-known satisfia-
bility (SAT) problem. A SAT problem instance consists of a formula ϕ in propositional logic, i.e.
a formula composed of propositional (Boolean-valued) variables and Boolean connectives like ¬,
∧, ∨ or →. Solving the SAT instance means deciding whether an interpretation I exists, such
that ϕ holds under I (also abbreviated I |= ϕ).

It is an important result from complexity theory that SAT is an NP-complete problem. This
attribution summarizes two properties: First, SAT belongs to NP, the class of problems that
can be solved in polynomial time by a nondeterministic Turing machine (NTM). The reason is
that an NTM can nondeterministically “guess” an interpretation I and verify its correctness in
linear time. SAT thereby belongs to the class of decidable problems. Second, SAT is NP-hard:
By the Cook-Levin theorem [Coo71, Lev73], all other problems in NP can be reduced to SAT
on a deterministic Turing machine (DTM) in polynomial time. It is still one of the biggest open
questions in theoretical computer science whether NP is distinct from P, its subclass of problems
decidable by a DTM in polynomial time. However, it is a commonly shared hypothesis that the
two complexity classes are in fact unequal.

Although the NP-completeness of SAT implies that there is probably no efficient (i.e., poly-
nomial-time) algorithm to solve it, the performance of several SAT solvers proves that algorithms
with a bad worst-case complexity can still be very performant on the majority of “real-world”
problem instances. Today, most relevant SAT solvers are based on the Davis-Putnam-Logemann-

14 Chapter 2. Background

Loveland (DPLL) [DP60, Lov78] scheme, which is explained below. Before it can be applied, the
SAT instance needs to be transformed into Conjunctive Normal Form:

Definition 2.1.1 (Conjunctive Normal Form). A propositional formula ϕ is in Conjunctive

Normal Form if it has the form ϕ =
∧

i=1,...,n

∨

j=1,...,mi

Li,j for some n,mi ∈ N and literals Li,j,

where a literal is an atom (a) or its negation (¬a).

The disjunctions
∨

j=1,...,mi

Li,j are called clauses of ϕ.

It should be noted that the requirement of ϕ being in CNF is not a restriction, because every
propositional formula ϕ can be transformed into an equisatisfiable formula ϕ′ in CNF with only
a linear growth in size using Tseitin’s transformation [Tse83].

1: function DPLL(propositional formula ϕ in CNF)
2: if ¬BCP(ϕ) then ⊲ Boolean Constraint Propagation
3: return unsat
4: end if
5: while true do
6: if ¬decide(ϕ) then ⊲ Make decision
7: return sat
8: end if
9: while ¬BCP(ϕ) do

10: if ¬resolve_conflict() then ⊲ Backtracking
11: return unsat
12: end if
13: end while
14: end while
15: end function

Algorithm 1: DPLL

As soon as ϕ is in CNF, the DPLL algorithm can be applied. A simple version of the
DPLL algorithm is illustrated in Algorithm 1. The main procedure is a loop which builds an
internal partial assignment α iteratively, using a backtracking approach. In this context, a partial
assignment is a partial function from the set of propositional variables in ϕ to the set {0, 1}. At
the beginning, α(v) is undefined for every variable v.

The function BCP stands for Boolean Constraint Propagation: Based on the partial assign-
ment α, BCP tries to infer further assignments that must hold if ϕ should evaluate to 1. The
most important rule here is called Unit Propagation: If ϕ contains a clause with only one literal,
its variable must be assigned accordingly, such that the literal evaluates to 1. The authors of
[Lov78] also suggest the application of the Pure Literal Rule: If a propositional variable occurs
only positively or only negatively in ϕ, it can be assigned the value 1 or 0, respectively, without
loss of generality. The function BCP adds the necessary implications to α, or returns false if the
unsatisfiability of ϕ under α is implied.

After the application of Boolean Constraint Propagation, a decision on further assignments
to α is made by the function decide. If the assignment α is already complete, decide returns
false and the input is satisfiable. Otherwise, it picks a variable v occurring in ϕ for which α(v)
is still undefined and set α(v) to a chosen value. In its most simplistic version, decide may
simply pick the first unassigned variable in ϕ, or choose randomly among the set of unassigned

2.1. SAT and SMT 15

variables. Employing a good heuristic here is one of the key factors to obtain a good overall
performance.

After the choice has been made, BCP is called again. Whenever the current assignment
α implies unsatisfiability, the function resolve_conflict essentially analyzes the conflicting
set of clauses and backtracks to an appropriate previous decision level of decide. If the whole
decision tree has been explored without success, resolve_conflict returns false and the input
is unsatisfiable.

By this technique, the DPLL algorithm is mainly an application of branch-and-bound to a
binary search tree with deduction rules applied in every step. In its basic version, it still leaves
room for several optimizations. Concepts like conflict learning have already found their way into
plenty modern implementations of DPLL.

2.1.2 SMT and the DPLL(T) Algorithm

For many applications, the expressivity of propositional logic is insufficient. While the framework
of Boolean connectives is general enough, the restriction to propositional variables makes it hard
to model constraints over an infinite domain like the set of integer numbers. This gave birth to
a generalization of SAT named Satisfiability Modulo Theory (SMT). In SMT, constraints are
expressed in context of a theory T , consisting of a domain (like Z) alongside with interpretations
for some function or predicate symbols (like +, −, · or <). An SMT problem instance is then
composed of the theory T and a first-order formula ϕ. In ϕ, variables are no longer Boolean-
valued, but range over the domain of T . Again, ϕ is said to be satisfiable in T if an interpretation
I exists that maps the free variables in ϕ to elements of the domain of T such that I |= ϕ with
respect to T . Since each theory T creates a whole family of SMT problems, we also refer to
these problems as SMT(T) instances.

First-order logic in general has a much higher expressivity than propositional logic. On
the other hand, a higher expressivity of a logic is often accompanied with worse meta-logical
properties: Other than in propositional logic, the general satisfiability problem in first-order
logic is not decidable. Similarly, the decidability of SMT(T) depends on the specific theory T .
Therefore, most state-of-the-art SMT solvers only consider decidable theories. Another typical
restriction, which we will adopt within the scope of our thesis, is to permit only quantifier-free
formulas ϕ for SMT problems and to implicitly treat all variables appearing in ϕ as existentially
quantified.

It is the challenge of SMT solving to combine Boolean reasoning with decision procedures
specific to the theory T . While there are efficient decision procedures for many theories T like
the Simplex algorithm [NM65] for linear arithmetic, these procedures typically only operate on
conjunctions of T -literals and therefore cannot handle arbitrary Boolean connectives. On the
other hand, generalizing these procedures to support disjunctions is not trivial and usually breaks
their good performance. Hence, the vast majority of SMT solvers utilizes a coupling of a SAT
and a T -solver to decide SMT(T), using an adaptation of the DPLL algorithm named DPLL(T).

The key idea behind the DPLL(T) algorithm is to use the SAT solver for assigning truth
values to theory predicates. The predicates and their assigned interpretation are then passed to
the T -solver, which checks the satisfiability of their conjunction. This information is passed back
to the SAT solver, which modifies its choices until the T -solver reports the consistency of the
chosen constraints. More formally, the SAT solver does not operate on the original first-order
formula ϕinput, but on its propositional skeleton:

16 Chapter 2. Background

Definition 2.1.2 (Propositional skeleton). For a first-order formula ϕ, its propositional skeleton
skel(ϕ) is the propositional formula that is obtained from ϕ by replacing each first-order predicate
p in ϕ by a propositional variable Xp.

Example 2.1.1 (Propositional skeleton). Consider the first-order formula ϕ : x+ y = 6 ∧ (y >
2→ x < 3). Its propositional skeleton is skel(ϕ) : Xx+y=6 ∧ (Xy>2 → Xx<3).

A basic variant of the DPLL(T) algorithm is illustrated in Algorithm 2. Initially, the
DPLL(T) function transforms the input formula into its propositional skeleton skel(ϕ) and
starts with an empty assignment α. The functions BCP, decide and resolve_conflict have
the same semantics as in the context of the DPLL algorithm.

The transition from a propositional formula to T -literals is performed by the T-deduction
function. It creates a set of literals ΦT from the partial assignment α according to the rule:

ΦT := { p | α(Xp) = 1 } ∪ { ¬p | α(Xp) = 0 } (2.1)

Note that no literal is generated for predicate p if α(Xp) is still undefined. The function
T-deduction then checks the consistency of the T -literals ΦT by applying a decision procedure
for the theory T . It returns true in case of consistency, and otherwise a negated conjunction of
T -literals that are a conflicting set. In the latter case, the DPLL(T) algorithm “learns” about
the conflict by adding the propositional skeleton of this clause to t.

1: function DPLL(T)(quantifier-free formula ϕ)
2: ϕ← cnf(skel(ϕ))
3: if ¬BCP(ϕ) then ⊲ Boolean Constraint Propagation
4: return unsat
5: end if
6: while true do
7: if ¬decide(ϕ) then ⊲ Make decision
8: return sat
9: end if

10: repeat
11: while ¬BCP(ϕ) do
12: if ¬resolve_conflict() then ⊲ Backtracking
13: return unsat
14: end if
15: end while
16: t← T-deduction()
17: t← t ∧ skel(t)
18: until t ≡ true
19: end while
20: end function

Algorithm 2: DPLL(T)

Algorithm 2 uses a technique called early pruning : Instead of generating a full assignment
before calling the T -solver, the T -consistency is already checked on the partial assignment α.
As a consequence, T -inconsistent assignments can already be detected very early, which may
lead to a significant pruning of the search tree. This technique is referred to as less lazy DPLL,
whereas the opposite strategy of calling the T -solver only on complete assignments is named full
lazy DPLL.

2.1. SAT and SMT 17

Furthermore, the method of learning invalid assignments of T -literals by adding an appropri-
ate clause to t is called conflict learning or lemma generation. It prevents the SAT solving engine
from generating a partial assignment α containing a sub-assignment for which its T -inconsistency
has already been detected previously.

State-of-the-art implementations of DPLL(T) incorporate many optimizations in comparison
to the simple version depicted in Algorithm 2. Two important techniques shall be discussed
briefly:

Incrementality of T -solver Algorithm 2 conveys the feeling that the calls to T-deduction
are independent of each other and no information is shared between two invocations.
As the formula set ΦT usually only changes slightly between two consecutive calls to
T-deduction, it would instead be beneficial to maintain the internal state of the T -
solver in the meantime. In this manner, plenty of redundant computations can be avoided.
This functional requirement for the T -solver is denoted by incrementality. In its interface,
the function T-deduction is supplemented by the two functions T-add and T-remove,
which add and remove a single formula to the internal set of asserted T -constraints.

Theory propagation By the means of theory propagation, the T -solver may provide the SAT
solving part with information which it has learned during a consistency check. This is lim-
ited to T -literals in the input formula for which their truth value under α is still undefined.
For example, if ϕ contains the variables Xc>1 and Xc>4, a solver for linear arithmetic may
propagate the fact that an assignment α with α(Xc>4) = 1 always needs to be completed
with α(Xc>1) = 1, because c > 4 → c > 1 is a tautology in T . Since this implication
requires reasoning over T , it can be seen as the T -counterpart to Boolean Constraint
Propagation.

2.1.3 SMT-LIB

By its nature, an SMT problem instance is much harder to formally specify than a SAT problem
instance. The reason is that the underlying theory T is part of the problem and not only
its domain has to be given, but also its function and predicate symbols and their respective
interpretations. Every SMT solver supports a number of background theories, each with a
fixed signature and fixed semantics. This way, the background theory T is stated in the SMT
solver input only by its name. It is thereby desirable that all SMT solvers share a common
understanding of the formal definition belonging to some theory name. Moreover, the syntactical
structure of the input and output of SMT solvers calls for standardization, in order to allow the
exchange of problems between different solvers and to enable direct comparisons in performance.

This request for standardization in the field of SMT has led to the foundation of the SMT-
LIB initiative in 2003. Its overall mission is to establish a common ground for all global research
and development in the field of SMT solving. To this end, SMT-LIB collects theories which it
finds to be of common relevance, and establishes a precise definition of syntax and semantics
of these theories. In addition, a universal and extendable problem description format (.smt2) is
specified, which has become, together with its predecessor format (.smt), a common standard.
The initiative also provides an exhaustive set of several thousands of benchmarks, grouped into
different categories. On their basis, an annual competition named SMT-COMP is carried out,
in which all famous SMT solvers participate on a regular basis.

Concerning the background theories, SMT-LIB further differentiates between logics and the-
ories. Theories are the core of the specification. They define a domain and a small set of function

18 Chapter 2. Background

and predicate symbols on them. Typically, the domains of two different theories are distinct.
Logics, on the other hand, can be composed of multiple theories. They can introduce extended
function or predicate symbols, which are defined on the basis of the symbols originating from the
theory. Moreover, logics may impose restrictions on the usage of the the theory symbols. The
logic of linear integer arithmetic, for example, is based on the theory of integer numbers with the
additional restriction that multiplications are only used in a linear form. A frequent restriction
is the exclusion of quantifiers, denoted by the logic prefix “QF_”.

At the time of writing, SMT-LIB contained a total number of 29 logics, based on the seven
theories listed below:

Core A fundamental theory, included by every logic. It defines Boolean connectives, equality
and inequality predicates and an if-then-else (ite) construct.

Ints Theory of integer numbers (Z). It defines the operators +, −, ∗, div (integer division), mod
(modulo) and abs (absolute value), as well as comparison predicates. For every n ∈ N the
unary predicate divisiblen is defined.

Reals Theory of real numbers (R). It defines the operators +, −, ∗ and /, together with
comparison predicates.

Reals_Ints Theory of integer and real numbers (as two distinct types, hence describable by
the disjoint union Z⊔R). On integer numbers, the same operators as in the Ints theory are
defined; on real numbers, the operators from the Reals theory are in effect. In addition,
conversion operators between Ints and Reals exist (which is the main technical reason for
introducing an own, mixed theory).

FixedSizeBitVectors Theory of bit vectors (
⋃

n∈N

{ { 0,1 }n }). A bit vector is a tuple of ele-

ments from { 0,1 } with arbitrary (but positive) length. The theory defines concatenation,
extraction, logical and arithmetic operators, as well as an arithmetic comparison predicate.
For more details, see Section 2.3.

FloatingPoint Theory of floating point numbers. Compared to the other theories, this is the
most recent and most complex theory. It serves the purpose of reasoning about machine
representations of real numbers with finite precision, as they are used in calculations by
most modern CPUs. Floating point sorts are indexed by the number of bits in the exponent
and in the significant. Additional special values exist to represent −∞,∞,+0,−0 and NaN.
Several calculation operators are defined, whose semantics can be controlled by a parameter
determining the rounding mode to be used.

ArraysEx Theory of functional arrays. No concrete sorts are defined in this theory. Instead,
for any pair of sorts S1 and S2, an own array(S1, S2) sort is defined. It can be seen as
a generic model for computer memory: S1 serves as index sort, S2 as sort for the array
values. An array is built by chaining calls to a function named store, taking as arguments
an index position and an element value. Elements can be retrieved via their index by a
select function. The theory axioms ensure that the two functions behave as expected.

2.2 SMT-RAT

In the following, we present the SMT toolbox SMT-RAT (Satisfiability-Modulo-Theories Real
Algebra Toolbox). It is an open source C++ toolbox providing support for several SMT theories.

2.2. SMT-RAT 19

Although SMT-RAT has its main focus on nonlinear real algebra, it also includes solving strate-
gies for linear algebra and some non-algebraic theories like the theory of uninterpreted functions.
The label “Toolbox” expresses its utilization flexibility: SMT-RAT can be composed to a full
SMT solver, but it may also be integrated into foreign SMT solvers and act as a theory solver.

In a standard configuration, SMT-RAT is an incremental SMT solver based on the DPLL(T)
scheme. It supports conflict-driven backjumping, early pruning, conflict learning and theory
propagation. All employed T -solvers also work in an incremental fashion. The minimalistic, but
efficient and open source SAT solver MiniSat is used as underlying SAT engine.

The basic architectural component of SMT-RAT is the module. In most cases, a module
is an implementation of some decision procedure in an SMT-compliant manner. By the term
SMT-compliance, we refer to the following requirements:

• The implementation needs to be incremental as already addressed in Section 2.1.2. After
having checked the satisfiability of a set of constraints, constraints should be addable to
the module input without requiring a full new computation from scratch.

• When a conjunction of formulas is found to be unsatisfiable, the module needs to output an
infeasible subset, i.e. an unsatisfiable subset of the input formulas. As a rule of thumb,
the performance gains from conflict learning and conflict-driven backjumping are optimal
if the generated unsatisfiable sets are very small or even minimal.

• The implementation must be able to perform backtracking, i.e. to support the belated
removal of constraints from its input. Depending on the concrete definition, this property
is often also subsumed under the property of incrementality.

A module is realized as a child of the SMT-RAT class Module. It receives its input as
a list of formulas. The module instance is notified about changes in the input list by calls
to its methods add and remove. Calling the check method starts the actual search for a
solution. Here, the time-costly computations of the solving algorithm are performed. The module
responds with True if the set of input formulas is satisfiable, False if it is unsatisfiable and
Unknown if the solving method does not yield a result. The check method is called with a
Boolean flag _full with the following semantics: If _full is false, the module is encouraged
to skip expensive computations and to quickly fall back to the response Unknown. This mode
is particularly suited for the early pruning approach, where a timely response is more important
than a complete one. In case of the answer True, a model of the input formulas can be obtained
by calls to updateModel and model. In case of the answer False, the module yields one or
more infeasible subsets on the call to infeasibleSubsets.

In many situations, an efficient solving algorithm for some SMT theory combines several
decision procedures. They often vary in terms of completeness and performance, such that it is
desirable to execute incomplete, but fast decision procedures first before resorting to slow and
exhaustive searches. In the terms of SMT-RAT, such a chain of modules is referred to as a
strategy. It is represented in SMT-RAT by the class Manager. Formally, a strategy is defined
as a rooted tree, where each node corresponds to one module. Conceptually, an edge from a
module A to another module B means that A may use B for its computations, e.g. as a fallback
if it cannot determine the satisfiability on its own. Module B is also called a backend of module A.
Edges are labeled with a priority number, which is unique among the whole graph.

We now describe the technical realization of the communication between modules and their
backends. For each module instance M , the set of input formulas for M is denoted by Crcv(M)
(where rcv stands for received formulas). This input set is provided to M on its creation as

20 Chapter 2. Background

a reference to a list of formulas. M keeps a reference to this list, but does not own it. For
communicating with its backends, M also manages a set Cpas(M) of passed formulas. This list
of formulas, which is owned by M , is passed as input to the backends of M . Formally, for
every module instance B acting as backend of M , the equality Crcv(B) = Cpas(M) holds. In its
check method, M may use B by constructing Cpas(M) as desired and invoking its own internal
method callBackends. This request is forwarded to the Manager, which lazily instantiates
the backend modules of M , as defined by the strategy, and calls their check methods.

If a module has no backends, its internal callBackends call returns Unknown. If it has
exactly one backend B, the return value of callBackends equals the return value of the check
call on B. In the case of multiple backends, all backends are run sequentially until one of them
returns True or False (or until all backends have returned Unknown). Their order is determined
by the priority value of the edges of the strategy graph. Alternatively, SMT-RAT can be compiled
with support for parallelization, in which case all backends are run in parallel.

In order to select different backends depending on the input formula, the edges of the strategy
graph may be labeled with a condition. In this context, a condition is an arbitrary Boolean com-
bination of formula properties. The conditions are evaluated when executing callBackends,
and only those backends are called for which the corresponding condition is satisfied. Exemplary
properties of a formula are whether it is in CNF, whether it contains inequalities or whether all
arithmetic constraints are linear.

The inter-module communication concept of Crcv and Cpas permits a very flexible usage.
Three typical use cases can be identified:

Preprocessing A module M does not implement an own decision procedure, but only rewrites
Crcv(M) such that Cpas(M) is in a more suitable or optimized format for its backends. As
an example, the CNFerModule brings its received formulas into CNF by applying Tseitin’s
transformation.

Incomplete decision procedures A module M that implements an incomplete decision pro-
cedure may use a (probably less performant) complete decision procedure as backend. In
this case, the formulas are passed without modifications, i.e. Crcv(M) = Cpas(M).

Reduction A module M may implement a decision procedure for SMT(T1) by a reduction to
SMT(T2) or SAT. Here Crcv(M) are FO-formulas over T1, whereas Cpas(M) are FO-formulas
over T2. Usually, the two sets are equisatisfiable.

In fact, the concept of modules and their backends is as powerful to model the structure of
the DPLL(T) algorithm (see Section 2.1.2). To this end, a SATModule acts as a SAT solver
on the propositional skeletons of its received formulas. By the strategy, the T -solver is used as
backend module. The call to T-deduction in Algorithm 2 then corresponds to the invocation
of callBackends, where ΦT is transported via the passed formulas of the SATModule.

In most cases, each formula in Cpas(M) has one or more formulas in Crcv(M) from which it
originates. This logical relationship is made explicit in SMT-RAT: Every formula in Cpas(M) is
stored with a set of origins, i.e. formulas from Crcv(M). Whenever a received formula is removed
due to backtracking, it is also removed from all sets of origins. The set of passed formulas is then
cleared of all formulas without remaining origins. This way, the module infrastructure already
provides some support for incrementality.

SMT-RAT enables the user to completely customize the strategy to be used. To this end,
a GUI is provided, which displays a graphical representation of the strategy graph. The GUI

2.3. Bitvector Arithmetic 21

allows to modify the strategy and generates the according C++ code for constructing a suitable
Manager child class.

It is worth mentioning that the SAT module is not a mandatory part of the strategy graph.
This allows for two different operation modes of SMT-RAT: With the SAT module enabled, it
acts as a regular SMT solver. Typically, the SAT module appears as the root or very close to
the root of the strategy graph, whereas all of its descendants are theory modules. Disabling
the SAT module, on the other hand, leads to the creation of a T -solver instead of an SMT(T)
solver. In such a configuration, SMT-RAT can be embedded into foreign SMT solvers by acting
as a regular theory module. Nevertheless, it can use the full functionality of the strategy graph
concept and the user-defined composition of SMT-RAT modules.

For a list of modules that are currently implemented in SMT-RAT, we refer to [CKJ+15].

2.3 Bitvector Arithmetic

Modern computers are equipped with CPUs with an astonishing computational power. Millions
of computations or remarkable precision can be performed within a single second. However,
digital computations obey certain laws that programmers need to be aware of. Most importantly,
CPUs only operate on words of a limited bit length. As soon as the representation of a value
exceeds this length, the computation may yield results which seem to be unintuitive or simply
wrong. Such an effect can be the reason of software errors, which are rare enough to remain
undiscovered in a software testing process. Bitvector arithmetic is an SMT theory that allows
for an accurate modeling of a CPU for verification purposes. It supports a rich set of operators,
which resemble the instructions processed by CPUs in terms of their semantics.

2.3.1 The SMT Logic QF_BV

SMT-LIB defines the bitvector logic QF_BV. It is based on the SMT theory of fixed-size bitvec-
tors, enriched by some convenience operators, which do not add new functionality, but simplify
the usage of the theory. In the following, we present syntax and semantics of both theory and
logic.

Syntax

The SMT theory of fixed-size bitvectors is based on the SMT-LIB Core theory, which defines
the typical Boolean constants (true and false) and connectives (not, =>, and, or, xor), as
well as the function symbols =, distinct and ite, which represent equality, inequality and
if-then-else functions over arbitrary sorts. On top of the Core theory, the theory of fixed-size
bitvectors introduces the following language elements:

• A sort BitVecn for every n ∈ N

(Technically, the indexed keyword BitVecn is written as (_ BitVec n), but we use the
simplified notation for a better readability.)

• Literals of the form #bX, where X is a sequence of 0 and 1, and literals of the form #xX,
where X is a sequence of hexadecimal characters (0 to F)

• Function symbols and their signature:

22 Chapter 2. Background

– concat : BitVeci × BitVecj → BitVeci+j (i, j ∈ N)

– extracti,j : BitVecm → BitVeci−j+1 (i, j ∈ N0,m ∈ N,m > i ≥ j)

– bvnot and bvneg,
with the signature BitVecm → BitVecm (m ∈ N)

– bvand, bvor, bvadd, bvmul, bvudiv, bvurem, bvshl and bvlshr,
with the signature BitVecm × BitVecm → BitVecm (m ∈ N)

• The predicate symbol bvult over BitVecm × BitVecm (m ∈ N)

In addition, the theory QF_BV defines the following language elements:

• Literals of the form bvXn, where X and n are numbers from N (written in base 10).

• Function symbols and their signature:

– bvnand, bvnor, bvxor, bvxnor, bvsub, bvsdiv, bvsrem, bvsmod and bvashr,
with the signature BitVecm × BitVecm → BitVecm (m ∈ N)

– bvcomp : BitVecm × BitVecm → BitVec1 (m ∈ N)

– repeati : BitVecm → BitVeci·m (i,m ∈ N)

– zero_extendi and sign_extendi,
with the signature BitVecm → BitVecm+i (m ∈ N, i ∈ N0)

– rotate_lefti and rotate_righti,
with the signature BitVecm → BitVecm (m ∈ N, i ∈ N0)

• The predicate symbols bvule, bvugt, bvuge, bvslt, bvsle, bvsgt and bvsge

over BitVecm × BitVecm (m ∈ N)

It should be noted that in SMT-LIB, function and predicate applications are written using the
syntax (bvand x y). Throughout the thesis, we use the more familiar notation bvand(x,y).

Semantics

A bitvector of length n represents an ordered sequence of n bits (0 or 1). Different formalizations
are possible. While it is possible to represent an n-bit bitvector as an n-tuple from { 0, 1 }n, a
formalization based on functions is often handier in practice. Here, an n-bit bitvector is described
by a function f : { 0, . . . , n− 1 } → { 0,1 }, which maps every position to its value. For a shorter
notation, we use a lambda expression as defined by Church [Chu85], such that we can write
λi ∈ { 0, . . . , n− 1 } .f(i) instead. Note that i = 0 refers to the last bit in the sequence (the least
significant bit), whereas i = n− 1 is the first bit in the sequence (most significant bit).

Example 2.3.1. The bitvector λi ∈ { 0, . . . , 7 } .(1 if i ≤ 3, else 0) has the value 00001111.
Using the ternary operator “condition ? then : else” (as found in many programming languages),
we can also write λi ∈ { 0, . . . , 7 } .(i ≤ 3) ? 1 : 0.

The i-th bit of a bitvector b is the function value b(i). In the following, we also permit the
abbreviation bi. The set of all bitvectors of length n is denoted by BVecn.

A frequently encountered purpose of bitvectors is the storage of integer numbers. To this
end, a mapping between a set N ⊂ N of natural numbers and the set BVecn has to be fixed for
each n ∈ N. Such a mapping is also referred to as encoding. In practice, two different encodings
are used, depending on whether N should include negative numbers or not.

2.3. Bitvector Arithmetic 23

Definition 2.3.1 (nat2bv and bv2nat). For each n ∈ N, the function bv2natn : BVecn →

{ 0, 1, . . . , 2n − 1 } is defined by: bv2natn(b) :=
n−1
∑

i=0
bi · 2

i.

The function nat2bvn : { 0, 1, . . . , 2n − 1 } → BVecn is defined via nat2bvn := bv2nat−1
n .

Example 2.3.2. For n = 8 we have bv2natn(00000000) = 0, bv2natn(00101010) = 42,
bv2natn(10000000) = 128 and bv2natn(11111111) = 255.

By this definition, nat2bv and bv2nat behave like a computer storing integer values of an
unsigned type. The expression nat2bvn(m) creates the representation of m in base 2, using
exactly n digits. However, there is no canonical representation of negative integer numbers,
which makes it unclear how signed values should be expressed. Nevertheless, one encoding
scheme has become the quasi-standard nowadays due to some properties which facilitate their
use for calculating. It is called two’s complement :

Definition 2.3.2 (int2bv and bv2int). For each n ∈ N, the function bv2intn : BVecn →

{−2n−1,−2n−1 + 1, . . . , 2n−1 − 1 } is defined by: bv2intn(b) := −bn−1 · 2
n−1 +

n−2
∑

i=0
bi · 2

i. The

function int2bvn : {−2n−1,−2n−1 + 1, . . . , 2n−1 − 1 } → BVecn is defined as its inverse function
int2bvn := bv2int−1

n .

Example 2.3.3. For n = 8 we have bv2intn(00000000) = 0, bv2intn(00101010) = 42,
bv2intn(10000000) = −128 and bv2intn(11111111) = −1.

In QF_BV, bitvector literals can be written in three ways. Consider, for example, the
bitvector 11000101. It has a binary representation (#b11000101, from most-significant to
least-significant bit), a hexadecimal representation (#xC5, only admissible for lengths being
a multiple of 4) and a decimal representation (bv1978, corresponding to the function value
nat2bv8(197)).

We now define the semantics by giving the interpretation of all function symbols. If no
function signature is stated explicitly, the signature is BVecm × BVecm → BVecm (for m ∈ N).

Core symbols On bitvectors, the predicate symbols = and distinct have the semantics of
the following relations bveq and bvneq:

bveq, bvneq ⊆ BVecm × BVecm (m ∈ N)

bveq = { (b, b) | b ∈ BVecm }

bvneq = (BVecm × BVecm) \ bveq

The ternary operator ite on bitvectors can be defined as follows:

ite : { 0, 1 } × BVecm × BVecm → BVecm

ite(i, t, e) :=

{

t if i = 1

e if i = 0

Bitwise operators The only unary bitwise operator bvnot, performs bitwise negation. Each
bit of the input is flipped:

bvnot : BVecm → BVecm (m ∈ N)

bvnot(b) := λi ∈ { 0, . . . ,m− 1 } .¬bi

24 Chapter 2. Background

All binary bitwise operators (bvand, bvor, bvnand, bvnor, bvxor, bvxnor) apply the
corresponding binary function bit by bit. As an example, bvnand has the semantics:

bvnand(a,b) := λi ∈ { 0, . . . ,m− 1 } .¬(ai ∧ bi)

A special role has bvcomp (“compare”). It compares its inputs for equality and outputs
the result as a bitvector of length 1:

bvcomp : BVecm × BVecm → BVec1 (m ∈ N)

bvcomp(a,b) :=

{

λi ∈ { 0 } .1 if a = b

λi ∈ { 0 } .0 otherwise

Extraction and Concatenation The operator concat (“concatenate”) appends the second
bitvector to the first one:

concat : BVecm × BVecn → BVecm+n (m,n ∈ N)

concat(a,b) := λi ∈ { 0, . . . ,m+ n− 1 } .(i < m) ? ai : bi−m

A part of a bitvector can be obtained using extracti,j . Here, i is the index of the first
(most-significant) bit to be extracted, and j the index of the last (least-significant) one.
For this reason, the constraint i ≥ j is needed:

extracti,j : BVecm → BVeci−j+1 (i, j ∈ N0,m ∈ N,m > i ≥ j)

extracti,j(b) := λk ∈ { 0, . . . , i− j } .bj+k

The operator repeati is a shortcut for multiple applications of concat.

repeati : BVecm → BVeci·m (i,m ∈ N)

repeat1(b) := b

repeati(b) := concat(b, repeati−1(b)) (for i > 1)

Extension Bitvectors can be extended by a non-negative amount of bits, leaving their numeric
value unchanged. Two separate variants exist for unsigned and signed extension:

zero_extendi, sign_extendi : BVecm → BVecm+i (m ∈ N, i ∈ N0)

zero_extendi(b) := nat2bvm+i(bv2natm(b))

sign_extendi(b) := int2bvm+i(bv2intm(b))

Shifting and Rotation Shifting operators move the bits of the first bitvector to the left or
the right, by as many steps as given by the value of the second bitvector. In the case of
the operators bvshl (“shift left”) and bvlshr (“logical shift right”), the bitvector is filled
up with zeros from the right or left side, respectively. The operator bvashr (“arithmetic
shift right”) fills up from the left with replications of the most-significant bit of the first
bitvector.

bvshl(a,b) := λi ∈ { 0, . . . ,m− 1 } .

{

ai−bv2natm(b) if i− bv2natm(b) ≥ 0

0 otherwise

bvlshr(a,b) := λi ∈ { 0, . . . ,m− 1 } .

{

ai+bv2natm(b) if i+ bv2natm(b) < m

0 otherwise

bvashr(a,b) := λi ∈ { 0, . . . ,m− 1 } .

{

ai+bv2natm(b) if i+ bv2natm(b) < m

am−1 otherwise

2.3. Bitvector Arithmetic 25

The functions rotate_lefti and rotate_righti have a similar behavior to the shifts.
They also move the bits of the bitvector by i steps to the left or the right. In contrast to
shifting, the left- or rightmost bits are not discarded, but replicated at the other end:

rotate_lefti : BVecm → BVecm (m ∈ N, i ∈ N0)

rotate_left0(b) := b

rotate_lefti(b) := λk ∈ { 0, . . . ,m− 1 } .

{

(rotate_lefti−1(b))m−1 if k = 0

(rotate_lefti−1(b))k−1 otherwise
(for i > 0)

rotate_righti := rotate_left−1
i

Arithmetic Bitvectors of length m can represent values between 0 and 2m − 1 using unsigned
encoding, and values between −2m−1 and 2m−1 − 1 using signed encoding. If a numeric
value exceeds this range, it cannot be represented any more. In case of an addition of the
unsigned values nat2bv8(200) = 11001000 and nat2bv8(100) = 01100100, for example,
an addition yields 00101100 (the 8 least significant bits of 100101100), which corre-
sponds to the value 44 instead of 300. Hence, bitvector arithmetic uses modular arithmetic,
since it computes correct results modulo 2m (300 ≡ 44 mod 28). Based on this observation,
the semantics of the arithmetic operations can easily be defined:

bvneg(b) = c ⇐⇒ bv2natm(c) ≡ − bv2natm(b) (mod 2m)

bvadd(a,b) = c ⇐⇒ bv2natm(c) ≡ bv2natm(a) + bv2natm(b) (mod 2m)

bvsub(a,b) = c ⇐⇒ bv2natm(c) ≡ bv2natm(a)− bv2natm(b) (mod 2m)

bvmul(a,b) = c ⇐⇒ bv2natm(c) ≡ bv2natm(a) · bv2natm(b) (mod 2m)

Due to the employment of two’s complement, there is no need for a signed variant of the
above operators, because they would behave exactly like their unsigned counterparts. This
does not hold for the operators of integer division and remainder. They are defined as
follows for nat2bvm(b) 6= 0:

bvudiv(a,b) = nat2bvm(max { c ∈ N0 : c · bv2natm(b) ≤ bv2natm(a) })

bvsdiv(a,b) = int2bvm(max { c ∈ Z : c · bv2intm(b) ≤ bv2intm(a) })

bvurem(a,b) = nat2bvm(bv2natm(a)− bv2natm(b) · bv2natm(bvudiv(a,b)))

bvsrem(a,b) = nat2bvm(bv2intm(a)− bv2intm(b) · bv2intm(bvsdiv(a,b)))

bvsmod(a,b) =

{

bvadd(bvsdiv(a,b), b) if bv2intm(b) < 0 and bv2natm(bvsdiv(a,b)) 6= 0

bvsdiv(a,b) otherwise

For nat2bvm(b) = 0, the above expressions are not defined. Hence, an SMT solver may not
make any assumptions about their value, and instead has to assume that these expressions
may take an arbitrary value in the theory.

The semantics of the predicate symbols are straightforward. As an example, consider the
predicate bvule (“unsigned less or equal”):

bvule ⊆ BVecm × BVecm (m ∈ N)

bvule = { (a, b) ∈ BVecm × BVecm : bv2natm(a) ≤ bv2natm(b) }

26 Chapter 2. Background

The remaining predicate symbols bvult (“unsigned less than”), bvugt (“unsigned greater
than”), bvuge (“unsigned greater or equal”) and their signed equivalents can easily be defined
analogously. To this end, the signed predicates use bv2int instead of bv2nat.

2.3.2 Decision Procedures

The decision procedures which have been implemented for bitvector arithmetic can be divided
into three groups. For each group, we present the approach, refer to a number of representative
implementations and briefly evaluate the strengths and weaknesses of the respective procedure.

Canonizer & Solver

The earliest relevant approach goes back to Shostak [Sho82], who gives a general algorithm for
deciding combinations of theories which fulfill certain properties. Being published in 1982, this
concept emerged at a time long before the term SMT came up and the DPLL(T) algorithm
became popular. The method described by Shostak handles σ-theories, i.e. theories T for which
a canonizer function exists. A canonizer maps T -terms to T -terms, generating a normal form for
every fully interpreted term. The biggest restriction to T is that it also needs to be algebraically
solvable, i.e. that a solving function must exist which takes a set of canonized equations and
generates canonized solutions for the contained variables.

Such a combination of a canonizer and a solver for bitvector arithmetic is suggested in
[MR98]. It was implemented in the SMT solver ICS (Integrated Canonizer and Solver) [FORS03],
which is no longer under active development. A similar work is [BDL98], which describes the
implementation of a Shostak-based decision procedure for bitvector arithmetic in the Stanford
Validity Checker [BDL96]. Both variants, however, are restricted to a small fraction of bitvector
arithmetic as defined by SMT-LIB. Only combinations of concatenation, extraction, equality and
linear equations can be handled and an extension to further operators seems to be difficult. ICS
has been superseded by the Yices solver [DDM06] and SVC has developed into CVC [SBD02],
both of which replaced the Shostak-based decision procedure by a SAT-driven approach, as
explained in the following.

Encoding to SAT

The most prominent approach of deciding bitvector arithmetic nowadays is a reduction to the
SAT problem, also known as bit-blasting or flattening. To this end, each bitvector variable of
width n is replaced by n propositional variables. All bitvector terms and constraints are then
expressed on the basis of these variables, much similar to electronic circuits found in CPUs. A
SAT solver decides about the satisfiability of the equisatisfiable SAT instance. By re-composing
the propositional variables to the original bitvectors, a model for the SAT instance can be directly
rewritten into a model for the original bitvector instance. For a more detailed and more technical
description of bit-blasting, see Section 3.2 about our implementation in SMT-RAT.

Two different bit-blasting strategies can be distinguished: The first strategy is to encode all
bitvector constraints upfront before applying the SAT solver for the first time. Alternatively,
one can start with a SAT search over the propositional skeleton of the original formula, just as
in the DPLL(T) algorithm, and add the flattened bitvector constraints only on demand. These
two variants are called eager and lazy flattening. Eager flattening has the advantage that the
Boolean reasoning of the SAT solver can work over the full formula and that only a single run

2.4. Integer Arithmetic 27

of the SAT solver is required. Lazy flattening, on the other hand, may show its benefits when
being applied to a formula that consists of many arithmetic bitvector operations, which usually
require a quite great amount of propositional constraints to be encoded to. The SAT solver is
forced to reason about the high-level Boolean structure first, before diving into the circuits for
each operation. Depending on the formula, this may avoid the need to encode every bitvector
constraint, and prevent unnecessary searches over irrelevant propositional formulas.

Boolector [BB09], the winner of the QF_BV division in the SMT-COMP of 2015 and
2014, uses bit-blasting on bitvector formulas. It further employs refinement loops and under-
approximations, which add further constraints on the CNF level to reduce the search space. A
similar idea of an iterative refinement of abstractions is described in [BKO+07] and implemented
in UCLID [LS04]. CVC4 [BCD+11], a descendant of CVC [SBD02], applies lazy bit-blasting
after simple preprocessing steps. STP [GD07] uses substitution, simplification and linear solv-
ing steps before eagerly encoding to SAT. Yices [DDM06] and Z3 [DMB08] flatten all bitvector
operations except for equality in a DPLL(T) framework. In MathSAT [CGSS13], the bitvector
constraints are first checked for unsatisfiability by an EUF-solver before resorting to bit-blasting.
To summarize, all participants in the QF_BV division in the SMT-COMP of the last years are
based on reductions to SAT, which is a clear indicator for the success of this approach.

Encoding to Integer Arithmetic

bit-blasting has its biggest deficiencies in the handling of arithmetic bitvector operations. In
particular, multiplication circuits quickly become large as the bitvector width increases, leading
to the introduction of numerous propositional variables and a blowup of the Boolean search
space. This gives rise to the idea of reducing to Integer Arithmetic instead of SAT, such that the
benefits of an arithmetic solver can be exploited. Nevertheless, due to the modular semantics in
bitvector arithmetic, even the translation of the bitvector operators addition and multiplication
is not trivial.

Brinkmann and Drechsler [BD02] presented an encoding of a fragment of bitvector arithmetic
into an Integer Linear Program in the context of RTL descriptions of hardware circuits. The
ILP is then decided using the Omega test [Pug91]. Parthasarathy et al. [PICW04] base their
work on this approach, adding a DPLL(T) structure to additionally support Boolean operators,
which are not considered in [BD02]. Both implementations are restricted to linear bitvector
operators. Similarly, Huang and Cheng [HC00] apply a solver for linear modular arithmetic to
solve bitvector equations. Nonlinear operators are only supported by heuristical enumeration
and substitution of possible solutions in order to fall back to linear arithmetic. Most recently,
Babić and Musuvathi [BM05] employed Hensel’s Lemma, a generalization of the Newton method
to p-adic case, to handle nonlinear operations more efficiently. However, the concept of encoding
to linear or nonlinear Integer arithmetic seems to be very limited and hard to extend to the full
set of bitvector operations as defined in SMT-LIB.

2.4 Integer Arithmetic

While the theory of bitvectors clearly originates from the field of verification and has not been of
any interest before the emergence of computers, the theory of integer arithmetic already gained
attraction by Hilbert in 1900. It took decades until a final answer to Hilbert’s Tenth Problem was
found, which addressed a question of decidability of integer arithmetic. Although this theory can
be formulated much easier than the rich bitvector arithmetic, it is still much harder to handle.

28 Chapter 2. Background

Before we elaborate on modern solving methods, we present integer arithmetic as it is defined
by the SMT-LIB standard.

2.4.1 The SMT Logics QF_LIA and QF_NIA

SMT-LIB defines the two logics QF_LIA (Quantifier-free fragment of Linear Integer Arithmetic)
and QF_NIA (Quantifier-free fragment of Nonlinear Integer Arithmetic). Both logics are based
on the SMT-LIB theory “Ints” of integer numbers. Its domain is the set Z, on which the following
functions and relations are defined:

• The unary negation function (-)

• The binary subtraction, addition and multiplication functions (-, + and *)

• The binary functions div and mod

• The unary function abs

• The unary relation divisiblen (for n ∈ N)

• The binary relations <=, <, >= and >

The semantics of most function and relation symbols are obvious. The functions div and
mod are defined by the two constraints (n ·div(m,n))+mod(m,n) = m and 0 ≤ mod(m,n) < |n|
for all n ∈ Z,m ∈ Z \ { 0 }. Considering the case m = 0, the interpretation of mod(m,n) and
div(m,n) is not prescribed, and must be assumed to be some unknown value (i.e., the theory
is underspecified for this case). The function symbol abs is interpreted by the absolute value
function abs : Z → Z, n 7→ |n|. For n ∈ N, the relation divisiblen is given by divisiblen :=
{ an | a ∈ Z }.

The logic QF_NIA is defined as the theory “Ints” plus arbitrary free constant symbols (what
we refer to as existentially quantified variables). The sublogic QF_LIA is derived from QF_NIA
by imposing the additional restriction that all integer terms must be linear, i.e. that the formulas
do not use the function symbols *, div, mod and abs. The only permitted use of * is in
combination with a constant integer argument (which is only syntactical sugar, as such a product
can be replaced by an equivalent sum).

In the context of our thesis, we ignore the function symbols div, mod and abs as well as
the relation symbols divisiblen. Without these symbols, the set of constraints expressible
in QF_NIA (or QF_LIA) is exactly the set of (linear) Diophantine constraints. Each such
constraint can be described by a multivariate polynomial being compared to zero, which simplifies
the internal representation, its canonization and the algorithms applied on it.

2.4.2 Decision Procedures

Nowadays, problems in linear arithmetic over the reals can be solved very efficiently. Most
prominently, the Simplex algorithm is a technique for solving Linear Programs. Despite its
exponential worst-case complexity, Simplex has turned out to be very fast on practically relevant
instances. Unfortunately, Simplex alone is not sufficient for solving integer linear arithmetic
because it may generate assignments containing non-integer values. Moreover, the problem of
deciding a conjunction of linear Diophantine constraints has been proven to be NP-complete, in

2.4. Integer Arithmetic 29

contrast to its non-integer counterpart, which is in P. Hence, we cannot expect any algorithms for
linear integer arithmetic which have a polynomial worst-case complexity. Most implementations
today are based on the following techniques:

Refinement of LP-relaxation Given an integer linear program (ILP), its LP-relaxation is
the problem consisting of the same constraints, without the requirement that all solutions
must be integer. The LP-relaxation is solved by an algorithm for linear programs like
the Simplex algorithm. If the relaxation is unsatisfiable, the ILP is unsatisfiable as well.
Otherwise a solution for the LP-relaxation is returned. If it contains non-integer values,
the LP-relaxation is refined to exclude the previously found solution from the new solution
space. The process is repeated until the relaxation is unsatisfiable or an integer solution
is returned. For the refinement step, typical approaches are Branch & Bound and cutting
plane methods [Gom63].

Omega test The Omega test [Pug91] is an adaptation of the Fourier-Motzkin variable elimina-
tion scheme for integer constraints. It is based on the idea to iteratively select a variable
and project all of its constraints to the remaining variables. By this step, a variable is
eliminated (at the cost of potentially more constraints). The iteration ends as soon as only
one variable is left and the problem can easily be decided.

Automata theory An automata-theoretic decision procedure has been suggested [GBD02],
which reduces the problem of linear integer arithmetic to the emptiness problem on deter-
ministic finite automata. To this end, a construction is described to create an automaton
from a set of constraints which accepts the language of binary strings representing a solu-
tion to the ILP. Unfortunately, many of the constructs scale badly and seem to be infeasible
for a practical application.

The nonlinear analogon to ILPs was already mentioned by Hilbert as the 10th item of his
famous list of mathematical problems [Hil00] from 1900. He asks for a decision algorithm for the
satisfiability problem over Diophantine constraints. It took 70 years until this question finally
received a negative answer [Mat70]: No such algorithm can be found because the problem is
undecidable. Despite this discouraging result, some (necessarily incomplete) algorithms exist
which can solve some of the problems of nonlinear integer arithmetic:

Cylindrical Algebraic Decomposition The algorithm of cylindrical algebraic decomposition
has its main application in nonlinear real arithmetic. It divides the search space of Rn into
so-called cells with the property that all polynomials in the input constraints have constant
sign on each of these cells. In the real-valued case, satisfiability can then be decided by
regarding each cell on its own. When applied to integer arithmetic, the algorithm further
has to enumerate all integer values that reside in every cell, which may lead to a huge
number of test points.

Gröbner Basis Construction The concept of a Gröbner Basis originates from commutative
algebra and algebraic geometry. A Gröbner Basis is a special finite generating set of an
ideal, which can be computed by Buchberger’s algorithm [Buc85]. In the context of nonlin-
ear integer programming, the construction of a Gröbner Basis can prove the unsatisfiability
of the program.

Virtual Substitution In the case that some variables only appear with a low degree in the input
polynomials, the Virtual Substitution method [Wei98] can be applied. It computes terms
for the roots of some polynomials and substitutes them into the remaining constraints,

30 Chapter 2. Background

such that the original variable is eliminated. An tailored version for SMT is described in
[CÁ11]. The method is not specific to integer arithmetic, but also applies to nonlinear real
arithmetic.

Encoding to SAT AProVE [FGM+07], the winner of the 2015 SMT-COMP in the QF_NIA
division, encodes the Diophantine constraints into SAT, restricting the range of all vari-
ables to { 0, . . . , 2k − 1 } for a fixed k. Z3 [DMB08] follows a similar approach, but it
iteratively increases k if the SAT solver detects unsatisfiability. Naturally, due to the in-
troduction of bounds, this approach can in most cases only detect the satisfiability and not
the unsatisfiability of the input problem.

Linearization Instead of a reduction to SAT, the authors of [BLNM+09] propose an encoding
of non-linear integer constraints to linear integer constraints by instantiating one factor of
every non-linear product with values inside certain bounds.

ICP and Testing The raSAT solver [TO13] searches for a solution by alternately applying
Interval Constraint Propagation, testing and decomposition. Unsatisfiability of the problem
may be detected by Interval Constraint Propagation, while satisfiability may be detected
by testing. If none of both events occur, the input intervals are decomposed into smaller
intervals, which then serve as the starting point for the next iteration.

Finite Domain Constraint Satisfaction Search In [CMTU05], Contejean et al. propose a
method for solving Diophantine equations in the setting that each variable ranges over a
finite domain. The main algorithm consists of a repeated propagation of interval constraints
for each variable, followed by the choice of a single variable and the isolation of the minimum
or maximum of its interval. The algorithm is implemented in the termination prover CiME
[CMMU03].

Among the previously presented approaches, SMT-RAT currently supports Simplex, Fourier-
Motzkin, Virtual Substitution, Gröbner Basis construction and Cylindrical Algebraic Decompo-
sition. It further provides a module for Interval Constraint Propagation, which we use as a
component to develop a SAT-based module for nonlinear integer arithmetic.

Chapter 3

Solving Bitvector Arithmetic

This chapter is devoted to our implementation of a module for bitvector arithmetic in the SMT-
RAT solver, which we named BVModule. We first describe the general composition of the
module and its usage in Section 3.1. The module performs an encoding into SAT, which is
presented in more detail in Section 3.2. We conclude the chapter with Section 3.3 about various
optimizations which we employed for an improved efficiency.

3.1 BVModule Overview

The BVModule is designed to handle arbitrary input formulas. All bitvector-related constraints
are removed from the input and replaced with an encoding into SAT. The encoded formulas and
all input formulas without bitvector constraints are passed to the backend, which then decides
the satisfiability on the propositional level.

With this behavior, the BVModule can be embedded into a strategy for SMT(QF_BV)
as shown in Figure 3.1. The encoded propositional formulas are transformed into Conjunctive
Normal Form by the CNFModule, before the satisfiability is ultimately decided by the SAT
solver provided by the SATModule.

Before the strategy defined by the strategy graph is executed, the input formulas are parsed
into the internal formula representation. In this process, two transformations are made which
are also relevant for bitvector formulas. Firstly, wherever SMT-LIB allows syntactic sugar in
the form of expressions like and(a, b, c) as an abbreviation for and(and(a, b), c), these compact
expressions are replaced with their expanded equivalents. Secondly, all if-then-else-expressions
are eliminated by rewriting each instance ite(if, then, else) into a fresh variable V with the two
additional constraints if → (V = then) and ¬if → (V = else). In the following, we can thereby
expect all formulas to be free of ite expressions.

BVModule

CNFerModule

SATModule

Figure 3.1: A strategy graph for SMT(QF_BV)

32 Chapter 3. Solving Bitvector Arithmetic

In order to express bitvector constraints on the propositional level, each bitvector term of
width n in the input formulas is represented by a vector of n propositional variables. Similarly,
each bitvector atom in the input formulas is represented by a single propositional variable. This
relationship between a bitvector expression and its Boolean variables is formalized by a bitvector
mapping :

Definition 3.1.1 (Bitvector mapping). A bitvector mapping is a mapping f , whose domain
dom(f) consists of bitvector terms and atoms. For a bitvector atom a ∈ dom(f), f(a) is a single
propositional variable. For a bitvector term t ∈ dom(f) of width n, f(t) is an n-elementary
vector of propositional variables.
The elements of f(t) are referred to as f(t)0, . . . , f(t)n−1. V (f) denotes the set of all variables
occurring in the image of f . We call f injective if f(x) and f(y) share no variables for any
x, y ∈ dom(f).

Algorithm 3 depicts the decision algorithm implemented by the BVModule. Here the sets
BVAtoms(ϕ) and BVTerms(ϕ) are the sets of all bitvector atoms or terms, respectively, appearing
in ϕ. The algorithm starts by invoking the function freshBitvectorMapping. It creates an
injective bitvector mapping e over all bitvector atoms and terms (including their subterms)
appearing in Crcv by choosing fresh variables for each function value of e.

1: function BVModule.decide(input formulas Crcv)
2: e← freshBitvectorMapping(Crcv)
3: Cpas ← ∅
4: for all ϕ ∈ Crcv do
5: Cpas ← Cpas ∪ { skeleton(e, ϕ) }
6: for all a ∈ BVAtoms(ϕ) do
7: Cpas ← Cpas ∪BVconstraints(e, a)
8: end for
9: for all t ∈ BVTerms(ϕ) do

10: Cpas ← Cpas ∪BVconstraints(e, t)
11: end for
12: end for
13: return backend.decide(Cpas)
14: end function

Algorithm 3: BVModule.decide

On the basis of e, all bitvector constraints in the input formulas are rewritten into proposi-
tional logic. As a first step, the function call skeleton(e, ϕ) substitutes each bitvector atom
a in ϕ by its corresponding variable e(a). This substitution is in analogy to the construction
in Definition 2.1.2. Note, however, that our implementation allows the formulas Crcv to contain
predicate symbols from other theories, which might be handled by subsequent modules in the
strategy. All non-bitvector predicates and functions are left unmodified by the call to skeleton.

The key component of the BVModule is the function BVConstraints, which takes as
argument the bitvector mapping e and a bitvector expression b (i.e., a bitvector atom or term).
It returns a set of constraints Φ which emulate the semantics of b on the propositional level. To
put it differently, in every model of Φ the values for e(b) are computed correctly from the values
for its direct subterms. For a more formal definition and a construction of BVConstraints,
we refer to the following Section 3.2.

After calling the BVConstraints function for each bitvector atom and term, the formula
skeletons and all generated constraints are added to the set Cpas of passed formulas, which is

3.2. Encoding to SAT 33

checked for satisfiability by the backend module.

3.2 Encoding to SAT

Before we give a constructive description of the BVConstraints method, we establish its
functional requirements in the following Section 3.2.1. In the remaining parts of Section 3.2, the
generated constraints of BVConstraints(e, a) and BVConstraints(e, t) are presented for
different terms t and atoms a.

3.2.1 Functional Requirements

A bitvector mapping e describes a relationship between bitvector expressions and propositional
variables. It enables us to compare interpretations for bitvectors to interpretations for Boolean
variables. Consider, for example, a bitvector variable b[4], and e(b) = 〈B3, B2, B1, B0〉. Then we
consider an interpretation I1 which assigns I1(b) = 0010 to be equivalent to an interpretation
I2 with I2(B3) = I2(B2) = I2(B0) = 0 and I2(B1) = 1. In the following, we define the notion
of equivalence of interpretations under a bitvector mapping more formally.

Definition 3.2.1. Let I1, I2 be two interpretations, e a bitvector mapping, t[n] ∈ dom(e) a
bitvector term and a ∈ dom(e) a bitvector atom.

We write I1 ≡
t
e I2 if (I1(t))i = I2(e(t)i) for each i ∈ { 0, . . . , n− 1 }.

We further write I1 ≡
a
e I2 if it holds that I1 |= a if and only if I2 |= e(a).

Intuitively, I1 ≡
t
e I2 means that the term t is interpreted by equivalent values in I1 and

I2 with respect to the bitvector mapping e, where the bitvectors in I1 are replaced with their
corresponding Boolean variables in I2.

Now the desired semantics of BVConstraints can be described as follows. Let e be an
injective bitvector mapping. Then BVConstraints has to respect the following rules:

Satisfiability under all variable assignments. Let V ⊆ dom(e) be the set of all bitvector
variables which are an element of dom(e). Given any suitable interpretation I

BV for V , a
model IP of

⋃

b∈dom(e)

BVConstraints(e, b) exists with I
BV ≡v

e I
P for all v ∈ V .

Correct semantics of terms. Let t = f(t1, . . . , tn) ∈ dom(e) be a bitvector term. Let IBV be
a suitable interpretation for t, and let I

P be a model of Φ = BVConstraints(e, t), such
that I

BV ≡ti
e I

P for all 1 ≤ i ≤ n. Then I
BV ≡t

e I
P holds.

Correct semantics of atoms. Let a = p(t1, . . . , tn) ∈ dom(e) be a bitvector atom. Let I
BV

be a suitable interpretation for a, and let I
P be a model of Φ = BVConstraints(e, a),

such that I
BV ≡ti

e I
P for all 1 ≤ i ≤ n. Then I

BV ≡a
e I

P holds.

In the context of Algorithm 3, we further demand that the formulas returned by BVCon-
straints do not contain any propositional variables already occurring in Crcv. In other words,
all variables introduced by BVConstraints must be fresh. These requirements suffice to prove
that the reduction to propositional logic performed by Algorithm 3 is correct.

34 Chapter 3. Solving Bitvector Arithmetic

In the following, we give a constructive definition of BVConstraints. Formally proving
that it fulfills the before mentioned properties is often very technical, so we confine ourselves
to an informal explanation of our construction, which should make it clear how to prove its
correctness. The satisfiability under all variable assignments is guaranteed by enforcing that
the formula set Φ = BVConstraints(e, b) only imposes restrictions on e(b) (and on possibly
introduced additional propositional variables, which do not appear in any other formula set
Φ′ = BVConstraints(e, b′)). In particular, the values of V (e) that do not appear in e(b) are
not restricted by Φ. For any bitvector variable v[n], we require BVConstraints(e, v) = ∅.
Together with the injectivity of e, these properties ensures that all created formula sets can be
satisfied together for arbitrary variable assignments.

3.2.2 Encoding Simple Terms

We start our definition of BVConstraints(e, b) with bitvector terms which are simple in the
sense that they can be encoded without introducing new propositional variables.

The most basic bitvector expressions are expressions without subterms. In bitvector logic,
all predicate symbols are of positive arity, such that the only expressions without subterms are
terms of arity zero. Here we distinguish between interpreted terms (literals) and uninterpreted
terms, i.e. bitvector variables.

Variables

For a bitvector variable v[n], we set BVConstraints(e, v) := ∅.

As previously explained, BVConstraints should not impose any restrictions on the values
of e(v), such that all possible assignments for v are considered.

Literals

Let c be a bitvector literal with the semantics fc = λi ∈ { 0, . . . , n− 1 } .fc(i) for some n ∈ N.
We encode the literal into the formula set:

BVConstraints(e, c) := { e(c)i ↔ fc(i) | i ∈ { 0, . . . , n− 1 } } (3.1)

The remaining bitvector expressions b for which we have to define BVConstraints(e, b)
are all bitvector atoms and predicates of positive arity k. Let b = op(t1, . . . , tk) for a bitvector
function or predicate symbol op. Then we set:

BVConstraints(e, b) := Φop(e(t1), . . . , e(tk), e(b)) (3.2)

In the following, we define the functions Φop for all possible symbols op. These functions
output sets of propositional constraints on the basis on the propositional variables (or, to be
more general, the propositional terms) which are provided as arguments. We use the notation
a〈n〉 to denote that a is a vector consisting of n terms, which are referenced by an−1, . . . , a0.

3.2. Encoding to SAT 35

Bitwise Operators

The unary operator bvnot realizes a bitwise negation:

Φbvnot(x〈n〉, t〈n〉) := { ti ↔ ¬xi | i ∈ { 0, . . . , n− 1 } } (3.3)

The binary bitwise operators all share the semantics of a Boolean function that is applied
element-wise, and their encoding only varies in the choice of the respective Boolean function. As
an example, we present the encoding of bvand:

Φbvand(x〈n〉, y〈n〉, t〈n〉) := { ti ↔ (xi ∧ yi) | i ∈ { 0, . . . , n− 1 } } (3.4)

An analogous construction is performed for the function symbols bvand, bvnand, bvor,
bvnor, bvxor and bxnor.

The operator bvcomp performs a bitwise comparison and returns a bitvector with exactly
one bit, which is 1 if and only if the compared bitvectors are equal. It is encoded by:

Φbvcomp(x〈n〉, y〈n〉, t〈1〉) :=

{

t1 ↔
n−1
∧

i=0

(xi ↔ yi)

}

(3.5)

Concatenation

Concatenation is implemented by relating each output bit to the respective bit in one of the two
input vectors:

Φconcat(x〈m〉, y〈n〉, t〈m+n〉) := { ti ↔ xi | i ∈ { 0, . . . ,m− 1 } }

∪ { ti ↔ yi−m | i ∈ {m, . . . , n− 1 } }
(3.6)

The function repeati could be rewritten into chains of concat applications, as in the
definition, but it can also be encoded directly:

Φrepeati(x〈n〉, t〈i·n〉) :=
i−1
⋃

k=0

{ tk·n+l ↔ xl | l ∈ { 0, . . . , n− 1 } } (3.7)

Extraction

The constraints for extracti,j are very similar to the ones for concatenation:

Φextracti,j (x〈n〉, t〈j−i+1〉) := { tk ↔ xj+k | k ∈ { 0, . . . , i− j } } (3.8)

36 Chapter 3. Solving Bitvector Arithmetic

Extension

For i ∈ N0, SMT-LIB defines two different extension operators, namely zero_extendi and
sign_extendi. Both operators share the semantics that they extend the width of their ar-
gument by i bits, while leaving its numerical representation unchanged. For zero_extend,
an unsigned representation is taken as basis, such that an extension by i bits corresponds to a
prepending of i bits of value 0. The sign_extend function can be realized in a similar way,
due to a convenient property of the two’s complement encoding: Instead of prepending bits with
the constant value 0, the value of the most-significant bit is replicated. This covers both the
positive and the negative case. Altogether, we obtain the following encodings:

Φzero_extendi(x〈n〉, t〈n+i〉) := { tk ↔ xk | k ∈ { 0, . . . , n− 1 } }

∪ { ¬tk | k ∈ {n, . . . , n+ i− 1 } }
(3.9)

Φsign_extendi(x〈n〉, t〈n+i〉) := { tk ↔ xk | k ∈ { 0, . . . , n− 1 } }

∪ { tk ↔ xn−1 | k ∈ {n, . . . , n+ i− 1 } }
(3.10)

Rotation

For defining the encoding of rotation operators, we use the function mod : Z × N → N0, given
by mod(a, n) = b ⇐⇒ (a ≡ b (mod n) and 0 ≤ b < m). Then the constraints for left and right
rotation are almost identical:

Φrotate_lefti(x〈n〉, t〈i·n〉) :=
{

tk ↔ xmod(k−i,n)

∣

∣ k ∈ { 0, . . . , n− 1 }
}

(3.11)

Φrotate_righti(x〈n〉, t〈i·n〉) :=
{

tk ↔ xmod(k+i,n)

∣

∣ k ∈ { 0, . . . , n− 1 }
}

(3.12)

3.2.3 Encoding Shifts

In a function predicate of the form bvshl(i[n], d[n]) (n ∈ N) we refer to i[n] as the shift input
and call d[n] the shift distance (accordingly for bvlshr and bvashr).

As can be seen above, a rotation by i steps to the left or to the right can be encoded in a very
straightforward way. Although shifting and rotation are two quite similar operations, encoding a
shift operator from the SMT-LIB bitvector theory requires significantly more effort. This is due
to the fact that the parameter i is not given as a fixed number, but as a bitvector term, which
is not necessarily constant. Hence, different values for the shift distance need to be handled on
the formula level.

We use a construction that is also employed in the hardware designs of most state-of-the-art
CPUs, namely a barrel shifter. It works by splitting the shift operation into multiple stages, one
for each bit of the shift distance. In each stage, either a shift by a fixed distance is performed
or the result of the previous stage is left unchanged. The output of the last stage is the overall
output of the operator.

Consider, for example, a shift distance d[4]. In the first stage, the shift input is shifted by
one bit if d0 is 1. Otherwise, the output of the first stage is the unmodified shift input. In the
second stage, the result of the previous stage is shifted by two bits if d1 is 1, and left unchanged

3.2. Encoding to SAT 37

iteiteiteiteiteiteiteited0 Stage 1

iteiteiteiteiteiteiteited1 Stage 2

iteiteiteiteiteiteiteited2 Stage 3

i0i1i2i3i4i5i6i7 0

o0o1o2o3o4o5o6o7

Figure 3.2: Barrel Shifter Network (left shift)

otherwise. The third stage conditionally shifts by 4 bits and the fourth stage by 8 bits. In
general, stage i performs a shift by 2i−1 bits if di−1 is 1. By proceeding like this, the shift with
the previously unknown shift distance d[4] is replaced with 4 conditional shifts of fixed distance,
which can easily be encoded similar to the rotation operators.

The SMT-LIB standard demands that the shift input and the shift distance are of an equal
width n. This allows for an important observation: If the most significant bit of the shift distance
is 1, the shift input has to be shifted by at least 2n−1 bits, which is always greater than or equal
to n. As a result, the output of the shift operation is a bitvector only consisting of zeros. This
effect typically applies to many more bits of the shift input. For n = 16, for example, any
non-zero value among the 11 most-significant bits of the shift distance causes the result to be
zero (since 25−1 = 16 ≥ n).

To generalize the thought of the previous paragraph: For each bit position i of the shift
distance with 2i ≥ n, a value of 1 enforces an output value which is completely zero. We call
this event “overshifting”. Solving the equation for i, one can derive that overshifting occurs if
any bit is 1 which has a position i with i ≥ log2(n). This observation can be used to optimize
the encoding, as there is no need to encode full stages for bits that produce an overshift.

We now describe Φbvshl(x〈n〉, y〈n〉, t〈n〉). Let S := ⌈log2(n)⌉ be the number of stages that are
generated. For each stage s ∈ { 1, . . . , S }, we compute the output of stage s in the fresh variables
xs〈n〉 = 〈x

s
n−1, . . . , x

s
0〉. First, we define the following abbreviations:

• The constant fill describes as a propositional term the value that is inserted from the right
during the left-shift. Since a left-shift always fills up with zeros, we can simply set:

fill := 0 (3.13)

• The function stageBit(stage, pos) outputs a term for the bit value at position pos after the
stage of the given number. We later use this function to refer to computation results from
previous stages. If pos is outside of { 0, . . . , n− 1 }, the constant fill is returned. The input
x〈n〉 is identified with a stage of number zero:

stageBit(stage, pos) :=











fill if pos /∈ { 0, . . . , n− 1 }

xpos if pos ∈ { 0, . . . , n− 1 } and stage = 0

xstage
pos if pos ∈ { 0, . . . , n− 1 } and stage > 0

(3.14)

38 Chapter 3. Solving Bitvector Arithmetic

• Each stage s shifts conditionally by offset(s) positions, where:

offset(s) := 2s−1 (3.15)

Using these abbreviations, the formula set Φbvshl(x〈n〉, y〈n〉, t〈n〉) is defined as the set consisting
of the following formulas:

• For s ∈ { 1, . . . , S } , k ∈ { 0, . . . , n− 1 }, the value of the variable xsk is determined by:

xsk ↔ (ys−1 ? stageBit(s− 1, k − offset(s)) : stageBit(s− 1, k)) (3.16)

• The fresh variable Xovershift is used to detect whether overshifting occurs:

Xovershift ↔
n−1
∨

k=S

yk (3.17)

• For k ∈ { 0, . . . , n− 1 }, the output bit tk is either zero in the case of overshifting, or the
corresponding bit of the last stage:

tk ↔ (Xovershift ? fill : xSk) (3.18)

A very similar encoding scheme is used for the bvlshr and bvashr. Shifting to the right
instead of to the left is achieved by replacing the offset computation with its negative version
offset(stage) := −2stage−1. Furthermore, the arithmetic right-shift bvashr replicates the most-
significant bit of the input x〈n〉 instead of filling up with zeros. This can be realized by setting
fill := xn−1.

3.2.4 Encoding Addition, Subtraction and Negation

Our construction of encoding formulas for the shift operators is strongly based on the logical
circuits which can be found in modern CPUs. For the encoding of the addition operator bvadd,
we proceed in a similar way and derive our formulas from well-known electronic addition networks.

The most important component in addition networks is called a Full Adder. It is capable of
adding three binary values to a two-digit binary result. The least significant bit of the output is
called the sum bit, the most significant bit is the carry bit. By modeling input and output bits
as propositional variables, we can emulate the full adder as a set of formulas ΦFA, which relates
the input variables Ain, Bin and Cin to the sum bit Sout and the carry bit Cout:

ΦFA(Ain, Bin, Cin, Sout, Cout) := { Sout ↔ ((Ain ⊕Bin)⊕ Cin) }

∪ { Cout ↔ ((Ain ∧Bin) ∨ ((Ain ⊕Bin) ∧ Cin) }
(3.19)

The first formula in the set states that the sum bit Sout should be 1 if and only if exactly
one or three of the input variables are of value 1 (which corresponds to the sum 01 or 11). The
carry bit Cout should be 1 if and only if at least two of the input variables are 1 (giving the sum
10 or 11).

Building on the full adder component, one can construct networks which add numbers con-
sisting of multiple digits. For adding two n-digit numbers, a sequence of n full adders is created,

3.2. Encoding to SAT 39

Cin

FA0

BinAin

SoutCout

a0 b0

t0

Cin

FA1

BinAin

SoutCout

a1 b1

t1

Cin

FA2

BinAin

SoutCout

a2 b2

t2

Cin

FA3

BinAin

SoutCout

a3 b3

t3

0

Figure 3.3: Adder network

which are chained as illustrated in Figure 3.3. Here the meaning of the term “carry bit” becomes
obvious: The carry bit Cout produced by the full adder with number i is “carried” to the full adder
with number i+ 1, where it appears as the third input bit Cin. As a circuit, this composition is
called a ripple-carry adder.

We can now construct Φbvadd(x〈n〉, y〈n〉, t〈n〉) by translating the ripple-carry adder into propo-
sitional constraints as follows: For i ∈ { 0, . . . , n }, let Ci be a fresh variable. These introduced
variables are used to represent the carry bits in the summation of x and y. We can then set:

Φbvadd(x〈n〉, y〈n〉, t〈n〉) := {¬C0 } ∪
n−1
⋃

i=0

ΦFA(xi, yi, Ci, ti, Ci+1) (3.20)

Note that the calculation for the least significant output bit differs from the remaining digits:
For bit position 0, no carry-in from previous digits exists, such that the summation for this bit is
only a sum over two instead of three bits. Consequently, one could replace the encoding of a full
adder by the encoding of an adder which only takes two input bits. Such an adder is typically
referred to as a half adder. In our implementation, we stick to the full adder instead and force
its third input bit (C0) to be 0.

It should be remarked that the most-significant carry bit Cn has a special role in the addition
of unsigned integers. If it is 1, we know that the sum of a and b cannot be represented using n
bits, such that an overflow has occurred in the calculation. A similar observation can be made
for signed integer addition. This idea of overflow detection becomes relevant in Section 3.2.5.
At this point, however, we do not need any detection or correction mechanisms, as the overflow
behavior is already reflected in the semantics of bvadd.

We now present how the negation operator bvneg can be encoded into SAT. Here we make
use of an important property of the two’s complement representation:

Lemma 3.2.1. Let n ∈ N. For any bitvector b ∈ BitVecn the following equality holds:

bv2natn(bvnot(b)) = 2n − bv2natn(b)− 1 (3.21)

40 Chapter 3. Solving Bitvector Arithmetic

HA0

BinAin

SoutCout

a0

t0

HA1

BinAin

SoutCout

a1

t1

HA2

BinAin

SoutCout

a2

t2

HA3

BinAin

SoutCout

a3

t3

0

Figure 3.4: Incrementing network

Proof. We have:

bv2natn(bvnot(b)) =
n−1
∑

i=0

(1− bi) · 2
i

=
n−1
∑

i=0

2i −
n−1
∑

i=0

bi

=

n−1
∑

i=0

(2i+1 − 2i)− bv2natn(b)

= 2n − 20 − bv2natn(b)

= 2n − bv2natn(b)− 1

As the semantics of bvneg are defined modulo 2n, we can conclude from Lemma 3.2.1 that
we can rewrite bvneg(b[n]) as:

bvneg(b) = bvadd(bvnot(b), nat2bvn(1)) (3.22)

Hence, we can negate a bitvector b[n] by flipping each bit and adding 1. In principle, this
can be achieved by applying the construction for bvadd to the arguments x := bvnot(b) and
y := nat2bvn(1). However, it strikes that in each step of the addition, only two bits need to be
added, as the third one is always zero. Here we can obtain much easier formulas by changing
over to the herein before mentioned half adders, which have the same semantics as full adders,
except that they only add up two instead of three bits:

ΦHA(Ain, Bin, Sout, Cout) := { Sout ↔ (Ain ⊕Bin) }

∪ { Cout ↔ (Ain ∧Bin) }
(3.23)

Incrementing an n-bit bitvector value by 1 can be achieved by arranging n half adders in
the scheme depicted in Figure 3.4. Conclusively, we can encode a term t = bvneg(x[n]) by
incrementing the complement of x in the following manner:

Φbvneg(x〈n〉, t〈n〉) := {C0 } ∪
n−1
⋃

i=0

ΦHA(¬xi, Ci, ti, Ci+1) (3.24)

3.2. Encoding to SAT 41

With these components, a subtraction t = bvsub(x[n], y[n]) can easily be implemented by
rewriting it to bvadd(x,bvneg(y)). An optimized variant is not to compute bvneg(y) explicitly,
but to combine the formulas for addition and negation directly. This leads to the implementation:

Φbvsub(x〈n〉, y〈n〉, t〈n〉) := {C0 } ∪
n−1
⋃

i=0

ΦFA(xi,¬yi, Ci, ti, Ci+1) (3.25)

3.2.5 Encoding Relational Operators

The most fundamental relational operator, which is already part of the SMT-LIB Core theory,
is the equality operator. It is translated into a conjunction of bitwise comparisons:

Φ=(a〈n〉, b〈n〉, E) := {E ↔
n−1
∧

i=0

(ai ↔ bi) } (3.26)

For the comparison operator bvult, we can proceed as follows. Given two bitvectors a[n] and
b[n], the function value bvult(a, b) is 1 if and only if bv2nat(a) < bv2nat(b), which is equivalent
to the condition bv2nat(a)− bv2nat(b) < 0.

As presented in the construction of Φbvsub in Section 3.2.4, a subtraction modulo 2n is realized
by applying an addition network to the arguments a and bvnot(b) with a carry-in bit of 1. We
can then use the carry-out bit Cn of the network to detect whether an overflow occurred in the
addition, which reveals the relation of a and b:

Cn is 0 ⇐⇒ bv2nat(a) + bv2nat(bvnot(b)) + 1 < 2n

⇐⇒ bv2nat(a) + (2n − bv2nat(b)− 1) + 1 < 2n

⇐⇒ bv2nat(a)− bv2nat(b) < 0

⇐⇒ bv2nat(a) < bv2nat(b)

(3.27)

Hence, we can implement the comparison operator bvult by the following formula set (where
s〈n〉 is a vector of n fresh variables):

Φbvult(a〈n〉, b〈n〉, R) := Φbvsub(a, b, s) ∪ {R↔ ¬Cn } (3.28)

For the signed variant of the “<” comparison operator, bvslt, we distinguish between two
cases. If a[n] and b[n] have the same sign (i.e. the values of their most-significant bits are
identical), we can use the output of bvult because bvslt(a, b) = bvult(a, b) holds. Otherwise
the output of bvult is inverted (because signed negative numbers start with 1 and are thereby
greater than signed non-negative numbers, when being interpreted as unsigned values):

Φbvslt(a〈n〉, b〈n〉, R) := Φbvult(a, b, U) ∪ {R↔ (U ↔ (an−1 ↔ bn−1)) } (3.29)

The remaining relational operators bvule, bvugt, bvuge, bvsle, bvsgt and bvsge can
easily be reduced to Φbvult or Φbvslt by reversing the order of the arguments, negating the output
or both.

42 Chapter 3. Solving Bitvector Arithmetic

A0A1A2 · B0B1B2

A0 ∧B0

A0 ∧B1

A0 ∧B2

A1 ∧B0

A1 ∧B1

A1 ∧B2

A2 ∧B0

A2 ∧B1

A2 ∧B2

0

00

+

+

S0S1S2

Figure 3.5: Shift and Add: Multiplying two three-digit numbers A2A1A0 and B2B1B0 by adding
partial products

3.2.6 Encoding Multiplication, Division and Remainder

As for shifts and additions, we also regard the implementation of multiplication on the hardware
level as a prototype for an encoding to SAT. In the case of multiplication, different approaches
exist and several optimizations have been proposed and implemented, with particular focus on
how to arrange the logical network in a way that it has good support for parallel evaluation.
These suggestions lead to a better performance, but usually also involve more logical gates and
more complexity, which make it doubtful whether an encoding to SAT would benefit from such
a design.

In our construction, we realize multiplication by a classical approach which resembles long
multiplication, e.g. in the decimal system. In order to multiply two numbers a and b, a partial
product is calculated for each digit of b. All partial products are then added up to the final
result. Applying this method to the binary system, one obtains an algorithm named shift and
add. Its name stems from the performed operations: In the binary system, each partial product
is either 0 or the bit sequence a, which is shifted to the left. Adding all products then produces
the desired output.

Figure 3.5 shows the scheme of “shift and add”, which we now translate into propositional
logic for two input vectors x〈n〉, y〈n〉 and the output vector t〈n〉.

For each line l ∈ { 0, . . . , n− 1 } of the computation, we introduce an n-elementary vector
of fresh variables pl〈n〉 := 〈pln−1, . . . , p

l
0〉 to represent the product calculated in this line. The

multiplication with 0 or 1 in each cell is realized using a logical And. Note that the output
vector t is also of length n, such that we only need to consider the n least-significant bits of each
line. For l, i ∈ { 0, . . . , n− 1 }, this gives the formula:

pli ↔

{

xi−l ∧ yl if i ≥ l

0 if i < l
(3.30)

Starting with line number 1 (i.e., the second line), we sum up all previous intermediate results
in the vector sl〈n〉 := 〈s

l
n−1, . . . , s

l
0〉 of fresh variables, using our formulas for an addition network.

For l ∈ { 1, . . . , n− 1 }, we add the formulas:

Φbvadd(sl−1, pl, sl) (3.31)

(Note that each call to Φbvadd creates fresh variables for the carry bits. In other words, the
variable Ci in the set Φbvadd(s2, p1, s1) is different from Ci appearing in Φbvadd(s1, p0, s0). This
is ensured by renaming the carry variables appropriately.)

3.2. Encoding to SAT 43

Finally, the result t is set to the last generated sum sn−1. For i ∈ { 0, . . . , n− 1 }, we add
(not regarding the special case n = 1, which is trivial to implement anyway):

ti ↔ sn−1
i (3.32)

The set Φbvmul(x〈n〉, y〈n〉, t〈n〉) is defined as the union of the three previously described formula
sets.

The fact that we use n − 1 adders for the encoding of t make multiplication a very costly
operator when translated to SAT. Here the overhead of a propositional encoding of arithmetic
operations becomes apparent, which is still one of the biggest downsides of this approach.

The last remaining arithmetic operations are division and remainder. Typically all implemen-
tations of division in modern CPUs make use of some iterative algorithm, which build approxima-
tions of the quotient and successively improve them until some criteria is met. Programmatically,
this corresponds to a loop with a certain termination condition. Imitating a loop on the SAT level
unfortunately is not straightforward at all. An unrolling of the loop is not possible as the num-
ber of iterations is usually not known upfront. Apart from that, many division algorithms make
intense use of repetitive multiplication, which we would like to avoid for performance reasons.

Instead, let us recall the definition of division and remainder: For a non-negative integer a
and a positive integer b, we call q ∈ N0 the quotient and r ∈ N0 the remainder of the division of
a and b if the following relationship holds:

a = q · b+ r with 0 ≤ r < b (3.33)

This gives rise to the following idea of encoding division and remainder: Instead of imitating
the calculation of q and r by formulas, we encode the above constraint and leave the actual
computation to the SAT solver. Thereby we obtain the following constraints for the operators
bvudiv and bvurem:

Ψbvudiv(a〈n〉, b〈n〉, q〈n〉) :=Φbvmul(q, b, p′) ∪ Φbvadd(p′, r′, a) ∪ Φult(r′, b) (3.34)

Ψbvurem(a〈n〉, b〈n〉, r〈n〉) :=Φbvmul(q′, b, p′) ∪ Φbvadd(p′, r, a) ∪ Φult(r, b) (3.35)

Here p′, q′ and r′ are vectors of n fresh variables. The adder and multiplier formula sets Φbvadd

and Φbvmul are very similar to the previously presented Φbvadd and Φbvmul, except that they do not
permit overflows in the calculation, which is crucial for the implementation (modular semantics
of the operators · and + in Equation 3.33 break the definition). The non-overflowing operator
Φbvadd is obtained by adding the additional constraint that the carry-out for the most-significant
digit must be zero:

Φbvadd(a〈n〉, b〈n〉, t〈n〉) := Φbvadd(a, b, t) ∪ {¬Cn } (3.36)

Based on this, one can obtain the non-overflowing variant Φbvmul from Φbvmul by replacing all
occurrences of Φbvadd with Φbvadd. Additional constraints are added to ensure that all expressions
on the left of the dashed line in Figure 3.5 are zero. It should be noted that the non-overflowing

44 Chapter 3. Solving Bitvector Arithmetic

extensions no longer encode total, but only partial functions, which are not satisfiable for in-
terpretations under which the addition or multiplication of the inputs a and b would cause an
overflow. For our construction of the division and remainder constraints, this is exactly the
desired behavior.

Special care has to be taken to ensure the correct modeling of division by zero. The SMT-
LIB standard states that no assumptions about division function values like bvudiv(x[n], y[n])
should be permitted in the case that y only consists of zeros. To put it differently, expressions
of this kind may be interpreted by any n-bit bitvector value. We model this special case by not
restricting the output variables if the value of y is zero:

Φbvudiv(a〈n〉, b〈n〉, q〈n〉) :=(
n−1
∨

i=0

bi)→
∧

Ψbvudiv(a, b, q) (3.37)

Φbvurem(a〈n〉, b〈n〉, r〈n〉) :=(
n−1
∨

i=0

bi)→
∧

Ψbvudiv(a, b, r) (3.38)

The signed operators bvsdiv, bvurem, bvsrem and bvsmod are defined in the SMT-LIB
standard as case distinctions which ultimately fall back to their unsigned counterparts. Therefore,
they can easily be implemented as if-then-else-expressions using bvudiv and bvurem, which is
why we omit a detailed presentation here.

3.3 Optimizations

In this section we present a number of optimizations which we implemented for an improved
efficiency of our solver.

Structural Hashing

The decision algorithm which we implemented for bitvector arithmetic is based on the notion
of a bitvector mapping e (see Definition 3.1.1 for details), which maps bitvector expressions
to propositional variables. The definition implies that two occurrences of the same subterm
in a bitvector formula are always mapped to the same vector of Boolean variables. From a
technical point of view, this makes it important to have a quick way of deciding whether a given
term t already has a function value e(t) assigned or not. Throughout the remaining algorithm,
we also make heavy use of e in the construction of propositional constraints by the function
BVConstraints. Again, it is crucial that we have a fast way of looking up a function value
e(t) for a given term t.

For this purpose, the bitvector mapping is implemented as a std::unordered_set, which
is a key-value store that supports a lookup with a constant average time complexity. Inter-
nally, this data structure organizes its elements via a hash function over the key datatype. We
implemented an efficient hash function for our data structures for bitvector terms and atoms,
and compute the hash value for every instance during its initialization. This concept is called
structural hashing. As an additional optimization, mainly in terms of memory allocation, we
manage all bitvector terms in a dedicated manager class, which ensures that identical terms are
only represented once in memory. Again, this functionality is based on structural hashing.

3.3. Optimizations 45

Non-injective Bitvector Mappings

In Section 3.2.1 the semantics of the BVConstraints method are defined on the basis of an
injective bitvector mapping. The property of injectivity ensures that each bit of a bitvector
expression is represented by a dedicated propositional variable, such that no encoding conflicts
can arise due to the choice of the bitvector mapping. However, with the intention to reduce
the number of required propositional variables, it may be desirable to weaken this constraint.
If it is clear that two variables always have the same truth value assigned under any satisfying
interpretation, we permit that this pair of variables is represented by a single, shared variable
instead.

As an example, consider the term t[3] = extract2,0(b[6]). In an injective bitvector mapping
e, we might use the variables e(b) = 〈B5, B4, B3, B2, B1, B0〉 and e(t) = 〈T2, T1, T0〉. The call
to BVConstraints(e, t) would then generate the constraints {T2 ↔ B2, T1 ↔ B1, T0 ↔ B0 }.
As one can see, there is no real need for own propositional variables in e(t), since they are
constrained to be equivalent to the lower three variables of e(b). Instead, we might as well set
e(t) = 〈B2, B1, B0〉 and BVConstraints(e, t) := ∅, which leads to an equisatisfiable and more
compact resulting SAT instance.

To obtain such optimized encodings, we modified Algorithm 3 in a way that it does not
generate the bitvector mapping upfront, but instead allows the function BVConstraints to
extend the (initially empty) bitvector mapping ad-hoc. Before BVConstraints is called on a
term t, it is called for all subterms t0, . . . , tk of t, such that e(t0), . . . , e(tk) are already defined.
The function call BVConstraints(e, t) may then compose e(t) from fresh variables and those
from e(t0), . . . , e(tk).

Bitvector operators which highly benefit from this concept are concat, extract, repeat,
zero_extend, sign_extend, rotate_left and rotate_right. For most of them, BV-
Constraints can return an empty set, as the semantics are already realized by an appropriate
choice of the bitvector mapping.

Mapping to Terms Instead of Variables

A further relaxation of the bitvector mapping definition can lead to massively optimized formulas
in relation to constant or partially constant bitvector expressions. As an example, let t4 =
bvor(b[4],0b0110). So far, the bitvector literal l = 0b0110 is encoded by a set of variables
e(l) = 〈L3, L2, L1, L0〉 with the constraints {¬L3, L2, L1,¬L0 }. The concept of the bitvector
mapping requires a 4-elementary bitvector to represent l, but it seems unnecessary to introduce
variables whose values are restricted to be always 0 or always 1. In the spirit of the previously
mentioned non-injective bitvector mappings, we might instead encode into e(l) = 〈Lf , Lt, Lt, Lf 〉
with the constraints {¬Lf , Lt }, and thereby encode all true values with the same variable Lt

and all false values with Lf . This saves two variables, but still does not seem to be the optimal
solution.

Instead of forcing e(t) to be a vector of variables, we now allow e(t) to be a vector of
propositional terms, each of which either consists of a single variable or the constant 0 or 1.
Thereby, we can encode l into e(l) = 〈0, 1, 1, 0〉 without any further constraints. The main
benefit becomes obvious when encoding t: Assume that e(b) = 〈B3, B2, B1, B0〉. Previously, we
would have encoded t into e(t) = 〈T3, T2, T1, T0〉 with the constraints:

{T3 ↔ (B3 ∨ L3), T2 ↔ (B2 ∨ L2), . . . } (3.39)

46 Chapter 3. Solving Bitvector Arithmetic

CNFerModule

SATModule

BVModule

CNFerModule

SATModule

Figure 3.6: A strategy graph for full lazy flattening of SMT(QF_BV)

Now, with the improved encoding e(l), we obtain the constraints:

{T3 ↔ (B3 ∨ 0), T2 ↔ (B2 ∨ 1), . . . } (3.40)

By applying simplification rules to these constraints, it becomes apparent that we can encode
the whole term t by e(t) = 〈B3, 1, 1, B0〉 without any constraints at all. Our relaxation of the
bitvector mapping makes it possible to propagate the constant values appearing in l to the
encoding of t.

This optimization applies to all bitvector terms t for which the output values e(t) have
previously been set via BVConstraints(e, t) using constraints of the form e(t)i ↔ ti for some
propositional terms ti. We now proceed as follows: First, we try to simplify ti by eliminating all
contained constants. If the result t′i is a single variable or a constant 0 or 1, we set e(t)i := t′i.
Otherwise, we create a fresh variable for e(t)i as done before, and create the constraint e(t)i ↔ t′i.

Depending on the concrete example, the number of created variables from bit-blasting can
be significantly reduced by the beforementioned technique, leading to measurable performance
gains.

Full Lazy Flattening

At the beginning of this chapter, we showed in Figure 3.1 a possible embedding of our BVModule
in a strategy graph for SMT-RAT. In the illustrated composition, we call the realized solving
strategy eager flattening, as explained in Section 2.3.2, because bitvector logic is eliminated first
before calling the SAT solving engine.

As a result of the configuration flexibility of SMT-RAT, we can easily switch to full lazy
flattening instead, by choosing a strategy as depicted in Figure 3.6. Here, we realize a compo-
sition in the style of DPLL(T), where the outer SAT solver assigns truth values to the bitvec-
tor constraints, which are then passed to the BVModule. Due to its reduction to SAT, the
CNFerModule and the BVModule appear a second time in the strategy graph to serve as a
backend of the BVModule.

A great evaluation of lazy and eager techniques for bitvector arithmetic is given in [HBJ+14].

Chapter 4

Solving Integer Arithmetic

In the previous chapter, we described the implementation of a solver for bitvector arithmetic
which is based on bit-blasting, i.e. the translation of constraints into propositional logic. Al-
though the method of bit-blasting is most frequently encountered in combination with bitvector
logic, the approach can lead to good results for other logics as well. This chapter presents an
application of bit-blasting to linear and nonlinear integer arithmetic. It is based on a reduction
from SMT(QF_NIA) to SMT(QF_BV), such that we can reuse the functionality provided by
the previously explained bitvector module.

The following Section 4.1 gives an overview of the basic concept and the composition of our
SMT-RAT module for integer arithmetic. Here, we omit technical details in favor of a high-level
presentation of our decision algorithm. Sections 4.2 and 4.3 fill the remaining gaps by elaborating
on various aspects of the implementation in depth. In Section 4.4 we describe a major extension
of our algorithm, which employs a technique named Interval Constraint Propagation to make
the reduction more efficient, and, at the same time, to decide satisfiability for some inputs
completely without the need for a reduction. We use Section 4.5 to discuss some important
aspects of making our module SMT-compliant. Again, we conclude the chapter by outlining
several minor optimizations in Section 4.6.

4.1 IntBlastModule Overview

In Section 2.4.2 we discussed the most important decision procedures which are currently used
for integer arithmetic. The majority of the presented approaches can be classified as some kind
of adaptation of a decision procedure for real arithmetic. Typically, these adaptations, which add
the restriction of integrality, do not come in naturally in the sense that they would preserve the
good algorithmic properties of the original procedures. On the one hand, this is not completely
surprising, as we already stated that the satisfiability problem is inherently more difficult over
the integers than over the reals. On the other hand, it remains the question whether methods
for a continuous search space can really serve as a good basis for operating on a discrete domain.

Following these considerations, we opted for a SAT-driven approach, which basically employs
similar techniques as AProVE [FGM+07] and Z3 [DMB08]. Given a set of Diophantine con-
straints, we first restrict the ranges of all integer variables to a configurable cardinality. Each
integer variable is encoded into a vector of propositional variables using its binary representation.
After replacing all arithmetic operations with appropriate propositional constraints, the resulting
formulas are handed over to a SAT solver. If satisfiability is detected, the input is satisfiable as

48 Chapter 4. Solving Integer Arithmetic

CNFerModule

SATModule

IntBlastModule

CADModule

Figure 4.1: A strategy graph for SMT(QF_NIA)

well; if unsatisfiability is reported, other decision procedures need to be consulted.

In contrast to the two mentioned other implementations, we do not directly encode from inte-
ger arithmetic to SAT, but instead use bitvector arithmetic as an intermediate step. Proceeding
like this, the concerns are clearly separated between our two modules: The IntBlastModule,
which is illustrated in this chapter, is responsible for restricting the variable ranges, deciding
about how to represent them as bitvectors, creating suitable representations of intermediate
terms and finally encoding into bitvector logic. Afterwards, the BVModule maps the intro-
duced bitvectors to propositional variables and applies its propositional encodings of arithmetic
operators.

By choosing this two-step method, we do not only avoid redundancy in our implementation,
but also obtain a better modularity. Bit-blasting is supported by all state-of-the-art solvers for
bitvector logic, such that we could combine our IntBlastModule with any external bitvector
solver. Moreover, the bitvector language already has built-in support for negative numbers,
which we can easily make use of.

Our IntBlastModule is built as a pure theory module in the concept of DPLL(T). More
specifically, it expects its input formulas to be inequalities over the integers, without any symbols
from different theories and without any Boolean connectives. As such, its position in a strategy
graph should be behind the SAT solving module, as illustrated in Figure 4.1. The backend
of the IntBlastModule (in the example, the CADModule) serves as a fallback for the case
that the bitvector reduction is not satisfiable. As this only implies that the input formulas are
unsatisfiable over the restricted variable ranges, the backend proceeds by searching for solutions
outside of these ranges.

Internally, the IntBlastModule uses a solver for bitvector arithmetic, which we refer to as
BVSolver. The strategy of the solver is again specified by stating its strategy graph, for which
we use the configuration from Figure 3.1. Unfortunately, the current design of SMT-RAT does
not support multiple backends receiving different formula sets, which is why we had to put the
BVSolver inside the IntBlastModule instead of embedding it into the global strategy graph.
A graphical illustration of our module can be found in Figure 4.2. For the sake of completeness,
the diagram also shows an ICPModule as an inner component, whose purpose is explained in
Section 4.4. Until then, we will ignore this module in our further presentation, since it only
provides an optional optimization.

Algorithm 4 shows the decision procedure implemented in our IntBlastModule. To give
an understanding of the whole algorithm, we now explain its principles without going too much
into the details of all utilized functions. For a more in-depth discussion, we refer to the following
Sections 4.2 and 4.3.

At the beginning of the decision algorithm, each of the input constraints is preprocessed by

4.1. IntBlastModule Overview 49

BVModule

CNFerModule

SATModule

BVSolver

ICPModule

IntBlastModule

Figure 4.2: Internal composition of the IntBlastModule

1: function IntBlastModule.decide(input formulas Crcv)
2: C ← { rewrite(c) | c ∈ Crcv }
3: e← createFreshIntegerMapping(C)
4: CBV ← ∅
5: for all c ∈ C do
6: CBV ← CBV ∪ encode(e, c)
7: end for
8: if BVSolver.decide(CBV) = sat then
9: return sat

10: else
11: Cpas ← Crcv ∪ {¬ inBounds(e) }
12: return backend.decide(Cpas)
13: end if
14: end function

Algorithm 4: IntBlastModule.decide

the function rewrite. It first brings every input formula into an equivalent canonical form by
expanding products, merging terms with the same monomials and rearranging the summands
according to a fixed ordering. Then the inequality is transformed into a tree structure which
fixes an evaluation order of the constraint. Most importantly, the tree structure defines how
associative operators should be evaluated. As an example, the term 2xy can be evaluated as
2 · (x · y) or as (2 · x) · y, which corresponds to different evaluation trees. The formal details are
explained in Section 4.2.

After the evaluation order has been fixed, the function createFreshIntegerMapping
makes a decision on how each integer variable should be represented as a bitvector. Its behavior
is comparable to the function createBitvectorMapping in Algorithm 3. Given an integer
variable x, the function generates a new bitvector variable b[n] ∈ BitVecn for a suitable width n.
Additionally, an annotation a for the new bitvector is generated, which states, for example,
whether the value in b[n] should be interpreted as a signed or an unsigned value. Together, the
tuple 〈b[n], a〉 is referred to as an annotated bitvector variable, and the return value of create-
FreshIntegerMapping is a mapping from each integer variable occurring in C to its respective
annotated bitvector variable. In analogy to the previous chapter, we call this mapping an integer
mapping (a more precise specification follows in Definition 4.3.5).

50 Chapter 4. Solving Integer Arithmetic

It is important to note that the choice of the integer mapping e implies for each integer
variable x an interval [mine(x),maxe(x)] that is representable on the basis of e. The further
reduction to bitvector arithmetic is made under the assumption that mine(x) ≤ x ≤ maxe(x) for
each integer variable x. We make this condition explicit in the following formula:

inBounds(e) :=
∧

x∈dom(e)

(mine(x) ≤ x ∧ x ≤ maxe(x)) (4.1)

The formula inBounds(e) expresses the border which divides the search space into a part that
is searched by the bitvector solver, and a part that is searched by the backend module. More for-
mally, the IntBlastModule constructs the sets CBV and Cpas such that CBV is equisatisfiable
to Crcv ∪ { inBounds(e) } and Cpas is equisatisfiable to Crcv ∪ {¬ inBounds(e) }.

In lines 4 to 7, the formula set CBV is composed by calling the encode function for ev-
ery rewritten input constraint. Every subterm of the arithmetic constraint is rewritten into a
bitvector term, substituting addition and multiplication by calls to bvadd and bvmul. Integer
variables are replaced by bitvector variables, as defined by the integer mapping e. Special care
has to be taken to ensure that all terms for intermediate results are encoded into bitvectors of
sufficient width, such that no overflow effects occur. Section 4.3 provides more information about
how the encode function works and how the involved term widths are calculated.

Finally, the IntBlastModule calls its internal bitvector solver on the set CBV in Line 8.
If the output is sat, we know that the set Crcv is satisfiable (even with the additional constraint
inBounds(e)). Otherwise, Crcv |= ¬ inBounds(e) holds and the backend is called on the remaining
search space.

The following two sections give a more fine-grained explanation of some crucial parts of the
algorithm.

4.2 Constraint Rewriting

Linear and nonlinear arithmetic constraints in SMT-RAT are represented as multivariate poly-
nomials which are compared to zero. Thus, every constraint is of the form p ∼ 0 where p is a
polynomial and ∼∈ {=, 6=, <,≤, >,≥}. The polynomial p is stored fully expanded as a sum of
terms, where each term consists of a non-zero coefficient and a monomial (which may be empty).
It is ensured that no two terms with the same monomials exist. All arithmetic constraints from
the input are transformed into such a representation during the parsing process.

Expressing constraints in the described manner has several benefits. Two constraints can
easily be compared by the terms in their polynomials, and arithmetic solving procedures are
able to simplify sets of constraints with the same relational symbol ∼ by adding or subtracting
the involved polynomials. However, when attempting to translate a polynomial into a bitvector
term using the operators bvadd and bvmul, two challenges arise:

1. Arithmetic addition and multiplication are associative, such that we do not differenti-
ate between the polynomials (a · b) · c and a · (b · c). When encoding into the opera-
tors bvadd and bvmul, on the other hand, we need to decide whether to encode into
bvadd(bvadd(a′, b′), c′) or the syntactically different term bvadd(a′,bvadd(b′, c′)).

2. Similarly, arithmetic addition and multiplication are commutative. It is possible to encode
the sum a+ b into either bvadd(a′, b′) or bvadd(b′, a′).

4.2. Constraint Rewriting 51

In both cases, the encoding process needs to make a choice about the evaluation order. While
this choice has no effect on the satisfiability of the encoded formula, it does lead to different SAT
encodings and may thereby influence the performance of the bitvector solver. In general, it is
desirable to minimize the number of distinct bvadd and bvmul applications among the encodings
of a set of polynomials, such that the bitvector solver only generates as few costly multiplication
and addition networks in total as possible.

The purpose of the rewrite function in Algorithm 4 is to make a decision on the evalua-
tion order for each arithmetic constraint. Throughout the remaining algorithm, this evaluation
order remains fixed and is applied in the actual encoding process inside the encode function.
More specifically, the rewrite function transforms each constraint into a tree structure, which
incorporates the choices on the evaluation order.

Definition 4.2.1 (Polynomial Tree). A polynomial tree is a 4-tuple 〈V,E, r, l〉, consisting of:

• the finite set V of nodes,

• the set E ⊆ V × V of edges,

• the root node r ∈ V , and

• the labeling function l : V → P ∪ Z ∪ { add,mul },

where the graph (V,E) is an ordered full binary tree rooted in r, P is a set of integer variables,
and l respects the following rules:

• If v ∈ V is a leaf, l(v) ∈ P ∪ Z.

• If v ∈ V is an inner node, l(v) ∈ { add,mul }.

Polynomial trees are representations of polynomials over integer variables, only using the
operations addition (add) and multiplication (mul). Every node of a polynomial tree can be
associated to a corresponding polynomial:

Definition 4.2.2 (Polynomial Tree Evaluation). Let T = 〈V,E, r, l〉 be a polynomial tree. The
evaluation function pT : V → Pol maps each node v ∈ V to a polynomial, where pT is defined
recursively as follows:

• For a leaf v ∈ V , pT (v) = l(v).

• For an inner node v ∈ V with the left child vl and the right child vr, we set:

pT (v) =

{

pT (vl) + pT (vr) if l(v) = add

pT (vl) · pT (vr) if l(v) = mul

We use the notation p(T) as a shorthand for pT (r).

With polynomial trees, we can now differentiate between different evaluation orders for the
same polynomial. Figure 4.3 shows three different polynomial trees, which all evaluate to an
equivalent polynomial.

By joining two polynomial trees with a relation operator, we obtain a representation of
arithmetic constraints:

Definition 4.2.3 (Constraint Tree). A constraint tree is a 3-tuple 〈Tl, Tr,∼〉, consisting of:

52 Chapter 4. Solving Integer Arithmetic

add

mul

x mul

y y

mul

5 mul

y y

add

mul

mul

x y

y

mul

mul

5 y

y

mul

add

x 5

mul

y y

(x · (y · y)) + (5 · (y · y)) ((x · y) · y) + ((5 · y) · y) (x+ 5) · (y · y)

Figure 4.3: Different polynomial trees with p(T) ≡ xy2 + 5y2

• a left polynomial tree Tl

• a right polynomial tree Tr, and

• a relation symbol ∼∈ {=, 6=, <,≤, >,≥}.

Formally, a constraint tree does not have a tree-like structure itself. Nevertheless, we call it
a tree because we can view it as a binary tree that consists of a root node, labeled with ∼, and
its two children, the subtrees Tl and Tr.

In analogy to the polynomial trees, we define an evaluation function p that maps a constraint
tree to its arithmetic constraint:

Definition 4.2.4 (Constraint Tree Evaluation). The evaluation function p on polynomial trees
can be expanded to constraint trees as follows: For a constraint tree Tc = 〈Tl, Tr,∼〉, we set p(Tc)
to the inequality:

p(Tc) := p(Tl) ∼ p(Tr)

In Algorithm 4, the generation of constraint trees is the first step towards an encoding
into bitvector logic. The rewrite function receives an arithmetic constraint c and outputs a
constraint tree Tc such that p(Tc) ≡ c. The set of all constraint trees is then denoted by C.

Although the only functional requirement for rewrite is that rewrite(c) ≡ c for every
constraint c, the choices made by rewrite can have a significant effect on the performance of
the bitvector solver. As an example, consider again the polynomial trees in Figure 4.3. The
polynomial tree in the middle contains four multiplication nodes, which would be translated into
four different bvmul applications. Three of the four multiplication nodes have two non-constant
children, which would generate at least three full-blown multiplication networks.

The left polynomial tree also consists of three multiplication nodes, but the two lowermost
multiplication nodes have the same children. More precisely, the subtrees rooted in these nodes
are completely identical. Hence, it would be sufficient to create only a single multiplication
network for the multiplication y ·y, and two multiplication networks for the multiplication nodes
in the layer above. Among those, one node has a constant child (labeled with 5), which leads to
a simplified network.

The third depicted polynomial tree is substantially different from the others. It makes use of
a factorization of the polynomial xy2+5y2, such that only two multiplication nodes are required.

4.2. Constraint Rewriting 53

Presumably, this polynomial tree would lead to the most efficient SAT encoding among the given
three examples. However, this locally optimal choice might not be globally optimal as well. As
soon as other polynomials are encoded in addition (e.g. xy2−2y), one of the other two polynomial
trees might lead to better results as they might contain subtrees that are shared by newly added
polynomial trees.

1: function rewrite(constraint c = p ∼ 0)
2: p′ ← p′ − constantPart(p)
3: q′ ← −constantPart(p)
4: ∼′←∼
5: if leadingCoefficient(p′) < 0 then
6: p′, q′ ← (p′ · (−1)), (q′ · (−1))
7: ∼′← turnAround(∼)
8: end if
9: return 〈polyTree(p′),polyTree(q′),∼′〉

10: end function
11: function polyTree(polynomial p)
12: sortTerms(p)
13: if countTerms(p) > 1 then
14: t← lastTerm(p)
15: return node(add,polyTree(p− t),polyTree(t))
16: end if ⊲ p only consists of one term
17: c← leadingCoefficient(p)
18: if p = c then
19: return node(c)
20: end if ⊲ p is not constant
21: if c 6= 1 then
22: return node(mul,polyTree(c),polyTree(t/c))
23: end if ⊲ p is a monomial (no coefficient left)
24: xn ← firstVariableAndExponent(p)
25: if countVariables(p) > 1 then
26: return node(mul,polyTree(xn),polyTree(t/xn))
27: else if n > 1 then ⊲ x is the only variable in p
28: return node(mul,polyTree(x),polyTree(xn−1))
29: else ⊲ p = x
30: return node(x)
31: end if
32: end function

Algorithm 5: The function rewrite

For our implementation, we decided for a rather simple constraint tree generation technique,
which is illustrated in Algorithm 5. A given inequality p ∼ 0 is transformed into an equivalent
inequality p′ ∼′ q′ by moving the constant part of p to the right side and optionally multiplying
by −1 to ensure that the leading coefficient of p′ is positive. We then create polynomial trees for
p′ and q′ by calling the recursive polyTree function.

The polyTree function sorts all terms of the provided polynomial according to a fixed
ordering on monomials. Each term is rewritten on its own, starting from the right. After
separating the coefficient, the monomial of the term is decomposed into a product of univariate
monomials xn, which becomes a chain of multiplication nodes. Figure 4.4 shows the generated
constraint tree for the constraint c = 3x2y + x2 + 4 < 0.

54 Chapter 4. Solving Integer Arithmetic

<

add

mul

3 mul

mul

x x

y

mul

x x

−4

Figure 4.4: The generated constraint tree for c : 3x2y + x2 + 4 < 0

4.3 Encoding to Bitvector Arithmetic

The decision procedures BVModule.decide (Algorithm 3) and IntBlastModule.decide
(Algorithm 4) share a lot of similarities. The BVModule translates bitvector variables into
vectors of propositional variables (or, more generally, vectors of propositional formulas). Based
on this, more complex bitvector terms and bitvector constraints can be reproduced on the SAT
level. Analogously, the IntBlastModule reduces integer arithmetic to bitvector arithmetic by
encoding integer variables as bitvector variables.

However, solving integer arithmetic by bitvector arithmetic bears two new important chal-
lenges: Firstly, integer variables range over an infinite domain, whereas bitvector variables have
a fixed width and can thereby only attain finitely many different values. This does not only make
the reduction incomplete, but also leaves the question how the widths should be chosen.

Secondly, the relation between integers and bitvectors is less natural than the relation between
bitvectors and vectors of propositional variables. In Section 4.3.1, we formalize the concept
of annotated bitvector terms, which establishes a connection between integers and bitvectors.
Section 4.3.2 illustrates how the createFreshIntegerMapping function maps integers to
annotated bitvector terms, and Section 4.3.3 demonstrates how the encode function applies
this mapping to encode constraint trees into bitvector logic.

4.3.1 Annotated Bitvector Terms

It is a natural idea to encode bitvectors as vectors of propositional variables. Integer variables, on
the other hand, have no such canonical representation as bitvectors. The bitvector literal 1111,
for example, might encode the number 15, but it could also refer to −1 or even a completely
different number. This gives rise to the concept of annotated bitvector terms, which are a
coupling of a bitvector expression and a specification of its semantics. We call such a specification
a bitvector annotation.

The most fundamental property of a bitvector annotation is the signedness: We differentiate

4.3. Encoding to Bitvector Arithmetic 55

between signed (s) and unsigned (u) expressions. Depending on the signedness, different ranges
of integers can be represented, as depicted in Table 4.1.

Width Signedness Min. value Max. value
4 u 0 (0000) 15 (1111)
4 s -8 (1000) 7 (0111)
8 u 0 (00000000) 255 (11111111)
8 s -128 (10000000) 127 (01111111)
n u 0 (0 . . .0) 2n − 1 (1 . . .1)
n s −2n−1 (10 . . .0) 2n−1 − 1 (01 . . .1)

Table 4.1: Representable ranges by width and signedness

So far, we have to choose a width and a signedness for each integer variable we want to
encode into bitvector logic. Although we might as well use a fixed width and a fixed signedness
for all variables, this approach allows us to react to different variable ranges: For many problems
in integer arithmetic, the ranges of the variables in the formulas is bounded by some lower or
upper value, e.g. by a global constraint x > c. If we encounter a constraint like x ≥ 0, we know
that we can encode x using unsigned semantics, such that we do not waste a bit for encoding
the sign of x.

When looking at the ranges in Table 4.1, it becomes obvious that all possible ranges include
the number 0. This might not be optimal: Consider, for example, an integer variable x that is
bounded by x ≥ 260 and x < 264. Then x ranges over an interval of only 4 elements. Though,
we would need a width of n = 9 to cover this range using unsigned semantics, which seems to be
very inefficient. To cope with these situations, we enrich bitvector annotations by a corrective
constant called offset. When converting from bitvector values to integer values, the offset is
added at the end of the conversion. Table 4.2 illustrates this effect.

Width Signedness Offset Min. value Max. value
4 u 0 0 (0000) 15 (1111)
4 s 0 -8 (1000) 7 (0111)
4 u 37 37 (0000) 52 (1111)
4 s 37 29 (1000) 44 (0111)
n u k k (0 . . .0) k + 2n − 1 (1 . . .1)
n s k k − 2n−1 (10 . . .0) k + 2n−1 − 1 (01 . . .1)

Table 4.2: Representable ranges by width, signedness and offset

It should be mentioned that the encoding process can only benefit from a non-zero offset if
the formulas fulfill certain properties. For now, we skip this aspect, which is discussed in more
detail in Section 4.3.2, and define the notion of bitvector annotations more formally.

Definition 4.3.1 (Bitvector annotation). A bitvector annotation is a tuple a = 〈a.sgn, a.offset〉
with:

• a signedness bit a.sgn ∈ { u, s } and

• an integer a.offset ∈ Z.

By combining a bitvector term with an annotation, we obtain an annotated bitvector term.

Definition 4.3.2 (Annotated bitvector term). An annotated bitvector term of width n ∈ N is a
tuple t = 〈b[n], a〉, where b[n] is a bitvector term of width n and a is a bitvector annotation.

56 Chapter 4. Solving Integer Arithmetic

We may also use the notations t.bvterm for b[n], t.width for n, t.annotation for a, t.sgn for
a.sgn and t.offset for a.offset. In the case that b[n] consists only of a bitvector variable, we also
call t an annotated bitvector variable.

Algorithm 4 uses annotated bitvector terms for an internal representation of each node in
a polynomial tree. Just like BVModule.decide maps every bitvector expression to a vector
of propositional variables, IntBlastModule.decide maps every node of a polynomial tree to
an annotated bitvector term. Note that the annotations only serve as an internal fixing of the
semantics of the corresponding bitvector term. They do not appear explicitly in the bitvector
formulas CBV, but only serve as a basis for encoding all further constraints. For an annotated
bitvector term t with t.sgn = s, for example, the bitvector term t.bitvec is always treated with
signed bitvector operators, whereas a term with t.sgn = u is usually processed by unsigned
bitvector operators.

As already indicated in Table 4.2, different bitvector annotations lead to different repre-
sentable ranges:

Definition 4.3.3 (Induced range of a bitvector annotation). For a bitvector annotation a and
a width n ∈ N, the induced range rangen(a) is defined as:

rangen(a) :=

{

{ a.offset, . . . , a.offset + 2n − 1 } if a.sgn = u

{ a.offset− 2n−1, . . . , a.offset + 2n−1 − 1 } if a.sgn = s
(4.2)

We can now formalize the relationship that is illustrated in Table 4.2. Given a width n and
a bitvector annotation a, we obtain a bijection between the set BitVecn of bitvectors and the set
rangen(a) of integers.

Definition 4.3.4 (Decoding and encoding using bitvector annotations). For a bitvector anno-
tation a and n ∈ N, we define the decoding function a.decode : BitVecn → rangen(a) by:

a.decoden(b) := a.offset +

{

bv2natn(b) if a.sgn = u

bv2intn(b) if a.sgn = s
(4.3)

The inverse function a.encoden : rangen(a) → BitVecn with a.encoden := (a.decoden)−1 can be
computed by:

a.encoden(i) =

{

nat2bvn(i− a.offset) if a.sgn = u

int2bvn(i− a.offset) if a.sgn = s
(4.4)

Informally, a.sgn decides whether bv2nat or bv2int is used for the conversion, and a.offset is
the value that the zero-only bitvector λi ∈ { 0, . . . , n− 1 } .0 is mapped to.

In the following, we present how the IntBlastModule makes use of annotated bitvector
terms in the functions createFreshIntegerMapping and encode.

4.3.2 Integer Mapping Creation

Let us again recall the encoding from bitvector arithmetic to propositional logic that is presented
in Algorithm 3. The encoding process comprises two important steps. First, a bitvector map-
ping e is created, which maps every bitvector term to a vector of propositional variables, and
every bitvector constraint to a single propositional variable. Essentially, e defines the logical

4.3. Encoding to Bitvector Arithmetic 57

connection between bitvector interpretations and propositional interpretations. As soon as the
bitvector mapping has been fixed, the original constraints are encoded into propositional formu-
las that ensure that the variables V (e) indeed behave as it is dictated by the bitvector terms and
constraints.

The reduction from integer arithmetic to bitvector arithmetic proceeds in a very similar
way. First, a mapping between integer terms (i.e., polynomials over the integers) and annotated
bitvector terms is created. In analogy to Chapter 3, we call such a mapping an integer mapping.
As a second step, the created bitvector terms are linked by suitable bitvector formulas.

The following definition of an integer mapping is closely related to Definition 3.1.1.

Definition 4.3.5 (Integer mapping). An integer mapping is a mapping f , whose domain dom(f)
consists of polynomials over the integers and integer constraints. For an integer constraint c, f(c)
is a propositional variable. For a polynomial p, f(p) is an annotated bitvector variable.

The function createFreshIntegerMapping in Algorithm 4 is responsible for the initial
generation of an integer mapping. Despite its similarity to the createFreshBitvectorMap-
ping function, there are differences that should be pointed out. First of all, the mapping returned
by createFreshIntegerMapping is only defined on the integer variables appearing in the in-
put formulas. For any other polynomial p, which is more complex than a simple integer variable,
the returned integer mapping is undefined. It will be expanded ad-hoc by the encode function,
as already indicated briefly in the optimizations in Section 3.3.

The most important novelty in the creation of an integer mapping is that a suitable width
and annotation have to be chosen for each created bitvector. These decisions are based on
properties which are extracted from the set of all constraint trees upfront. Algorithm 6 shows
the implemented procedure.

1: function IntBlastModule.createFreshIntegerMapping(constraint trees C)
2: V ← ∅
3: N ← ∅
4: for all c ∈ C do
5: V ← V ∪ variables(c)
6: N ← N ∪ nonlinearVariables(c)
7: end for
8: e← ⊥
9: for all v ∈ V do

10: R← extractRange(C, v)
11: nl← v ∈ N
12: e(v)← createAnnotatedBitvector(R, nl)
13: end for
14: return e
15: end function

Algorithm 6: IntBlastModule.createFreshIntegerMapping

By iterating over all constraint trees C, the variables appearing in C are collected. The
function call variables(c) emits the set of all variables which occur in the labeling of the
leaves of c. The set returned by nonlinearVariables(c) is a subset of variables(C). It is
composed of all variables in c which are involved in a nonlinear multiplication. More specifically,
this comprises all variables that appear as a descendant of some multiplication node whose other
child is not a constant. We illustrate this with an example.

58 Chapter 4. Solving Integer Arithmetic

Example 4.3.1. Consider the following constraint tree c = rewrite(x2y + 7z − 3 = 0).

=

add

mul

mul

x x

y

mul

7 z

3

The two leftmost multiplication nodes are nonlinear, as
none of them has a constant as child. Consequently, x
and y are nonlinear variables.
The rightmost multiplication node, on the other hand, is
linear, as its left child is the constant 7. Thus, z is not a
nonlinear variable. We obtain:

variables(c) = {x, y, z }

nonlinearVariables(c) = {x, y }

We differentiate between variables that only occur linearly and those that eventually occur
nonlinearly. The reason for the distinction is located in the “offset” part of bitvector annotations.
Essentially, our encoding of nonlinear multiplications, which is presented in the next section, is
only efficient if all of its operands have a zero offset. Any involved variable that is encoded
with a non-zero offset would require an intermediate step for eliminating the offset prior to the
multiplication. The introduced overhead would annihilate all benefits from choosing a non-zero
offset. Hence, it makes more sense to forbid a non-zero offset for all nonlinear variables. We
come back to the reasons for this requirement in the description of the encoding of multiplication
nodes in the following Section 4.3.3.

After collecting the set of all variables V in C, Algorithm 6 iterates over each variable v ∈ V .
The function call extractRange(C, v) extracts bounds for v from the constraint trees C: The
set C is scanned for constraint trees 〈T1, T2,∼〉 such that T1 is only a leaf labeled with v and T2

is a constant leaf. These constraint trees correspond to constraints of the form v ∼ c for some
relational symbol ∼ and c ∈ Z. In other words, c is a lower or an upper bound for v (or both,
if ∼ is the equality relation). By combining all such bounds, a (possibly unbounded) interval R
for v is obtained.

The function createAnnotatedBitvector makes the actual decision about how to encode
a variable v. As an argument, it receives the extracted bounds R for v and the information
whether v occurs nonlinearly. In addition, it uses a global constant MAX_WIDTH which limits
the number of bits used for encoding each variable. The function then picks a width n and a
bitvector annotation a according to the following heuristic:

1. If R is unbounded, set n := MAX_WIDTH, a.offset := 0 and a.sgn := s.

(a) If R is semi-positive, set a.sgn := u.

(b) If nl is false, ensure that rangen(a) ⊂ R:

i. If upperBound(rangen(a)) > upperBound(R),
set a.offset := −(upperBound(rangen(a))− upperBound(R)).

ii. If lowerBound(rangen(a)) < lowerBound(R),
set a.offset := lowerBound(R)− lowerBound(rangen(a)).

2. If R is bounded:

(a) If nl is false, choose a.sgn := u, a.offset := lowerBound(R) and n minimal such that
upperBound(R) ∈ rangen(a) (but at most MAX_WIDTH).

(b) If nl is true:

i. If R is semi-positive, set a.sgn := u, otherwise a.sgn := s.

4.3. Encoding to Bitvector Arithmetic 59

R (blue) Covered range of bitvector annotation, nl = true (yellow) vs. false (orange)

[7, 14]
−30 −20 −10 0 10 20 30

[−10, 3]
−30 −20 −10 0 10 20 30

[−8,−5]
−30 −20 −10 0 10 20 30

[3,∞)
−30 −20 −10 0 10 20 30

(−∞, 4)
−30 −20 −10 0 10 20 30

(−∞,∞)
−30 −20 −10 0 10 20 30

Table 4.3: Choices of createAnnotatedBitvector for different values of R and nl, with the
setting MAX_WIDTH = 5

ii. Choose n minimal such that R ⊆ rangen(a) (but at most MAX_WIDTH).

To summarize, the procedure assigns width n and bitvector annotation a according to the
following priorities: If nl is true, a.offset is always 0. Moreover, the value for n must not
exceed the constant MAX_WIDTH. If R contains negative numbers, a is chosen such that
rangen(a) also contains negative numbers. Under these conditions, n and a are picked to max-
imize R ∩ rangen(a). The width n is reduced as much as possible as long as R ∩ rangen(a)
remains unchanged.

Table 4.3 visualizes rangen(a) for the choices made by the described procedure for different
inputs of R (left column, and painted in blue) and nl (yellow vs. orange bar). The width is
limited by the constant MAX_WIDTH = 5, such that rangen(a) can cover at most 25 = 32
integers.

4.3.3 Translation of Constraint Trees

When Algorithm 4 reaches Line 4, all constraints of the input have been transformed into con-
straint trees. They determine a decomposition of each constraint into applications of addition,
multiplication and a relational operator. For each variable v occurring in a leaf of any of the
constraint trees, an encoding e(v) as annotated bitvector variable has been fixed.

We now clarify the details of the encode function, which builds on the generated constraint
trees and the integer mapping e. For each constraint tree c, the encode function creates a set of

60 Chapter 4. Solving Integer Arithmetic

constraints in bitvector logic, which express c on the basis of the integer mapping e. It proceeds
as illustrated in Algorithm 7.

1: function IntBlastModule.encode(integer mapping e, constraint tree c)
2: 〈Tl, Tr,∼〉 ← c
3: Φ← ∅
4: for all T ∈ {Tl, Tr } do
5: for all n ∈ nodes(T) do ⊲ in bottom-up order
6: Φ← Φ ∪ IntConstraints(e, n)
7: end for
8: end for
9: Φ← Φ ∪ IntConstraints(e, c)

10: return Φ
11: end function

Algorithm 7: IntBlastModule.encode

The heart of encode is the function IntConstraints, which strongly resembles the function
BVconstraints in Algorithm 3. It is applied to each node of c, starting with the leaves and
proceeding in a bottom-up manner. Finally, IntConstraints is called for the whole constraint
tree, i.e. the root node that is labeled with ∼.

The function IntConstraints takes a single node n of a constraint tree and encodes the
expression p(n), that is represented by n, into bitvector logic. For this purpose, a new annotated
bitvector variable e(p(n)) is added to the integer mapping e. If n is an inner node, i.e. a node
with two child nodes nl and nr, the IntConstraints function may assume that it has already
been called on nl and nr, such that e(p(nl)) and e(p(nr)) already exist. It then outputs a set of
bitvector formulas that restrict the values of e(p(n)) to the computation represented by n. In
the case of an inner node, these formulas typically contain e(p(nl)) and e(p(nr)).

For convenience, we allow the notation e(n) as an abbreviation for e(p(n)) for any polynomial
tree node n. We now define the behavior of IntConstraints(e, n) for different nodes n. First,
we assume that n is the node of a polynomial tree, such that p(n) is a polynomial.

Encoding Variable Leaves

If n is a leaf labeled with an integer variable v, then an annotated bitvector term e(v) already
exists. It has previously been created by the function createFreshIntegerMapping (cf.
Section 4.3.2).

In this case, we set:

IntConstraints(e, n) := ∅ (4.5)

Encoding Constant Leaves

If n is a leaf labeled with a constant c ∈ Z, let a be the bitvector annotation defined by:

4.3. Encoding to Bitvector Arithmetic 61

a.offset :=0 (4.6)

a.sgn :=

{

u if c ≥ 0

s if c < 0
(4.7)

Then a fresh bitvector b[m] is created, where m is the smallest natural number such that
c ∈ rangem(a). The function adds the entry e(n) := 〈b[m], a〉 to e and returns the constraint:

IntConstraints(e, n) := { b[m] = a.encodem(c) } (4.8)

Encoding Addition Nodes

Now, let n be a node that is labeled with add and has the left and right child nodes nl and
nr. As stated already, we can assume that tl := e(nl) and tr := e(nr) are already defined. It is
our goal to create an annotated bitvector term e(n) that is constrained to model the sum of the
annotated bitvector terms tl and tr. In principle, this can be achieved by a constraint like:

e(n).bvterm = bvadd(tl.bvterm, tr.bvterm) (4.9)

However, there are several aspects that need to be handled. First of all, the annotations of tl
and tr may use a different signedness. Although bvadd can be used both for signed and unsigned
bitvectors, either both or none of its arguments should be signed. Secondly, the bitvector terms
tl.bvterm and tr.bvterm can be of different widths, which is not permitted by the bvadd operator.
On top of that, we need to ensure that the width of e(n).bvterm is big enough to store the sum
of tl.bvterm and tr.bvterm. Otherwise, the bvadd operator might produce an overflow, which is
of course not desired in the context of integer arithmetic.

We handle these issues by using three steps: First, we pick a bitvector annotation a for e(n).
For the signedness, we use an unsigned annotation if both tl and tr are unsigned, and a signed
annotation otherwise. Second, a width m for e(n) is chosen, such that rangem(a) is always big
enough to store the sum of the two summands. Third, both bitvector terms of tl and tr are
extended to the width m and joined by the operator bvadd.

In the following, we explain these steps in more detail.

1. Let a be the bitvector annotation defined by:

a.sgn :=

{

u if tl.sgn = u and tr.sgn = u

s if tl.sgn = s or tr.sgn = s
(4.10)

a.offset :=tl.offset + tr.offset (4.11)

Note that we can simply set the offset of e(n) to the sum of the offsets of tl and tr, such
that we do not have to handle any offset on the formula level.

2. We create the width m by the following rules:

• If tl.sgn = tr.sgn, we choose:

m := max { tl.width, tr.width }+ 1 (4.12)

62 Chapter 4. Solving Integer Arithmetic

• Otherwise, tl.sgn 6= tr.sgn. Without loss of generality, let tl.sgn = s and tr.sgn = u.
Then we set:

m := max { tl.width, tr.width + 1 }+ 1 (4.13)

Here, 1 is added to tr.width to account for the conversion from an unsigned to a
signed value. Any unsigned value can be converted to a signed value by prepending a
constant 0 bit.

3. A fresh bitvector variable b[m] is created. The bitvector terms of tl and tr are expanded to
width m by setting t′l := expandm(tl) and t′r := expandm(tr), where the expand function
is defined by:

expandm(t) :=

{

zero_extendm−t.width(t.bvterm) if t.sgn = u

sign_extendm−t.width(t.bvterm) if t.sgn = s
(4.14)

Finally, the entry e(n) := 〈b[m], a〉 is added to e, and the following constraint is returned:

IntConstraints(e, n) := { b[m] = bvadd(t′l, t
′
r) } (4.15)

Encoding Multiplication Nodes

The encoding of multiplication nodes is similar to the previously shown encoding of addition
nodes. Let n be a node of a polynomial tree that is labeled with mul and has the left and right
child nodes nl and nr. Again, we abbreviate tl := e(nl) and tr := e(nr).

The IntConstraints function performs the same three steps as for addition, namely the
generation of a bitvector annotation, the computation of a sufficiently large width and the com-
position to a bvmul term using extension operators. However, the behavior differs in the com-
putation of the width and, most importantly, in the handling of offsets.

We first regard the case that tl.offset = tr.offset = 0. Then we obtain the beforementioned
three steps:

1. Let a be the bitvector annotation defined by:

a.sgn :=

{

u if tl.sgn = u and tr.sgn = u

s if tl.sgn = s or tr.sgn = s
(4.16)

a.offset :=0 (4.17)

2. Set the width m to:
m := tl.width + tr.width (4.18)

Without giving a proof here, this width is sufficient and optimal regardless of the signedness
of tl and tr. It can be derived from the definition of rangem by estimations over the
minimum and maximum value representable by tl and tr.

3. A fresh bitvector variable b[m] is created and e(n) := 〈b[m], a〉 is added to e. Again, we set
t′l := expandm(tl) and t′r := expandm(tr) and return:

IntConstraints(e, n) := { b[m] = bvmul(t′l, t
′
r) } (4.19)

4.3. Encoding to Bitvector Arithmetic 63

A handling of non-zero offsets in the encoding of multiplication nodes requires significantly
more effort than for addition nodes: Assume that tl and tr have an unsigned annotation and
width w. Let I be an interpretation which assigns tl.bvterm a bitvector value I(tl.bvterm) := bl ∈
BitVecw and tr.bvterm a value br. Then tl represents the integer value bv2natw(bl) + tl.offset,
and tr represents bv2natw(br) + tr.offset.

We would now have to find a bitvector term b[w] and an offset o ∈ Z such that, independent
of I, the equation holds:

bv2natw(I(b[w])) + o = (bv2natw(bl) + tl.offset) · (bv2natw(br) + tr.offset) (4.20)

An elegant solution can only be obtained for a special case: Assume that nl is a leaf labeled
with a constant c, and that tr is an arbitrary annotated bitvector term (with a non-zero offset
allowed). By our construction, we have tl.offset = 0. Then we can encode the node n using the
bitvector annotation a with:

a.offset := c · tr.offset (4.21)

The signedness of a is chosen as above, and steps 2 and 3 are identical to the previously regarded
case.

For the general case of arbitrary annotated bitvector terms tl and tr with non-zero offset, there
is no such direct construction of e(n). Roughly speaking, we would have to encode tl.offset and
tr.offset into bitvector literals, and proceed with the terms bvadd(tl.bvterm, int2bv(tl.offset))
and bvadd(tr.bvterm, int2bv(tr.offset)). Thereby, the offset is eliminated by encoding it into a
bitvector addition.

However, due to the overhead of such a construction, which destroys all offset-related benefits,
we instead ensure by our construction that such a constellation does not occur: Wherever a
multiplication node n with two non-constant children exists, all variables appearing in the leaves
below n are treated as nonlinear, such that createFreshIntegerMapping encodes them with
an offset of 0. This property is retained among all descendants of n, which makes it possible to
encode n without the need to handle any offsets.

Encoding Relational Operators

At the end of the encode function, the root of the constraint tree c = 〈Tl, Tr,∼〉 is encoded.
As p(c) is not a polynomial, but an integer constraint, we set e(p(c)) to a fresh propositional
variable R instead of an annotated bitvector term.

By our construction of constraint trees, we may assume that Tr only consists of a single,
constant node. Let k be this constant. For the left subtree Tl, let r be the root of Tl and
tl := e(r). Let further a := tl.annotation and m := tl.width be the annotation and width of tl.

The relational symbol ∼ is mapped to a bitvector operator bvop by the following table:

∼ = 6= < ≤ > ≥

bvop (tl.sgn = u) = distinct bvult bvule bvugt bvuge

bvop (tl.sgn = s) = distinct bvslt bvsle bvsgt bvsge

We now encode the root of the constraint tree by:

IntConstraints(e, c) := {R↔ bvop(tl.bvterm, a.encodem(k)) } (4.22)

64 Chapter 4. Solving Integer Arithmetic

In the case that k /∈ rangem(a), we know that k is above (or below) every possible inte-
ger value that is represented by tl. Under this condition, we can evaluate ∼ directly and set
IntConstraints(e, c) to either ∅ or { false }.

4.4 Bounds from Interval Constraint Propagation

As shown in the previous section, the encode function encodes each polynomial tree node into
an annotated bitvector term. In this process, it has to choose a width for every new annotated
bitvector variable it creates. Naturally, the chosen widths increase from bottom to top nodes:
For an addition node, the assigned width is at least the maximum of the widths of its children
plus one. For a multiplication node, the width is set to the sum of the widths of its children.

Of course, this growth has a remarkable impact on the performance of the bitvector solver.
Both addition and multiplication are rather costly operations (in particular in comparison to bit-
level operations) and the number of generated CNF clauses grows nonlinearly with the operator
width. Hence, it is desirable to reduce the assigned widths as much as possible.

The IntConstraints function calculates its widths very conservatively. In each node of the
polynomial tree, it assumes that the bitvector expressions of its children may take an arbitrary
value. Assume, for example, the constraints:

C = {x ≥ 0, y ≥ 0, x ≤ 10, y ≤ 3, x+ y > 8 } (4.23)

Then the encoding process might encode x by an unsigned bitvector of width 4 and y by an
unsigned bitvector of width 2. Consequently, a width of max { 4, 2 }+1 = 5 would be chosen for
encoding the sum x + y. However, in a satisfying assignment for C, x + y can be at most 13,
such that a width of 4 would actually be sufficient.

A similar effect can also be observed with a much higher significance for the constraint set:

C = {x ≥ 0, x ≤ 250, y ≥ 0, x2 + y < 10, x3 > 20 } (4.24)

The chooseFreshIntegerMapping function only uses very simple constraints to determine
the widths that it generates. Although the constraint combination { y ≥ 0, x2 + y < 10 } effec-
tively limits the value of x by 3, chooseFreshIntegerMapping is unable to detect such an
effect and selects a width of 8 for encoding y. This results into 24 bits for encoding the polynomial
x3, while in fact 5 bits would suffice (since 25 = 32 > 33).

To summarize, considerable improvements can be obtained by generating better bounds for
the encoded polynomials. For this purpose, we enriched the IntBlastModule by a method
called Interval Constraint Propagation, which is presented in the following sections.

4.4.1 Introduction to ICP

Interval Constraint Propagation [Dav87] is an algorithm that operates on a set of arithmetic
equations C over a set of variables V . A function I is provided, which maps each v ∈ V to a
corresponding interval I(v). The algorithm now successively applies propagation rules to contract
each interval I(v) to an interval I ′(v) ⊆ I(v), such that the constraints C have the same solutions
in the intervals I ′ as in the intervals I.

4.4. Bounds from Interval Constraint Propagation 65

For an intuition of how Interval Constraint Propagation works, we give a simple example.
Consider the following input:

C = {x+ y = 10, z = x− 2y } (4.25)

V = {x, y, z } (4.26)

I(x) = I(y) = [0, 255] (4.27)

I(z) = (−∞,∞) (4.28)

ICP originates from the domain of real numbers, but it can easily be adapted to integer
numbers as well. For our purposes, we assume that x, y and z are variables ranging over Z.
Initially, the contracted intervals I ′ are set to I ′ := I. The procedure now repeatedly selects
a contraction candidate, i.e. a constraint c ∈ C and a contained variable v ∈ V , and tries to
contract the interval I ′(v) using the constraint c. The choices are made by a heuristic and may
be nondeterministic. On our example, ICP might apply the following steps:

1. Let c : x+y = 10 and v = x. The constraint c is solved for x, resulting in x = 10−y. From
y ∈ I ′(y) = [0, 255] we can deduce 10− y ∈ [−245, 10]. Hence, the algorithm performs the
contraction:

I ′(x) := I ′(x) ∩ [−245, 10] = [0, 255] ∩ [−245, 10] = [0, 10] (4.29)

2. Let c : z = x − 2y and v = x. Solving c for x, we get x = z + 2y. As we have I ′(z) =
(−∞,∞), no further contraction can be obtained from this combination of c and v.

3. Let c : x + y = 10 and v = y. From y = 10− x and I ′(x) = [0, 10] we get 10− x ∈ [0, 10]
and contract I ′(y) to:

I ′(y) := I ′(y) ∩ [0, 10] = [0, 255] ∩ [0, 10] = [0, 10] (4.30)

4. Let c : z = x − 2y and v = z. The constraint c is already solved for z. From x ∈ I ′(x) =
[0, 10] and y ∈ I ′(y) = [0, 10] we obtain x− 2y ∈ [−20, 10] and set:

I ′(z) := I ′(z) ∩ [−20, 10] = (−∞,∞) ∩ [−20, 10] = [−20, 10] (4.31)

At this point, no further contractions are possible and the algorithm terminates with the
result:

I ′(x) = [0, 10] (4.32)

I ′(y) = [0, 10] (4.33)

I ′(z) = [−20, 10] (4.34)

For brevity, we leave out many technical details here, including the formal foundation of
interval arithmetic and contraction rules, required adaptations and preprocessing to ensure ter-
mination, the generalization from equations to inequations, more efficient procedures for con-
traction, benefits from coupling ICP with SAT or linear arithmetic solvers, and heuristics for the
choice of contraction candidates. For an in-depth discussion of ICP, in particular concerning the
implementation in SMT-RAT, we refer to [Sch13].

In the context of our thesis, we can treat the ICPModule in SMT-RAT as a black box, which
receives a set C of arithmetic constraints (including inequalities) and generates range constraints

66 Chapter 4. Solving Integer Arithmetic

over the variables in C. Alternatively, it may return unsat if the ICP algorithm contracts an
interval to the empty set, or sat if the satisfiability of C is detected (e.g. by test points obtained
from the ends of the intervals).

In general, the running time of ICP is hard to predict, as it depends on many implementation
factors. However, we found it to perform very well and to contribute only negligibly to the overall
running time of our algorithm.

4.4.2 Bound Generation for Polynomial Tree Nodes

The IntBlastModule uses Interval Constraint Propagation to generate bounds for each node
of the polynomial trees that are encoded. As a side benefit, it may detect the satisfiability or
unsatisfiability of the constraints inside the restricted bounds. In this case, the translation to
bitvector logic can be skipped completely. Algorithm 8 depicts the improved decision procedure
of the IntBlastModule.

1: function IntBlastModule.decide(input formulas Crcv)
2: C ← { rewrite(c) | c ∈ Crcv }
3: e← createFreshIntegerMapping(C)
4: CICP ← { decompose(c) | c ∈ C } ∪ { inBounds(e) }
5: icp← ICP.decide(CICP)
6: if icp = sat then
7: return sat
8: else if icp = unknown then ⊲ Run bitvector solver
9: CBV ← ∅

10: I ′ ← ICP.deducedBounds(CICP)
11: for all c ∈ C do
12: CBV ← CBV ∪ encode(e, I ′, c)
13: end for
14: if BVSolver.decide(CBV) = sat then
15: return sat
16: end if
17: end if ⊲ Crcv |= ¬ inBounds(e)
18: Cpas ← Crcv ∪ {¬ inBounds(e) }
19: return backend.decide(Cpas)
20: end function

Algorithm 8: IntBlastModule.decide (with ICP)

After the initialization of the integer mapping, constraints for ICP are generated by apply-
ing decompose to each generated constraint tree. The decompose function decomposes a
constraint tree c = 〈Tl, Tr,∼〉 into an equisatisfiable set of constraints, where each constraint
contains at most one addition or multiplication operator. For this purpose, a fresh integer vari-
able sp(n) is created for each node n of Tl and Tr (cf. Definition 4.2.4). Two nodes n1, n2 with
p(n1) = p(n2) share the same integer variable sp(n1). The function decompose then returns the
set:

decompose(〈Tl, Tr,∼〉) := { nodeConstraint(n) | n ∈ Nodes(Tl) ∪Nodes(Tr) }

∪ { sp(Tl) ∼ sp(Tr) }
(4.35)

4.4. Bounds from Interval Constraint Propagation 67

For a polynomial tree node n with the child nodes nl and nr (if present) and the label l(n),
the function nodeConstraints returns the integer constraint:

nodeConstraints(n) :=











sp(n) = l(n) if n is a leaf

sp(n) = sp(nl) + sp(nr) if l(n) = add

sn = sp(nl) · sp(nr) if l(n) = mul

(4.36)

Example 4.4.1. Let T be the constraint tree T := rewrite(x+y2 > 5). Then T is decomposed
into the set:

decompose(T) = {sx = x, sy = y, sy2 = sy · sy,

sx+y2 = sx + sy2 , s5 = 5, sx+y2 > s5 }

The decomposition constraints are collected for all constraint trees and passed to ICP. In
addition, ICP receives the formula inBounds(e), which expresses the bounds that are introduced
by the choice of the integer mapping. For a variable x with e(x) = 〈b[n], a〉 and rangen(a) =
[0, 255], for example, the constraints x ≥ 0 and x ≤ 255 are added to the ICP input CICP.

By construction, the set CICP is equisatisfiable to Crcv ∪ { inBounds(e) }, which in turn is
equisatisfiable to the later generated set CBV of bitvector constraints. Hence, Algorithm 8 returns
sat if CICP is satisfiable, and skips the call to the bitvector solver if CICP is unsatisfiable. If neither
satisfiability nor unsatisfiability is detected, ICP is queried for its contracted intervals by the call
ICP.deducedBounds(CICP). The function returns I ′, as described in Section 4.4.1, i.e. a
mapping from the variables in CICP to their contracted intervals.

As explained in the beginning of Section 4.4, the bounds from I ′ are used to reduce the widths
that are needed to encode polynomial tree nodes. As such, I ′ is passed to the call to encode
in Line 12 of Algorithm 8. In the following, we describe how the encode method is modified to
utilize I ′ in its choices.

4.4.3 Applying Inferred Bounds for Width Reduction

As we have seen, the encode function of the IntBlastModule calls the function IntCon-
straints on each node n. For the width reduction, we are mainly concerned with the inner
nodes of the polynomial trees, i.e. the nodes that represent addition or multiplication operations.
On such a node n, the IntConstraints function operates in three steps. First, an annotation
a is chosen. Second, the new width w is calculated conservatively from the width of the child
node encodings. Third, the new bitvector term is composed by extending the bitvector terms of
the children to width w and joining them with bvadd or bvmul. The full result is then stored
as e(n).

Now, using the information from ICP, we know that in any satisfying assignment for Crcv ∪
{ inBounds(e) }, the value of the polynomial p(n) is inside the interval I ′(Sp(n)). Hence, we are
able to compute the minimum width ŵ that is sufficient to represent any value in I ′(Sp(n)) under
the annotation a:

ŵ := min
{

m ∈ N
∣

∣ I ′(Sp(n)) ⊆ rangem(a)
}

(4.37)

At first sight, it may be tempting to replace w by ŵ in step 2 of the IntConstraints call.

68 Chapter 4. Solving Integer Arithmetic

1: function IntBlastModule.encode(integer mapping e, intervals I ′, constraint tree c)
2: 〈Tl, Tr,∼〉 ← c
3: Φ← ∅
4: for all T ∈ {Tl, Tr } do
5: for all n ∈ nodes(c) do ⊲ in bottom-up order
6: Φ← Φ ∪ IntConstraints(e, n)
7: Φ← Φ ∪ shrink(e, I ′, n)
8: end for
9: end for

10: Φ← Φ ∪ IntConstraints(e, c)
11: return Φ
12: end function

Algorithm 9: IntBlastModule.encode (with ICP)

However, due to the overflow behavior of bvadd and bvmul, this can lead to incorrect results,
as the following example demonstrates.

Example 4.4.2. Let Crcv := { 0 ≤ x, x ≤ 7, 0 ≤ y, y ≤ 7, x · y < 10 }. Assume that create-
FreshIntegerMapping creates bitvector variables b[3] for x and c[3] for y, both with an un-
signed and offset-free annotation.

Without ICP, the polynomial tree node n with p(n) = x · y would be encoded using 3 + 3 = 6
bits. This is inefficient, as x · y is constrained to be less than 10. Therefore, ICP might compute
an interval I ′(Sx·y) = [0, 9]. From this, we can calculate the optimized width ŵ = 4 for the
encoding of x · y.

However, if the function IntConstraints used ŵ instead of w for the width of e(n), we
would obtain a constraint for e(n) like:

m[4] = bvmul(zero_extend1(b[3]),zero_extend1(c[3])) (4.38)

The above equation no longer models the correct semantics of arithmetic multiplication, due
to the modular semantics of bvmul. Assume, for example, an assignment I with I(b) = 101

(=̂5), I(c) = 111 (=̂7) and I(m) = 0011 (=̂3). Then I is a model of Equation 4.38, although
clearly 5 · 7 6= 3.

The problem in Example 4.4.2 is that we need the conservative width w to ensure that the
bvmul operation creates no overflow. Multiplying 101 and 111 after extending to w = 6 leads
to the result 100011. By choosing the width ŵ instead, we lose track of the most-significant 1
appearing in the correctly computed result.

To avoid this wrong behavior, we use a two-step approach inside the revised encode function,
which is depicted in Algorithm 9. Again, we call IntConstraints on every node n, which
creates e(n) with a conservatively chosen width. Afterwards, the width is reduced by the call to
the function shrink in Line 7. This method is allowed to overwrite e(n) by a new annotated
bitvector term and add further constraints to the set Φ.

Algorithm 10 shows how the shrink function proceeds on a polynomial tree node n. It
extracts the ICP interval for Sp(n) and compares it to the conservatively chosen range. If the
ICP interval is smaller, the optimized width ŵ is computed. If ŵ is smaller than w, the actual
shrinking is performed. For this purpose, a fresh bitvector x[ŵ] of width ŵ is created. It receives

4.5. SMT-Compliance 69

the same annotation as the previous e(n) and thus only differs in its width. The new variable
x[ŵ] is then constrained to the ŵ least significant bits of t[w], which is the old bitvector term for
e(n).

Up to this point, the issue of Example 4.4.2 has not been addressed yet. This problem
is mitigated in Lines 12 to 16. The formulas that are added to Φ require that the numerical
representation of t[w] and xŵ are equal. For an unsigned annotation, this corresponds to the
constraint that only bits of value 0 are removed; for a signed annotation, all removed bits have
to equal the sign bit (i.e., the most significant bit) of xŵ.

1: function IntBlastModule.shrink(int. mapping e, intervals I ′, polyn. tree node n)
2: old← e(n)
3: t[w] ← old.bvterm
4: a← old.annotation
5: I ← I ′(Sp(n))
6: if I ⊂ rangew(a) then
7: ŵ ← min {m ∈ N | I ⊆ rangem(a) }
8: if ŵ < w then ⊲ shrinking is possible
9: x[ŵ] ← createFreshBitvectorVariable(ŵ)

10: e(n)← 〈x[ŵ], a〉 ⊲ overwrite value e(n)
11: Φ← {x[ŵ] = extractŵ−1,0(t[w]) }
12: if a.sgn = u then
13: Φ← Φ ∪ { t[w] = zero_extendŵ−w(x[ŵ]) }
14: else if a.sgn = s then
15: Φ← Φ ∪ { t[w] = sign_extendŵ−w(x[ŵ]) }
16: end if
17: return Φ
18: end if
19: end if
20: return ∅
21: end function

Algorithm 10: IntBlastModule.shrink

Example 4.4.3. For the multiplication x·y in Example 4.4.2, the revised encoding process creates
a bitvector term x[4] with the constraints:

m[6] = bvmul(zero_extend3(b[3]),zero_extend3(c[3])) (4.39)

x[4] = extract3,0(m[6]) (4.40)

m[6] = zero_extend2(x[4]) (4.41)

With these mechanism, the remaining parts of the encoding algorithm can make use of the
more compact representation x[ŵ] instead of t[w], without losing the correctness of the construc-
tion.

4.5 SMT-Compliance

In Section 2.2 we introduced the notion of SMT-compliance. A module is called SMT-compliant
if it supports incrementality, infeasible subset generation and backtracking. Both of the modules

70 Chapter 4. Solving Integer Arithmetic

that are subject of this thesis, namely the BVModule and the IntBlastModule, are imple-
mented in an SMT-compliant fashion. While Algorithm 3 can be made SMT-compliant without
major problems, there are important aspects to consider for the SMT-compliance of Algorithm 4.
We use this section to address the arising challenges and our implemented solutions.

Incrementality And Backtracking

The requirement of incrementality states that new formulas should be addable to Crcv such that
their addition does not demand a full recomputation during the next satisfiability check. In
principle, this can easily be achieved: Whenever a formula c is added to Crcv, its decomposition
is added to CICP, its constraint tree is added to CBV after being processed by the encode
function, and c is added to the set Cpas, that is passed to the backend.

However, problems can occur regarding the integer mapping: The integer mapping is created
by the function createFreshIntegerMapping on the basis of all constraints received so far.
For each new integer variable v, the global analysis process collects simple bounds for v from all
received constraints, and detects whether v occurs only linearly or also nonlinearly. Based on
these two properties, a decision about the encoding e(v) is made.

A conflict may arise if a new formula c contains an already encoded variable v. Assume, for
example, that during previous decidability checks the variable v has been encoded by e(v) =
〈b[8], a〉 with some bitvector term b[8] and an annotation a with a.sgn = u and a.offset = 200. If
v is contained nonlinearly in c, the annotation a is no longer feasible, as it uses a non-zero offset.
In such an event, we need to regenerate e(v), considering all received formulas (including c), and
reencode all previously encoded constraints containing v.

A weaker variant of this event would be the addition of the constraint c : v < 204. If this
constraint had previously been known, e(v) could have been encoded using a bitvector variable
of width 2 instead of 8, which would have resulted in a better performance of the bitvector solver.
Regarding backtracking, the inverse effect is also possible: For the set Crcv = { v ≥ 0, v ≤ 3 },
for example, the variable v is usually encoded by a bitvector of width 2. If the constraint v ≤ 3
is removed, this choice becomes suboptimal, as it only covers a small part of the search space.

The effects described in the previous paragraph can be handled by different strategies. One
possibility is to ignore these events and to leave e(v) unchanged. This requires no reencoding,
but it lowers the chances that the bitvector solver finds a solution. Alternatively, one could
always recreate e(v) and all affected formulas as soon as a better choice can be made. This
makes it more likely that the bitvector search space contains a solution, but it is probably less
performant due to a frequent reencoding. Our implementation is closer to the first approach:
We only reencode if the covered range of e(v) and the interval of possible values for v are disjoint
(which would make the bitvector encoding infeasible).

The addition of ICP to the IntBlastModule, which is presented in Section 4.4, also bears
the potential to interfere with incrementality: In Example 4.4.2, we examined the set Crcv =
{ 0 ≤ x, x ≤ 7, 0 ≤ y, y ≤ 7, x · y < 10 }. The last constraint made it possible for ICP to deduce
that x · y ∈ [0, 9], such that we were able to shrink the bitvector term for e(x · y) to a smaller
width. If the last constraint is now removed, the shrinking is no longer admissible. To handle
this, we keep track of all shrunk encodings, and reencode all affected polynomials and constraints
as soon as the updated ICP interval is no longer covered.

4.6. Optimizations 71

Infeasible Subset Generation

The generation of infeasible subsets is relevant whenever the IntBlastModule reports unsat.
Two different scenarios are possible for this outcome:

1. The ICP module returns unsat, the backend returns unsat.

2. The ICP module returns unknown, the bitvector solver and the backend both return unsat.

All involved modules are capable of generating infeasible subsets. In the first scenario, let
ISICP and ISbackend be the two corresponding infeasible subsets. The set ISICP may contain
constraints from the formula inBounds(e), while ISbackend may contain the formula ¬ inBounds(e).
These bound-related formulas are removed from the sets, resulting in two sets IS′

ICP and IS′
backend.

Then the union ISIntBlast := IS′
ICP ∪ IS′

backend is an infeasible subset of Crcv:

ISIntBlast |= ISIntBlast ∪ { inBounds(e) ∨ ¬ inBounds(e) }

|= IS′
ICP ∪ IS′

backend ∪ { inBounds(e) ∨ ¬ inBounds(e) }

|= (
∧

IS′
ICP ∧ inBounds(e)) ∨ (

∧

IS′
backend ∧ ¬ inBounds(e))

|= (
∧

ISICP) ∨ (
∧

ISbackend)

|= false

The second case, in which the ICP module returns unknown, is more difficult: At first glance,
one might use an infeasible subset ISBV from the bitvector solver, replace each bitvector constraint
by its original integer constraint, and return a union with ISbackend as above. Unfortunately, this
is not sufficient. The main problem is that deductions from ICP are used for the construction of
the bitvector constraints. Thus, each constraint c in the set ISBV would have to be mapped not
only to its original integer constraint, but also to the set of all constraints in Crcv that implied
an ICP deduction which in turn has been used in the generation of c.

Sadly, the ICP module in SMT-RAT currently does not link its deductions with the respon-
sible original constraints. For this reason, we have to return a trivial infeasible subset in the
second case, i.e. the full set of input constraints Crcv.

4.6 Optimizations

We conclude this chapter by presenting some optimization aspects of our implementation.

Mapping to Terms Instead of Variables

We start with an idea that we already implemented with much success in the BVModule. So far,
the definition of an integer mapping states that each integer variable is mapped to an annotated
bitvector variable. By allowing arbitrary annotated bitvector terms instead of only variables,
the number of created bitvector variables and bitvector equations can be reduced. This change
creates the effect that the produced bitvector constraints may become very long and contain
many shared subexpressions, but this can efficiently be handled by the structural hashing inside
our bitvector module.

72 Chapter 4. Solving Integer Arithmetic

Lazy Encoding of Constants

The following optimization is devoted to the encoding of polynomial tree leaves that are labeled
with constants. In Section 4.3.3 we proposed to encode a constant c into an annotated bitvector
variable with zero offset and minimum width to store the value c. In most cases, the parent of
the constant node is an addition or multiplication, such that the newly encoded constant has to
be extended to another width. Instead, we could as well delay the encoding of a constant until
a concrete bitvector representation is desired.

This concept does not only prevent an unnecessary step in the encoding of constants, but it
also allows for a higher flexibility in the encoding of addition and multiplication. For example, a
constant c can be added to an annotated bitvector term t = 〈b, a〉 by simply increasing a.offset
by c. A rule for multiplication with constants has already been presented in Section 4.3.3. In
addition, ICP may deduce a point interval [c, c] for some polynomial p, in which case we are also
able to treat p as a constant and delay its encoding into bitvector logic.

Technically, we generalize the definition of an integer mapping by including Z in its codomain.
Thereby, each polynomial is either represented as an annotated bitvector term or as an integer
constant.

Eager encoding to bitvector logic

In the form presented in this chapter, the IntBlastModule acts as a theory module. It
receives a set of integer constraints which do not contain any Boolean structure. This simplifies
the implementation and allows a full exploitation of the ICP mechanism, which only works on
conjunctions of integer constraints.

However, for a maximum flexibility in configuration, we implemented the IntBlastModule
in a way that it can also handle formulas containing arbitrary Boolean connectives or constraints
from other theories. The implementation idea is very similar to the proceeding in Algorithm 3,
where every formula is replaced with its propositional skeleton.

As already discussed in Section 3.3, the bitvector module currently operates best in an eager
mode. By switching to an eager encoding in the IntBlastModule, the internal bitvector solver
is also operated in an eager fashion, such that we hope to achieve better performance results
with this updated strategy composition.

Chapter 5

Evaluation

For an evaluation of the newly developed SMT-RAT modules, we compare the performance on
benchmarks that originate from the SMT-LIB benchmark collections for QF_BV and QF_NIA.
More specifically, the subset of benchmarks for the SMT-COMP 2015 [CDW15] has been chosen.
We use the following sections to present the most important results and briefly comment on
them.

5.1 SMT-COMP 2015 Results

SMT-RAT participated in the SMT-COMP 2015 with a prefinal version of the bitvector module.
The results are listed in Table 5.1. All of the calculations in this chapter were performed on
an Intel(R) Xeon(R) CPU E5-2609 with 2.40 GHz. For the results in Table 5.1, an available
memory of 61440 MB was used.

The 14 errors in the computations of SMT-RAT could be tracked down to issues of an under-
lying module. Apart from that, it is apparent that the performance achieved by the competition
version of SMT-RAT still leaves room for improvement. More recent results on the basis of the
current version of the project can be found in the following section.

Solver Errors Corrects CPU time Not solved
Boolector 0 26260 647474.64 154
CVC4 0 26001 1256814.65 331
CVC4 (exp) 0 26138 939541.88 223
SMT-RAT 14 16329 25022167.18 10071
STP-CMSat4 0 26124 979823.26 290
STP-CMSat4 (mt-v15) 14 17486 70768.54 8914
STP-CMSat4 (v15) 16 26181 756053.05 217
STP-MiniSAT (v15) 16 25587 2265496.19 811
Yices 0 25647 2106185.67 767
[MathSat] 0 25895 1658560.27 519
[z3] 0 26108 1052484.34 306

Table 5.1: SMT-COMP 2015 results in the QF_BV division (Main Track, sequential perfor-
mance)

74 Chapter 5. Evaluation

Solver # solved # res. out # unknown time
CVC4 5043 805 0 7016.79
MathSat 5.3.6 4690 1157 1 13279.67
SMT-RAT (old) 2720 3127 1 21857.89
SMT-RAT (new) 3164 2684 0 19423.97
Yices 4660 1188 0 9913.71
z3 5105 743 0 12350.01

Table 5.2: Current results on a selection of 5847 benchmarks from the QF_BV benchmarks of
SMT-COMP 2015

5.2 BVModule Evaluation

Table 5.2 shows the results of a comparison of the solvers CVC4, MathSat, Yices and z3, in their
versions which participated in the SMT-COMP 2015, and the solver SMT-RAT. “SMT-RAT
(old)” denotes the version of the competition, “SMT-RAT (new)” refers to the current state of
the implementation. The used set of 5847 benchmarks was chosen randomly from the set of all
QF_BV benchmarks of SMT-COMP 2015. All solvers were given a maximum execution time of
60 CPU seconds and a memory limit of 5 GB.

The column “# res. out” lists the number of runs of the corresponding solver which resulted
in a resource exhaustion, i.e. a memory or time limit. Runs for which the solvers respond with
the special response unknown can be found in the column “unknown”. For the last column, which
sums up the CPU time needed by each solver, computations resulting in a timeout are counted
with the maximum permitted time (60 seconds).

It can be seen that we were able to improve the performance of SMT-RAT both in terms of
the number of correctly solved benchmarks and the required CPU time. These performance gains
in comparison to the SMT-COMP version are mainly the result of the optimizations described
in Chapter 3.3.

On the other hand, even the new version of SMT-RAT still does not achieve the same results
as its competitors. We attribute this to additional techniques that are implemented in the other
solvers as preprocessing or abstraction steps.

5.3 IntBlastModule Evaluation

One of the most important configuration options of the IntBlastModule is the numerical
setting MAX_WIDTH, which controls the maximum number of bits that are used to encode a
single integer variable. Table 5.3 compares the running times and the number of solved instances
for different choices of MAX_WIDTH. The settings for the benchmarks in this section comprise
a CPU timeout of 1200 seconds, a wallclock timeout of 600 seconds and a memory limit of 25
GB.

Two general observations can be made: First, a higher MAX_WIDTH has great impact on
the running time of the algorithm. This is not surprising, as a higher number of bits leads to
a quick increase in the global number of propositional variables. Second, although an increase
of MAX_WIDTH generally makes it possible to find more solutions using the bitvector solver,
the figures convey the opposite relation. This is due to the fact that the solver cannot complete
many of its computations in the case of a high MAX_WIDTH, such that the solutions cannot

5.3. IntBlastModule Evaluation 75

MAX_WIDTH # solved # res. out # unknown time
2 7386 160 929 8270.01
3 7406 332 737 22132.51
4 7392 487 596 35854.48
6 7288 740 447 50526.63
8 7204 922 348 79110.69
12 6986 1265 224 133762.47

Table 5.3: Performance on different settings for MAX_WIDTH

Solver # solved # res. out # unknown time
AProVE 8266 201 8 6162.53
SMT-RAT (IB-3) 7406 332 737 22132.51
SMT-RAT (Arith) 7421 1039 15 11043.87

Table 5.4: Comparison of AProVE to IntBlast strategy (MAX_WIDTH = 3) and arithmetic
strategy (linear arithmetic, virtual substitution, cylindrical algebraic decomposition)

be found in time.

Judging from the compared numbers, a good choice for MAX_WIDTH seems to be a value
around 3. It is remarkable that even only small bits per integer suffice to solve the vast majority
of benchmarks.

To evaluate the overall performance of the IntBlastModule, we compare it to AProVE
[FGM+07], the winner of the SMT-COMP 2015 in the QF_NIA category, and another SMT-
RAT strategy which is based completely on arithmetic techniques, namely the Simplex algorithm,
Virtual Substitution and Cylindrical Algebraic Decomposition. The results are depicted in Ta-
ble 5.4.

As AProVE also uses a bit-blasting technique that is closely related to the one implemented
in the IntBlastModule, it is interesting to see that AProVE performs better regarding the
number of solved instances and the CPU time. Most probably, the difference in running time
can be explained from the handling of encoding width limits. While AProVE has a variable
similar to MAX_WIDTH, it does not use a constant setting for this variable, but increments it
iteratively. Initially, the width limit is set to 1. This approach seems to be a good choice for
reducing the average execution time.

Comparing the results of the IntBlast and the arithmetic strategy of SMT-RAT, we can con-
clude that the two approaches are able to solve a similar number of benchmarks. However, among
the unsolved benchmarks, the relation between “res. out” and “unknown” results is significantly
different. The IntBlast module is well-suited for being complemented by an alternative module
as backend, which is consulted in all “unknown” cases.

All in all, the results confirm that a SAT-based approach for nonlinear integer arithmetic is
feasible with a very decent performance.

76 Chapter 5. Evaluation

Chapter 6

Conclusion

In this chapter, we sum up the most important points of our thesis and give suggestions for
further related research.

6.1 Summary

The first part of our thesis was concerned with the SMT theory of bitvector arithmetic. With its
rich expressivity, that is tailored to the operations of state-of-the-art CPUs, SMT(QF_BV) is
a well-suited modeling framework for software and hardware verification purposes. For deciding
SMT(QF_BV), we implemented a bitvector module based on the approach of flattening to
propositional logic.

The prevalence of bit-blasting as a solving method for bitvector logic immediately suggests the
question whether bit-blasting can also serve as a basis for handling problems on other domains.
The success of SAT-based solvers like AProVE demonstrates that SAT solving on nonlinear
integer arithmetic is indeed feasible. We generalized this approach towards a better modularity
by reducing to bitvector logic instead of directly encoding to SAT.

Several important steps of the reduction have been identified and examined for optimiza-
tion potential. One such optimization is the encoding with an offset, which allows for a better
handling of linear variables. Most importantly, we showed how to integrate a module for Inter-
val Constraint Propagation that further enables us to constrain the complexity of the created
bitvector problem instances.

The evaluation of our bitvector module shows that the implemented decision procedure can
already decide the majority of problems. However, there is still room for improvement, especially
by applying preprocessing steps prior to the actual bit-blasting. For the integer arithmetic
module, the evaluation already contains promising results.

6.2 Future Work

Throughout the development of our thesis, multiple points have arisen which would be interesting
for future research.

Regarding the implementation of the bitvector module, it seems that further performance

78 Chapter 6. Conclusion

improvements rather require new mechanisms of preprocessing or simplification than minor low-
level optimizations. In the past, abstraction-based approaches like [BB09] or [BKO+07] have
successfully been employed, which iteratively refine approximations of the problem. It is very
likely that the idea of abstractions still has a lot of potential to further improve bitvector solving.

Another aspect to be explored is the conversion from propositional formulas, as they are
generated by the bitvector module, to an equisatisfiable CNF representation. Structures like
And-Inverter-Graphs [BB04] or NICE dags [MV07] provide a representation of Boolean formulas
that allow for an efficient transformation to CNF and may thereby be especially suited in the
context of SAT solving.

For our module concerned with integer arithmetic, there are also several aspects which could
be subject of further research. An important part of the algorithm, which is probably worth
being investigated, is the generation of constraint and polynomial trees. At the moment, we use
the rather simple method to expand the polynomials and add up the created summands. It would
be interesting to see whether using factorizations of the polynomials could lead to performance
gains. Even without applying factorizations, there might be a way to rewrite monomials into
polynomial trees to maximize the number of shared subtrees among the encodings of different
polynomials.

Our experiments indicate that bit-blasting on integer arithmetic gives best results if the
maximum width for each variable is a relatively low number. In the spirit of abstraction and
refinement, an iterative incrementing of the maximum encoding width might result in a better
flexibility and a faster application of the SAT solver.

With the configurability of SMT-RAT, the integer blasting module can be composed in
numerous ways with the remaining modules. We believe that a smart choice of the solving
strategy and the application of parallel computation has the potential to unite the strengths of
the different concepts. Eventually it is possible to find heuristics that allow the strategy to adapt
flexibly to its inputs. It would be exciting to examine how to optimize the solving strategy to
obtain a powerful solver for nonlinear integer arithmetic.

Bibliography

[BB04] Per Bjesse and Arne Boralv. DAG-aware circuit compression for formal verification.
In Proceedings of the 2004 IEEE/ACM International conference on Computer-aided
design, pages 42–49. IEEE Computer Society, 2004.

[BB09] Robert Brummayer and Armin Biere. Boolector: An efficient SMT solver for bit-
vectors and arrays. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 174–177. Springer, 2009.

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Computer
aided verification, pages 171–177. Springer, 2011.

[BD02] Raik Brinkmann and Rolf Drechsler. RTL-datapath verification using integer linear
programming. In Proceedings of the 2002 Asia and South Pacific Design Automation
Conference, page 741. IEEE Computer Society, 2002.

[BDL96] Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for combinations
of theories with equality. In Formal Methods In Computer-Aided Design, pages
187–201. Springer, 1996.

[BDL98] Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A decision procedure for bit-
vector arithmetic. In Proceedings of the 35th annual Design Automation Conference,
pages 522–527. ACM, 1998.

[BKO+07] Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer Strich-
man, and Bryan Brady. Deciding bit-vector arithmetic with abstraction. In Tools
and Algorithms for the Construction and Analysis of Systems, pages 358–372.
Springer, 2007.

[BLNM+09] Cristina Borralleras, Salvador Lucas, Rafael Navarro-Marset, Enric Rodríguez-
Carbonell, and Albert Rubio. Solving non-linear polynomial arithmetic via SAT
modulo linear arithmetic. In Automated Deduction–CADE-22, pages 294–305.
Springer, 2009.

[BM05] Domagoj Babić and Madanlal Musuvathi. Modular arithmetic decision procedure.
Microsoft Research Redmond, Tech. Rep. TR-2005-114, 2005.

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). http://www.SMT-LIB.org, 2010.

[Buc85] Bruno Buchberger. Gröbner bases: An algorithmic method in polynomial ideal the-
ory. In Multidimensional Systems Theory–Progress, Directions and Open Problems
in Multidimensional Systems, pages 184–232. Springer, 1985.

http://www.SMT-LIB.org

80 Bibliography

[CÁ11] Florian Corzilius and Erika Ábrahám. Virtual substitution for SMT-solving. In
Fundamentals of Computation Theory, pages 360–371. Springer, 2011.

[CDW15] Sylvain Conchon, David Déharbe, and Tjark Weber. SMT-COMP 2015.
http://smtcomp.sourceforge.net/2015/index.shtml, 2015.

[CGSS13] Alessandro Cimatti, Alberto Griggio, Bastiaan J. Schaafsma, and Roberto Sebas-
tiani. The MathSAT5 SMT solver. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 93–107. Springer, 2013.

[Chu85] Alonzo Church. The calculi of lambda-conversion. Number 6. Princeton University
Press, 1985.

[CKJ+15] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and Erika
Ábrahám. SMT-RAT: An Open Source C++ Toolbox for Strategic and Parallel
SMT Solving. In Theory and Applications of Satisfiability Testing–SAT 2015, pages
360–368. Springer, 2015.

[CMMU03] Evelyne Contejean, Claude Marché, Benjamin Monate, and Xavier Urbain. Proving
termination of rewriting with CiME. In Extended Abstracts of the 6th International
Workshop on Termination, WSTâĂŹ03, pages 71–73, 2003.

[CMTU05] Evelyne Contejean, Claude Marché, Ana P. Tomás, and Xavier Urbain. Mechani-
cally proving termination using polynomial interpretations. Journal of Automated
Reasoning, 34(4):325–363, 2005.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the third annual ACM symposium on Theory of computing, pages 151–158. ACM,
1971.

[Dav87] Ernest Davis. Constraint propagation with interval labels. Artificial intelligence,
32(3):281–331, 1987.

[DDM06] Bruno Dutertre and Leonardo De Moura. The YICES SMT Solver. Tool paper at
http://yices.csl.sri.com/tool-paper.pdf, 2(2), 2006.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer,
2008.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM (JACM), 7(3):201–215, 1960.

[FGM+07] Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René Thie-
mann, and Harald Zankl. SAT solving for termination analysis with polynomial
interpretations. Springer, 2007.

[FORS03] Jean-Christophe Filliâtre, Sam Owre, Harald Rueß, and Natarajan Shankar. ICS:
Integrated Canonizer and Solver. In Computer Aided Verification: 13th Interna-
tional Conference, CAV 2001, Paris, France, July 18-22, 2001. Proceedings, volume
2102, page 246. Springer, 2003.

[Fuh07] Carsten Fuhs. SAT-based Methods for Automated Termination Analysis with Poly-
nomial Orderings. Diploma thesis, RWTH Aachen, Germany, April 2007.

http://smtcomp.sourceforge.net/2015/index.shtml

Bibliography 81

[GBD02] Vijay Ganesh, Sergey Berezin, and David L. Dill. Deciding Presburger arithmetic
by model checking and comparisons with other methods. In Formal Methods in
Computer-Aided Design, pages 171–186. Springer, 2002.

[GD07] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays.
In Computer Aided Verification, pages 519–531. Springer, 2007.

[Gom63] Ralph E. Gomory. An algorithm for integer solutions to linear programs. Recent
advances in mathematical programming, 64:260–302, 1963.

[HBJ+14] Liana Hadarean, Kshitij Bansal, Dejan Jovanović, Clark Barrett, and Cesare Tinelli.
A tale of two solvers: Eager and lazy approaches to bit-vectors. In Computer Aided
Verification, pages 680–695. Springer, 2014.

[HC00] Chung-Yang Huang and Kwang-Ting Cheng. Assertion checking by combined word-
level ATPG and modular arithmetic constraint-solving techniques. In Proceedings
of the 37th Annual Design Automation Conference, pages 118–123. ACM, 2000.

[Hil00] David Hilbert. Mathematische Probleme. Nachrichten von der Gesellschaft der
Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1900:253–297,
1900.

[KS08] Daniel Kroening and Ofer Strichman. Decision procedures: an algorithmic point of
view. Springer Science & Business Media, 2008.

[Lev73] Leonid A Levin. Universal sequential search problems. Problemy Peredachi Infor-
matsii, 9(3):115–116, 1973.

[Lov78] Donald W Loveland. Automated theorem proving: A logical basis (fundamental
studies in computer science), sole distributor for the usa and canada, 1978.

[LS04] Shuvendu K. Lahiri and Sanjit A. Seshia. The UCLID decision procedure. In
Computer Aided Verification, pages 475–478. Springer, 2004.

[Mat70] Yuri V. Matiyasevich. Enumerable sets are diophantine. Doklady Akademii Nauk
SSSR, 191(2):279–282, 1970.

[MR98] M. Oliver Möller and Harald Rue. Solving bit-vector equations. In Formal Methods
in Computer-Aided Design, pages 36–48. Springer, 1998.

[MV07] Panagiotis Manolios and Daron Vroon. Efficient circuit to cnf conversion. In Theory
and Applications of Satisfiability Testing–SAT 2007, pages 4–9. Springer, 2007.

[NM65] John A. Nelder and Roger Mead. A simplex method for function minimization. The
computer journal, 7(4):308–313, 1965.

[PICW04] Ganapathy Parthasarathy, Madhu K. Iyer, Kwang-Ting Cheng, and Li-C. Wang.
An efficient finite-domain constraint solver for circuits. In Proceedings of the 41st
annual Design Automation Conference, pages 212–217. ACM, 2004.

[Pug91] William Pugh. The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In Proceedings of the 1991 ACM/IEEE conference on
Supercomputing, pages 4–13. ACM, 1991.

[SBD02] Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A cooperating validity
checker. In Computer Aided Verification, pages 500–504. Springer, 2002.

82 Bibliography

[Sch13] Stefan Schupp. Interval constraint propagation in SMT compliant decision proce-
dures. Master’s thesis, RWTH Aachen, Germany, March 2013.

[Sho82] Robert E. Shostak. Deciding combinations of theories. In 6th Conference on Auto-
mated Deduction, pages 209–222. Springer, 1982.

[TO13] Van Khanh To and Mizuhito Ogawa. raSAT: SMT for polynomial inequality. Re-
search report, 2013:1–23, 2013.

[Tse83] Grigori S. Tseitin. On the complexity of derivation in propositional calculus. In
Automation of reasoning, pages 466–483. Springer, 1983.

[Wei98] Volker Weispfenning. A new approach to quantifier elimination for real algebra.
Springer, 1998.

	Introduction
	Background
	SAT and SMT
	SAT and the DPLL Algorithm
	SMT and the DPLL(T) Algorithm
	SMT-LIB

	SMT-RAT
	Bitvector Arithmetic
	The SMT Logic QF_BV
	Decision Procedures

	Integer Arithmetic
	The SMT Logics QF_LIA and QF_NIA
	Decision Procedures

	Solving Bitvector Arithmetic
	BVModule Overview
	Encoding to SAT
	Functional Requirements
	Encoding Simple Terms
	Encoding Shifts
	Encoding Addition, Subtraction and Negation
	Encoding Relational Operators
	Encoding Multiplication, Division and Remainder

	Optimizations

	Solving Integer Arithmetic
	IntBlastModule Overview
	Constraint Rewriting
	Encoding to Bitvector Arithmetic
	Annotated Bitvector Terms
	Integer Mapping Creation
	Translation of Constraint Trees

	Bounds from Interval Constraint Propagation
	Introduction to ICP
	Bound Generation for Polynomial Tree Nodes
	Applying Inferred Bounds for Width Reduction

	SMT-Compliance
	Optimizations

	Evaluation
	SMT-COMP 2015 Results
	BVModule Evaluation
	IntBlastModule Evaluation

	Conclusion
	Summary
	Future Work

	Bibliography

