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Abstract

The cylindrical algebraic decomposition (CAD) method is a decision proce-
dure for real algebra also used in satisfiability-modulo-theories (SMT) solving.
Its approach is to reduce the problem to the case of univariate polynomials by
repeatedly applying a projection operator to the set of input polynomials. Since
the algorithm was first introduced several propositions for improved projection
operators were made, in particular trying to use equational constraints.

This master thesis extends the implementation of the CAD method in the
SMT solver SMT-RAT by using equational constraints. In the course of this
thesis the approach for this that is introduced in McCallum’s paper "On Pro-
jection in CAD-Based Quantifier Elimination with Equational Constraint" is
implemented and extended to more than one projection level. This is supposed
to reduce the number of polynomials that need to be computed for the projec-
tion. The implementation is additionally incremental, which is desirable for the
usage in SMT solving, where CADs for similar sets of polynomials have to be
computed.
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Chapter 1

Introduction

In the last decades humanity developed more and more computerized systems. Peo-
ple became used to being surrounded by technology and to interact with technical
systems in their everyday lives. Many tasks are handed over to machines due to an in-
creasing willingness to rely on and trust in technology. For example the development
of self-driving cars is an indication for this. However, with increasing complexity and
potential risk of the tasks that are automated comes a high necessity for the correct
functioning of such automated systems. The software that controls for example self-
driving cars has to be highly reliable and bug-free. Therefore it is extensively tested
during the development process. Testing is useful to prove that a software contains
errors, but it is not suitable to prove the correctness of a program. For safety-critical
applications the latter is desirable to ensure accurate functioning of the software.

The attempt to verify the correctness of a program on the basis of a mathematical
calculus is called software verification. During this procedure the program is typically
transformed into a mathematical model and the properties to be proven are formal-
ized on the basis of this model. An example for a powerful modeling formalism is
first-order-logic. When using this formalism, the program can be verified by deciding
whether a corresponding first-order-logic formula in the context of a background the-
ory is satisfiable. Depending on the application different background theories can be
used. Problems of this type are called satisfiability-modulo-theories (SMT) problems.
These problems are quite complex to solve, the decision problem for propositional
logic formulas is already NP-complete. Still some programs, so called SMT solvers,
aim to solve them, since despite bad worst-case complexity many problems can be
solved reasonably fast. Nevertheless, it is always strived to further improve the used
methods.

One example for an SMT solver is SMT-RAT, which is maintained as an open
source project by the Theory of Hybrid Systems research group at RWTH Aachen
University. SMT-RAT combines a satisfiability problem (SAT) solver and theory
solvers for different background theories in order to solve SMT problems. For ex-
ample for the theory of real numbers SMT-RAT contains an implementation of the
cylindrical algebraic decomposition (CAD) method, which decomposes R™ according
to a set of polynomials into cylindrically arranged cells. The approach of this method
is to reduce the problem to the case of univariate polynomials by repeatedly applying
a projection operator to the initial set of polynomials. To apply such a projection op-
erators is computationally expensive, therefore, in order to speed up the computation,
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several improvements for the projection operator were proposed. In this thesis the so
called restricted projection operator McCallum presented in [16] is considered. This
operator makes use of equational constraints to reduce the number of polynomials
that have to be computed.

In the course of this thesis the restricted projection operator is added to the
implementation of the CAD method in SMT-RAT. It has to be taken into account
that the projection is computed incrementally in this implementation, which might
reduce the impact of this operator on the computational effort. In the attempt to
further improve the CAD method the restricted operator is not only used in the first
level, but in as many consecutive levels (starting with the first) as possible, despite
the usage of it only being validated for the first level unless the CAD is computed for
R3. It is going to be examined whether the application of this operator in successive
levels causes errors on a set of benchmarks. Further examinations consider the impact
of this change on the overall performance of SMT-RAT.

Two other contributions to the CAD method in SMT-RAT are implemented as
well. One is the use of bounds for individual variables to simplify the projection,
the other is to deactivate polynomials instead of deleting them. Afterwards different
combinations of these three changes in the implementation are evaluated, to determine
whether they improve the overall performance of the CAD implementation.

This thesis begins with an introduction to three decision procedures for different
problems in Chapter 2] First propositional logic formulas and SAT are described,
followed by the DPLL algorithm, which is used to this kind of problems. It is continued
with an introduction to the CAD method, which is used to solve non-linear real
algebra problems. This method consists of two phases, the projection phase, which is
described in more detail since it is required for the main part of this thesis, and the
lifting phase. Next it is explained how these two decision procedures can be combined
in SMT solvers in order to solve combinations of the previously introduced problems.
Then the SMT solver SMT-RAT is introduced with focus on the incrementality of
its components. In Chapter [3| the restricted projection operator mentioned before
is explained as well as a slightly different semi-restricted projection operator. The
implementation of the former is described in Chapter [4] after a description of the
other two changes in the implementation, namely the simplification by using bounds
and the deactivation of polynomials. The experimental results for evaluating the
performance of the changed implementation on some benchmarks are presented and
discussed in Chapter[5] And finally a summary of this thesis as well as a short outline
of possible future work is given in Chapter [6]



Chapter 2

Preliminaries

In this chapter first the satisfiability problem (SAT) is introduced as well as the
Davis-Putnam-Logemann-Loveland (DPLL) algorithm, which is implemented in most
SAT solvers. Then the cylindrical algebraic decomposition (CAD) method, a decision
procedure for real algebra, is described. This method consists of a projection and a
lifting phase. For a better understanding of the main part of this thesis the projection
phase is explained in more detail. It is continued with an introduction to satisfiability-
modulo-theories (SMT) solvers that allow to combine these two methods followed by
a description of one of these, namely, SMT-RAT.

2.1 Satisfiability checking

The satisfiability problem (SAT) is to decide whether a given propositional logic for-
mula is satisfiable. Such a formula is composed of propositions, negations —, disjunc-
tions v, conjunctions A and implications =. For all propositional logic formulas ex-
ists an equisatisfiable formula in conjunctive normal form (CNF) (see Definition[2.1.1))
that can be generated with only linear growth in size by using Tseitin’s transforma-
tion [20]. Therefore in the following it is assumed that the occurring propositional
logic formulas are in CNF.

Definition 2.1.1 (CNF).
A formula ¢ of the form

m;

<P=/\ 4 Dij,

=1 j=1
with literals p;;, where a literal is either a proposition or its negation, is in CNF.
The disjunctions of literals are called clauses.

A propositional logic formula ¢ is satisfiable if a variable assignment « : {p1,...,pn }
— {true, false} for the propositions pi, ..., p, in ¢ exists such that the formula
evaluates to true under the usual interpretation of the connectives.

SAT is an NP-complete problem, which means that probably no algorithm exists
that can solve it in polynomial-time. Nevertheless in practice there are some algo-
rithms that perform well on many SAT instances despite bad worst-case complexity.
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Algorithm 1 The DPLL algorithm

1: function DPLL(propositional logic formula ¢)
2 while true do

3 while -BCP(y) do

4 if —-RESOLVE() then

5: return unsat
6

7
8

9

end if
end while
if -DECIDE(p) then
: return sat
10: end if
11: end while
12: end function

One of these is the Davis-Putnam-Logemann-Loveland (DPLL) algorithm presented
in [II] and [I0] that is implemented in many state-of-the-art SAT solvers.

The DPLL algorithm (in Algorithm [I)) is illustrated in Figure for a better
understanding. Its approach is to iteratively build a partial truth assignment start-
ing with only unevaluated propositional variables. Therefore first Boolean constraint
propagation (BCP) is executed. This method examines whether under the current
partial assignment of truth values to propositions other assignments are implied in
order for the formula to evaluate to true. In case there occurs a conflict, which means
that a variable needs to be assigned true and false for the formula to be satisfied
BCP returns false. In that case RESOLVE CONFLICT is executed, in this method
conflict-driven clause-learning and backtracking are applied in order to resolve the
conflict. If this is impossible the formula is unsatisfiable and false is returned, oth-
erwise the algorithm continues with BCP. When BCP can be executed without the
occurrence of a conflict it is checked whether all variables have a truth value assigned.
If that is the case the formula is satisfiable and DECIDE returns false, otherwise a
decision is made by DECIDE. Making a decision means to choose a variable without
truth value and assign one. After a decision BCP is applied and the loop described
above is executed again until the satisfiability of the formula is determined. An ex-
ample for the execution of the DPLL algorithm can be found in Example

yes

yes| conflict no
. UNSAT
resolution

(o)

make
decision

all variables

no

yes
SAT

assigned?

Figure 2.1: DPLL [1]
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Example 2.1.1 (DPLL algorithm).

Input: ¢ = ¢c;1 Aca Acg Acy = p1 A (Pavps) A (mp3vpa) A (—p1VvPay —pg);
a =
BCP: a — a v {p — true} = implied by c;
DECIDE: o < a U {ps — false}
BCP: a — a v {p3 — true} = implied by co
BCP: a — a v {pg — true} = implied by c3
Conflict: cy
CONFLICT RESOLUTION:
¢s = Resolution(cs,cy) = —p1 Vv pa v —p3 = conflict clause
PP N Cs
a — a\{p2 — false; ps — true; py — true} = backtracking
a = {p1 — true, py — true, p3 — true, py — true}
No conflict, all variables assigned.
Output: SAT

The performance of the DPLL algorithm depends on various details in the imple-
mentation for example the conflict resolution and the heuristic for choosing the next
variable when a decision is made. Since the general concept of the DPLL algorithm
is sufficient for this thesis further improvements of the algorithm are not discussed
here.

After introducing the decision problem for propositional logic formulas in this
section, the next section is about the theory of real numbers and a decision procedure
for real algebra.

2.2 Cylindrical algebraic decomposition

The cylindrical algebraic decomposition (CAD) method is a decision procedure for
real algebra, more precisely a method for quantifier elimination to determine whether
a first-order-logic formula has a solution regarding the underlying theory of real num-
bers. In the context of this thesis the CAD method is only used for sets of constraints.
This satisfiability problem is decidable [I9], but the CAD method has doubly expo-
nential complexity in the number of variables [6]. In the following the theory of real
numbers "Reals" is defined as in the SMT-LIB [3] (see Definition with the
common semantics for the function symbols and comparison predicates. The func-
tion symbol — represents actually two functions, the unary negation and the binary
subtraction.

Definition 2.2.1 (Theory of real numbers "Reals").

domain: R
function symbols: —, +, -,/

comparison predicates: <, <, =, >

A polynomial over the real numbers (see Definition consists of coefficients in
R, variables and the function symbols + and -. A polynomial is the sum of monomials
(see Definition . The corresponding polynomial function for a polynomial p is
called p as well.
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Definition 2.2.2 (Monomial).
A term of the form
n
M=a-| |,
i=1
with e; € Ny and a coefficient a € R, is called monomial.

Definition 2.2.3 (Polynomial).
A term of the form

m
p= >, M,
k=1
with monomials My, is called polynomial.

The set of all polynomials with coefficients in R and variables x1, ..., x, is denoted
as R[z1,...,z,]. Polynomials in R[z;] for some variable x; are called univariate. Mul-
tivariate polynomials are those in R[z1,...,2,,] for n > 1, they can be interpreted as
univariate polynomials in R[x1,...,2,—1][2,]. These multivariate polynomials are then
used to define so called quantifier-free non-linear real arithmetic constraints. Such a
constraint (see Definition is a polynomial compared to zero.

Definition 2.2.4 (Polynomial constraint).
An expression of the form

p 00,

with p € Rlx1,..,xn] and O € {<, <, =, #, =, >}, is called polynomial
constraint.

In this thesis the purpose of the CAD method is to determine whether a set (or
conjunction) of constraints C is satisfiable. This is the case if a point a = (ay,...,an)
in R™ exists such that all constraints in the set are satisfied when the corresponding
polynomial functions are evaluated in a. Another application of the CAD method is
quantifier elimination, which is not covered in this thesis.

The CAD method is a fundamental algorithm in the field of real algebra and
was first introduced by Arnon, Collins and McCallum in [2]. The approach of this
algorithm is to decompose R™ into finitely many cylindrically arranged cells, each
represented by one sample point, such that the solution for the decision problem can
be determined by evaluating the polynomial functions only in these sample points.

Definition 2.2.5 (Decomposition).
A set

{C1, ..., Cn}
is a decomposition of R™, if R" = 4Ji*, C; holds.

Decompositions are introduced in Definition 2.2.5] A decomposition is algebraic
if all of its cells are semi-algebraic sets, which means they can be described by a
conjunction of polynomial constraints. The cells are cylindrically arranged when the
projections of two cells onto a lower dimension are either equal or disjoint. These
definitions are taken from [2]. A sign-invariant CAD (see Definition [2.2.6)) is suitable
for the above described purpose.
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Definition 2.2.6 (Sign-invariance).
Given A c R™ and p € R[z1,...,z,], p is called sign-invariant on A, if either

e p(x)>0VzeAor
e p(x)=0YzeAor
e p(x) <0V ze A holds.

P c R[z1,...,x,] is called sign-invariant on A, if each p € P is sign-invariant on A.
P is furthermore sign-invariant on C = {c1,...,c;m}, with ¢; < R™, if P is sign-
mwvariant on ¢; for all 1 < i< m.

Definition 2.2.7 (Real root).
a € R™ is a real root of the polynomial p € R[x1,...,x,] iff p(a) = 0.

A sign-invariant CAD is determined by the roots of the polynomials in the input
set. Since the real roots (see Definition of univariate polynomials can be com-
puted effectively, a sign-invariant CAD for R can be computed as is illustrated in the
Example 2:2.1] The idea behind the CAD method is, that multivariate polynomials
are projected to univariate polynomials by eliminating the variables one after another.
Then a CAD on R is determined and lifted to a CAD of R".

Example 2.2.1 (One dimensional CAD).
Let a set of polynomials be given by {p1 = v1 — 0.5; po = —2-2%; py = 27 — 1}

e Real roots of the polynomials:

0.5 1

e CAD: (—o0,—1), —1, (=1,0), 0, (0,0.5), 0.5, (0.5,1), 1, (1,00)

e Sample points:

So to construct a sign-invariant CAD two phases are executed: the projection and
the lifting phase. During the projection phase a projection operator that decreases
the number of variables by one is applied repeatedly until the remaining polynomials
are univariate. During this phase the polynomials that describe the boundaries of the
CAD cells are computed. Afterwards are in the lifting phase the sample points gen-
erated by computing the real roots of only univariate polynomials. These two phases
are described in more detail in the next two subsections. Especially the projection
phase is important for the main part of this thesis.
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2.2.1 Projection

A projection operator P has to have the property that for a set of polynomials P,
each CAD C,,_; for P(P,,) can be extended to a CAD C,, for P,, by constructing the
cells of C,, to be the sign-invariant regions for all polynomials in P,, in the cylinders
Cn—1,; x R for each C,_; 1 in C,—1. This property is required for lifting.

Definition 2.2.8 (Delineability).

A polynomial p € R[x1,...,x,] is delineable over a connected region C < R"™1 if
for all x € C holds p(x,x,) is identically zero and the real roots of p over C define
continuous real-valued functions 01, ..., 5 such that for all x € C 01(x) < ... < b4(x)
and for each 0; there is an m; € N such that m; is the multiplicity of the root 0;(x) of

p(z,2n).

To be able to decompose a region C' x R to sign-invariant cylindrically arranged
cells for a set of polynomials P the polynomials in P have to be delineable over C (see
Definition according to [7]). Delineability is needed to define the boundaries of
cylindrical cells.

There are several different projection operators that have the above mentioned
property, the best known are Collins’ [2] and Hong’s [I3]. For McCallum’s [14] and
Brown’s [7] projection operator this can be for certain inputs achieved. These pro-
jection operators were compared in [2I] where McCallum'’s operator proved to be far
better than Collins’, despite being incomplete. Hong’s operator was suggested as a
possibility for cases where McCallum’s operator is not applicable, since the number
of polynomials is significantly reduced compared to Collins’, however generally not
as much as when using McCallum’s operator. Brown’s and McCallum’s operators
achieved similar results. However they still have the disadvantage that the number
of projected polynomials grows exponentially.

In this thesis Brown’s projection operator as presented in [7] is used, since the ex-
amination in [2I] found that Brown’s and McCallum’s operator are working compara-
bly well and when using Brown’s projection operator the resulting projection contains
less polynomials. Brown’s operator also keeps the amount of lifting points smaller.
Otherwise the two operators are quite similar. Before formally defining Brown’s pro-
jection operator some mathematical definitions that are required for computing the
projection are introduced.

In the following a multivariate polynomial p in R[zq,...,x,] is interpreted as uni-
variate polynomial in R[z1,...,x,,—1][2,]. With this interpretation it is possible to
define the leading coefficient for multivariate polynomials, see Definition [2.2.9

Definition 2.2.9 (Leading coefficient).
The leading coefficient of a polynomial p = Y.\ p; - x%, € R[z1,...,xn—1][zn] is defined
as

lef(p) = pm € Rl21,0yTn_1]-
Apart from the leading coeflicient also discriminants and resultants are required

for the projection operator. These are defined using the Sylvester matrix (see Defini-
tion [2.2.10). The following mathematical foundations are taken from [5].
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Definition 2.2.10 (Sylvester matrix).
The matriz

af ap
ag ap

_ (075 ao
Syl(paQ) - bl bO i

b, bo

b bo

for polynomials p = Zf:o a; - @t and q = Zé‘:(} bj - xd,, is called Sylvester matriz.

n’

Resultants and discriminants are then defined in Definition 2.2.111 Both can be
defined using the roots of p and ¢. This definition shows that resultants can be used to
check whether two polynomials p and ¢ have common roots since they vanish exactly
in that case, while the discriminant of a polynomial p vanishes if and only if p has a
multiple root. Both can be computed as the determinant of a Sylvester matrix.

Definition 2.2.11 (Resultants and discriminants).
l

For polynomials p = Y,\" a; -z, and ¢ = ijo bj -,
respectively yi, ..., y;, is the resultant defined as

res(p.g) = ab, b [ ] (mi—v) = det(Syl(p.q))

1<i<m 1<5<l

with the roots x1, ..., Ty,

and the discriminant as

disc(p) = H (z; —x;)? = det(Syl(p,p")),

1<i<j<m
where p’ is the derivative of p.

Given the necessary definitions to compute the projection using Brown’s operator,
next the requirements for using this operator are described. As well as McCallum’s
operator, described in [I4], Brown’s operator requires the use of the finest square-free
basis (see Definition , in each projection step.

Definition 2.2.12 (Square-free).
A polynomial p € Z[xy,..,x,] is called square-free, if q*> does mot divide p, Vq €
Z|z1, s xn \2[ 21, s T —1].

Definition 2.2.13 (Finest square-free basis).

A finest square-free basis of a set of polynomials P = {p1, ..., pm} € Z[x1,..,xy] is
the set of all irreducible factors of [\, p;.

A set of pairwise relatively prime irreducible integral polynomials is also referred to
as finest square-free basis.

The correctness of the CAD can also only be guaranteed when the input polyno-
mials are well-oriented (see Definition [15]), otherwise projection factors might
vanish identically over a region of dimension greater than zero. McCallum argued that
the vast majority of polynomials is well-oriented, particularly all polynomials with at
most three variables. Also there is some modification to the lifting stage that allows
the CAD to stay correct in some cases, even if the polynomials are not well-oriented.
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Definition 2.2.14 (Content and primitive part of a polynomial).
For f = Y™, a xl € Rlwy,...,2n] with a; € R[zy,....v,_1] and a,, # 0 is

e cont(f) = ged(ao,...,am) the content, when ged is the greatest common divisor.
e prim(f) = f/cont(f) the primitive part.

Definition 2.2.15 (Content and primitive part of a set of polynomials).
For A c Rlzy,...,x,] is

e cont(A) = {cont(f)|f € A and cont(f) is non-zero, non-unit} the content of
A,

e prim(A) = {prim(f)|f € A and prim(f) has positive degree} the primitive
part of A,

with cont(f) and prim(f) for f € R[xy,...,x,] as in Definition|2.2.14]

Definition 2.2.16 (Well-oriented).

Let prim(A) and cont(A) be given as in Definition [2.2.15

A set A c R[zy,...,xy] is called well-oriented with regard to a projection operator P,
if no element of prim(A) vanishes on any sub-manifold of R"~1 of positive dimension
and cont(A) u P(B), where B is the finest square-free basis for prim(A), is well-
ortented.

For a set P, of well-oriented polynomials with the finest square-free basis P/,
Brown’s projection operator is defined in Definition according to [6]. P, is
called projection level n. The projection operator is applied repeatedly until the entire
projection P = P, u...u P; is computed. In this process the variables are regarded
in descending order. It is first projected with respect to x, and in the last level the
polynomials are univariate in x1. The greatest variable present in a polynomial p,
with respect to the ordering, is called main variable of p.

Definition 2.2.17 (Brown’s projection operator).
Proj(Pn) = Pp-1

= {lcf(pl)a disc(pi)v Tes(pivpj) | Di, Py € P;ml # j} Y CO?’Zt(Pn)
R[:Ch...,xn,l],

N

for P, < Rlxy,....xn] and P., finest square-free basis of Py,.

Due to the resultants of pairwise distinct polynomials the projected polynomials
grow quadratically in number and size. It should be noted that the polynomials in
P1 are univariate, which means that their roots can be computed efficiently. This is
used in the lifting phase of the CAD method to generate the CAD.

2.2.2 Lifting

In the lifting phase the projection levels, generated in the projection phase and de-
scribed in the previous section, are used in reverse order to compute the CAD. This
procedure is outlined below, as explained in [7]:

e compute C; (CAD of R') defined by P,
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e compute C;, (CAD of R¥) defined by Py U ... U Py, by lifting over cells of Cp_;

e C € (1 is represented by (aq,...,ax—1) € C, substitute (aq,...,ax—1) for
Z1,...,Xk—1 in P and compute the roots of the resulting polynomials univariate
in zy to extend Cp_1

It is started with the first projection level Py, since this level contains only univari-
ate polynomials. First the real roots of the polynomials in P; are computed. Then
the CAD C; is the set that contains the real roots and the intervals in-between as well
as the intervals from —oo to the smallest root and from the greatest root to co. C; is
represented by a set of sample points. The real roots are represented by themselves
and the intervals each by one point in the interval. This was already illustrated in
Example Then the property of the projection operator described in Section [2.2)
is used and the CAD C; of R is extended to a CAD Cs of R? and so on.

Let the CAD C,,_1 = {C1,...,Cy,,} of R"™! be represented by the sample points
{a1,....,ct;;} © R*"L Then it is extended to C, in the following way: (z1,...,25_1)
is substituted by «; in P,, the resulting set of polynomials is called P,[c;]. Next
the roots of the univariate polynomials in P,[«;] are computed. These are used to
decompose C; x R into sign-invariant regions for the polynomials in P,,. Each of these
regions is represented by (a;, ), for § € R representing one of the regions in the
one-dimensional CAD of P,,[«;]. This is done for all C; € C,,_1, C,, is then composed
of all the resulting cells.

Since Brown’s projection operator is used it can happen that some polynomials in
the projection are not delineable, which is required to be able to decompose a region
into cylindrical cells. An example for non-delineable polynomials over a region C' is
given in Example The set of polynomials used there is however delineable over
each of the regions Cq, ..., C5. This shows that delineability may be achieved by
further decomposing the cell.

Example 2.2.2 (Delineability).

C Ci Cy C3 C4Cs
Figure 2.2: Not delineable Figure 2.3: Delineable
This is relevant when using Brown’s projection operator, because it might happen

that projection factors vanish identically over finitely many isolated points. These
points need to be computed and added to the CAD during the lifting phase (this has
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no impact on the projection phase). Often some of these points are already zero-
dimensional cells in the CAD without being explicitly added. So when a polynomial
p € Py, vanishes identically over a cell in C,,_1, p is replaced with a so called delineating
polynomial for lifting, which ensures the delineability of the other polynomials. More
details about this process can be found in [7] and [22].

2.3 Satisfiability-modulo-theories solver

In Section a decision procedure for propositional logic formulas is introduced and
in Section [2:2] one for real algebra. These two procedures can be combined in a
satisfiability-modulo-theories (SMT) solver. What kind of problems can be solved
that way and how is described in this section.

An SMT solver is a computer program with the purpose to decide the satisfiabil-
ity of an SMT formula, more specifically to decide whether a given first-order logic
formula is satisfiable with respect to combinations of background theories. Such a
decision problem is called SMT problem. In the SMT-LIB standard [3] precise defini-
tions of the syntax and semantics of specific classes of SMT problems are established.
Therefore it is distinguished between logics and theories that can be combined as
desired. In the course of this thesis the logic of non-linear real arithmetic, which is
based on the theory of real numbers, is of interest, though restricted by the exclu-
sion of quantifiers. This subclass of SMT problems is called quantifier-free non-linear
real arithmetic (QF NRA) in the SMT-LIB. The specific problem is then to de-
cide whether there exist real values for the variables in a non-linear real arithmetic
formula such that the formula is satisfied. Due to the restriction that the logical
formula contains no quantifiers this is a generalization of SAT (see Section by
using polynomial constraints (see Definition instead of propositional variables.
So QF _NRA problems are the combination of the two decision problems presented
in the previous sections.

Next SMT solvers are described, for more details see [4]. In this thesis only SMT
solvers constructed according to the so called lazy SMT solving approach, outlined
in Figure are considered. A lazy SMT solver combines a SAT solver and theory
solvers (for conjunctions of constraints).

input
CNF formula
|

Boolean abstraction Theory

SAT solver solver(s)

constraints

(SAT+model) or
(UNSAT+-explanation) or

Figure 2.4: SMT solving framework [I]
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Algorithm 2 The 7-DPLL algorithm

function 7-DPLL(quantifier-free SMT formula )

1:

2 p « skel(p)

3 if —BCP(y) then
4 return unsat
5: end if
6

7

8

9

while true do
if _DECIDE(p) then
return sat

: end if
10: repeat
11: while —BCP(y) do
12: if —=RESOLVE CONFLICT() then
13: return unsat
14: end if
15: end while
16: t < T-DEDUCTION()
17: © — ¢ A skel(t)
18: until ¢ = true
19: end while

20: end function

First the included SAT solver computes the Boolean abstraction of the input SMT
formula (see Deﬁnition, there an SMT formula is understood as a propositional
logic formula with polynomial constraints instead of propositional variables. After-
wards it tries to find a solution for the Boolean abstraction. Then the theory solver
gets a conjunction of constraints, corresponding to the current (partial) assignment
for the propositional variables, as input and tries to find a solution for these [4]. In
case no solution exists the theory solver returns an infeasible subset to the SAT solver
that uses this to find another Boolean solution if possible, otherwise the theory solver
returns the solution.

Definition 2.3.1 (Boolean abstraction).

The Boolean abstraction skel(p) of an SMT formula ¢ is the propositional logic for-
mula that is obtained by replacing each constraint p in ¢ by a fresh propositional
variable X,,.

It is further distinguished between full and less lazy approaches. In the full lazy
approach the SAT solver tries to find a full solution for the Boolean abstraction before
the theory solver gets a conjunction of constraints and searches for a theory solution,
while in the less lazy approach after every conflict-free BCP execution the theory
consistency is checked on the partial assignment [I]. The less lazy approach has the
advantage that theory inconsistent assignments can be detected earlier. And in case
the result is SAT and the partial assignments are consistent with the theory the
computational effort is not higher than that of the full lazy approach, at least when
using an incremental theory solver (see Section . However when the Boolean
abstraction is already unsatisfiable with the less lazy approach some unnecessary
theory calls are made.

Less lazy SMT solvers implement the 7-DPLL algorithm as shown in Algorithm 2]



22 Chapter 2. Preliminaries

which is an extension of the DPLL algorithm introduced in Section 2.1} For further
details see [18]. The functions BCP, DECIDE and RESOLVE CONFLICT are the
same as used in the DPLL algorithm. What is different is that after every conflict-free
BCP call the method T-DEDUCTION is executed. This function first transforms the
partial assignment according to Definition [2.3.2] to a set of theory constraints ®.

Definition 2.3.2 (Theory solver input).
The theory solver input for a partial assignment o is

& = {p| a(X,) = true} U {~p | a(X,) = falsc}.

Then it checks the consistency of the constraints in ® by using a theory solver.
T-DEDUCTION returns true in case of consistency, otherwise an infeasible subset
of ® is computed and the negated conjunction of the constraints in this subset is
returned. In the second case the returned clause is added to the initial SMT formula.
Then the loop is repeatedly executed until either a solution or an explanation for the
unsatisfiability of the input is found.

Using the propositional logic formula in Example [2.1.1] as the Boolean abstraction
of an SMT formula an example for a 7-DPLL execution is given in Example

Example 2.3.1 (7-DPLL algorithm).
Input: ¢ = p1 A (pavps) A (mp3vps) A (CpLVvpey —pa);a = I
with p1 instead of x # 0, pa fory # 0, ps for x2-y% =0 and py forz®>—1 <0
DPLL: a = {p1 — true}
T-DEDUCTION: true forx = 1

DPLL: « = {p1 — true; py > true; ps — true; py — true}
T-DEDUCTION:

{p1,p2,03} = infeasible subset
Ce = —pP1V P2V TP3

p=¥ N Cg

a — a\{ps — true; ps — true} > backtracking

DPLL: a = {py — true; ps — true; ps — false; py — true}
T-DEDUCTION: true forx = 0.5, y = 1
No conflict, all variables assigned.

Output: SAT, forx = 0.5, y = 1

An SMT solver implementing this approach is for example SMT-RAT, which is
described in the next section.

2.3.1 SMT-RAT

SMT-RAT is the abbreviation for satisfiability-modulo-theories real arithmetic toolbox,
which is an SMT solver written in C++4-. This solver is maintained as an open source
project by the Theory of Hybrid Systems research group at RWTH Aachen University.
It is described in [I], in more detail in [9], and includes a CAD implementation, which
is used as basis for the implementation in this thesis.

The solver contains methods to solve quantifier-free (non-)linear real and integer
arithmetic and quantifier-free formulas over the theory of fixed-size bitvectors [9]. For
this thesis is important that SMT-RAT is suitable for QF NRA as described above.
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Algorithm 3 Adding polynomials in an incremental projection

1: function ADD_ POLYNOMIAL/(polynomial p)
2: Prn — Pn v {p}

3: COMPLETE PROJECTION({p},n)

4: end function

5. function COMPLETE PROJECTION(set of polynomials P, index of main
variable n)

6 if n =1 then

7: break

8 end if

9 for all pe P do

10: P" « {ldcf(p), disc(p)} v {res(p,q) | q € Pn}
11: Prno1«— Pp1 U P’

12: COMPLETE PROJECTION(P’, n—1)

13: end for

14: end function

SMT-RAT consists of several modules that can be composed to an SMT solver.
Each module is an SMT-compliant implementation of some decision procedure. SMT-
compliancy includes three properties, see [9]:

1. incrementality: previous results should be reused and not recalculated if needed
again

2. support backtracking according to the SAT solving

3. finding an infeasible subset as explanation for inconsistent constraint sets

It is possible to use some modules individually as theory solvers. But in the
following SMT-RAT is regarded in its standard configuration as an SMT solver. It
is a less lazy SMT solver, as described in the previous section, that uses the SAT
solver MiniSAT, based on the DPLL algorithm, as SAT engine. The solver supports
several optimizations such as conflict-driven clause-learning and theory propagation.
Furthermore is SMT-RAT an incremental solver, which is one reason why the property
SMT-compliancy is required for the modules.

One important part of SMT-RAT is the CAD module. In this module several dif-
ferent projection operators are implemented, amongst others McCallum’s and Brown’s
operators. However in SMT-RAT the restriction of Brown’s projection operator to
be applied to a square-free basis is ignored. Therefore the restriction of McCallum’s
and Brown’s operator is ignored in the CAD implementation. It does also not fix the
projection if a polynomial vanishes during lifting. The impact of this was examined
in [2I]. Tt was found that McCallum’s operator indeed produces some incomplete
projections, but they did not cause an error on the benchmark set provided by the
SMT-LIB.

In the CAD module are furthermore some optimizations implemented. For ex-
ample constants as well as positive and negative definite functions are removed and
not projected, since they are always sign- and order-invariant. In order to be SMT-
compliant the CAD implementation also needs to be incremental. This means that
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the projection is implemented incrementally such that polynomials can be added and
removed individually one after another. This is realized by projecting polynomials,
instead of polynomial sets, in a depth-first manner, as in the simplified Algorithm
where any optimizations are ignored. The CAD itself is modified accordingly in an
incremental lifting phase. How removing polynomials is implemented is explained in
more detail in Section

The advantage of an incremental projection is the reduced computational effort
compared to a non-incremental implementation. This results from the less lazy SMT
solving approach and the DPLL algorithm. The SAT solver searches for a solution for
the Boolean abstraction of the input problem and if a conflict occurs or an intermedi-
ate solution is not feasible backtracking is applied. That way the SAT solver adds and
removes a few constraints while usually most constraints remain the same. Therefore
many similar CAD computations are needed, which means that large parts of pre-
viously computed CADs can be reused instead of recomputed with the incremental
implementation.
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Restricted projection

In Section 2:2.1] Brown’s projection operator is introduced. It is also explained that
in the course of computing a projection using Brown’s operator many discriminants
and resultants need to be calculated. This is one of the reason why the CAD method
is computationally expensive. The worst case complexity is doubly exponential in the
number of both constraints and variables. In many cases a CAD can still be feasibly
computed, but this method is nonetheless the most computationally expensive part of
SMT-RAT, when SMT-RAT is applied to non-linear real algebra problems. Therefore
it is desirable to reduce the computational complexity of the CAD module in practice.

There were already several improvements made since the CAD method was first
introduced in [2] with Collins’ original projection operator. A major progress was
made by McCallum, he presented an advanced projection operator in [14], which is
a subset of Collins’ operator. This means less projection polynomials and therefore
fewer cells in the CAD have to be computed, which results in a faster computation
time. Unfortunately this new operator is only applicable for well-oriented polynomials.
Additional improvements to this operator have later been suggested by Brown, as
described in Section 2211

Definition 3.0.1 (Equational constraint).
A constraint of the formp = 0, for p € Rlxy,...,x,] is called equational constraint, p
18 called equational constraint polynomial.

Collins was the first to suggest a further improvement using equational constraints
(Definition [3.0.1]), see [§], while McCallum developed the theory behind this and gave
a formal definition of the operator in [I6]. The idea behind said improvement is
that usually when constructing a CAD one is not interested in the signs of polyno-
mials but in the truth values of the corresponding constraints. This means that a
truth-invariant CAD as in Definition [3.0.2 is sufficient. A sign-invariant CAD for
the defining polynomials is trivially truth-invariant for the corresponding constraints.
However the other direction does not hold, a truth-invariant CAD may contain less
cells than a sign-invariant one.

Definition 3.0.2 (Truth-invariance).
A CAD is called truth-invariant if the truth value of each constraint is constant on
each cell of the CAD.

The concrete approach to reduce the complexity, suggested by McCallum, is to
reduce the number of resultants that need to be computed by using equational con-
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Algorithm 4 The EC-restricted CAD algorithm [I12]

Input: polynomial e € R[z1,...,2,], set of polynomials P < R[x1,...,x,].

Output: CAD of R™ invariant with respect to an e or FAIL if the input is not

well-oriented.

E — {e}

Compute the finest square-free basis F' of prim(E).

if n =1 then
return CAD on R formed by the decomposition of R according to the real

roots of the polynomials in F’

end if

A< PUEFE

C — cont(A)

Compute the finest square-free basis B for prim(A).

P «— C v Projr(B)

10: Compute the other projection levels using McCallum’s projection operator and
construct the CAD.

straints. Therefore he defines a restricted projection operator Projg, see Defini-
tion [I6]. This operator is applied instead of the McCallum operator in the
first projection level only, then the projection phase is continued with the original
McCallum operator, see Algorithm [d] His approach can be applied in combination
with projection operators other than his own as well.

Definition 3.0.3 (Restricted projection operator).
For a set of integral polynomials A < R[x1,...,x,] and E = {e} < A, for an equational
constraint polynomial e, the restricted projection of A relative to E is

Projg(A) = cont(A) u Proj(F) v {res(e,g) | e€ F,ge B,g¢ F}
= {lcf(e), disc(e) | e€ F} u{res(e,g) | ee F,ge B,g ¢ F}

C R[(El,...,(ﬂnfl]

with the finest square-free basis B for prim(A) and the finest square-free basis F for
prim(E).

The result when applying Projg is not a sign-invariant CAD but a CAD that is
sign-invariant with respect to e = 0 and sign-invariant with respect to the other
constraints in those cells where e = 0. Such a CAD is called invariant with respect
to an equational constraint. It could also be understood as a truth-invariant CAD
for the equational constraint and a sign-invariant one for the other polynomials when
the equational constraint is satisfied.

Projg might be applied in subsequent levels as well, however this is not yet proven.
McCallum gave a proof that validates the use of Pgr in the first projection level
in [I6], as well as in both levels for a 3 — dimensional CAD. Further examinations
are presented in [I7]. A complexity analysis can be found in [6].

So far it was only discussed how this operator improves the projection phase by
creating less polynomials though the lifting phase can also be optimized, which is
described in [I2] but not part of this thesis. It should also be considered that the
savings due to the improved projection operator become already magnified throughout
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the rest of the algorithm without optimizing the lifting, which is especially important
for problems with a higher number of variables.

In [6] McCallum’s reduced projection operator is generalized for a truth-invariant
CAD for a set of quantifier-free formulas. But since the implementation of an improved
projection operator in the course of this thesis is supposed to be part of the CAD
module in SMT-RAT this is not of interest here, because in SMT-RAT the CAD
method is used as a theory solver that only solves conjunctions of constraints. Another
approach that should be mentioned in this thesis is the semi-restricted projection.

3.1 Semi-restricted projection

The semi-restricted projection operator is presented in [I7]. It makes use of the resul-
tant rule in Theorem [3.1.1} which propagates equational constraints. This way more
polynomials in the projection set are classified as equational constraint polynomials
and can be used for semi-restricted projection.

Theorem 3.1.1 (Resultant rule).

If e1 and ey are both equational constraint polynomials their resultant res(eq,es) is a
propagated equational constraint polynomial, sincee; = 0 A ea = 0= res(er,ez) =
0.

For the semi-restricted projection operator defined in Definition [3.1] the repeated
application is valid, wherever it is applicable throughout the projection phase. It is
shown that the restricted projection operator Projg can be used for the first and
last projections, and the semi-restricted projection operator Proj} for every other
projection. This allows to use equational constraints (propagated or present in the
input) at every projection level to reduce the size of the projection sets. Since Pg
can only be applied in the first and last projections the reduction in size is greatest
in these levels.

Definition 3.1.1 (Semi-restricted projection operator).

For a set of pairwise relatively prime irreducible integral polynomials A C R[xy,...,xy]
and E = {e} < A, for an equational constraint polynomial e, the semi-restricted
projection of A relative to E is

Proji(A) = Projp(A) u{disc(g) | g€ A,g ¢ E}
< Rlz1,eyZn-1]-

For a set of integral polynomials A < R[z1,...,z,] and E = {e} < A, for an equational
constraint polynomial e, the restricted projection of A relative to E is

Projf(A) = cont(A) U Proji(B)
< Rlz1,...,xn-1]

with the finest square-free basis B for prim(A) and the finest square-free basis F for
prim(E).

Now that the theory of restricted projection using equational constraints is intro-
duced the next chapter deals with the implementation of this projection in SMT-RAT.
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Chapter 4

Implementation

In this chapter the extensions of the CAD module in SMT-RAT (introduced in Sec-
tion that were implemented in the context of this paper are described. The first
extension are a slightly modified data structure to store which polynomials are bounds
or purged by bounds and more regular checks whether polynomials can be neglected
due to bounds. Secondly are polynomials that are no longer needed, for example due
to the removal of a constraint, deactivated instead of deleted, which aims to make
better use of the incrementality of the module. And lastly is the implementation of
the concept presented in Chapter [3] explained.

4.1 Simplification using bounds

Bounds (see Definition are constraints that contain linear, univariate, polyno-
mials. This special type of constraints can be used to simplify the projection, which
is illustrated in Example Some polynomials that contain the variable that is re-
stricted by a bound may be neglected, more precisely those that are for all permitted
values of said variable either always positive or always negative.

Definition 4.1.1 (Bounds).
A constraint of the formz + a O 0, withaeR, Qe{<, <, =, #, =, >} and
a variable x is called a bound.

Example 4.1.1 (Simplification due to bounds).
Let a projection contain amongst others the polynomials py = x>-y>+1, ps = 2%2+y
and ps = y*-z3. May the bound x > 0 become added to the projection. Then the

polynomials are evaluated as follows:

1. py is positive for all values for x such that the bound is satisfied, despite the
occurrence of y, therefore p1 can be neglected

2. p2 contains x but its sign is also depending on y, the polynomial has still roots

3. p3 does not contain x therefore the bound has no impact on the possible values
of p3

When a polynomial can be neglected due to the bounds no successors (leading co-
efficient, discriminant and resultants) need to be computed for this polynomial. Since
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the computation of the discriminants and resultants is one of the main computational
efforts in the CAD method, it can save some computation time to evaluate which poly-
nomials are purged since for these and their successors respectively no discriminants
and resultants need to be computed. Therefore this check is performed whenever a
bound is added to the projection. It also has to be tested which polynomials can no
longer be neglected when a bound is removed. Due to the fact that in the current
implementation the adding of new polynomials and the computation of the projection
are separate methods these checks could also be performed before computing the pro-
jection in case one or several bounds were added or removed before. However for the
better comprehensibility of the implementation and considering that this check can
be performed relatively quickly here this is checked directly when adding or removing
a bound. It could be tested whether in practice the check is executed less often with
the alternatively suggested approach however it is not expected to cause a significant
reduction of the total running time.

Example 4.1.2 (Relevant levels for purging).

3,2
P p1 = xy-x; +1, ..
2 2
Prno1 P2 = Tn-1+27,p3 = Tp-1+T5_3, -
2 3
Pi Pe = Xj - Tj—2 — ]., Ps = Ij, T; > 0, ...

3
P1 Pe = Tq, ...

The check which polynomials can be neglected is limited to the relevant polyno-
mials, illustrated in Example Since a bound for the variable x has no impact
on polynomials in projection levels where x was already eliminated only levels where
x occurs are checked. Furthermore we distinguish between adding and removing a
bound. When adding a bound polynomials that are already neglected due to other
bounds (in the example gray) do not have to be checked again. Respectively when
removing a bound only polynomials that were neglected before may become relevant
again. The polynomials that are due to bounds inactive are marked in a vector of
bitsets and not deleted, because this would be impractical when a bound is removed
and the polynomials become necessary again.

4.2 Inactive polynomials

In the section before is described how polynomials become deactivated if they can be
neglected due to bounds. Another reason for polynomials to become unneeded is the
removal of a constraint. It is desirable to deactivate polynomials in this case as well,
instead of removing them, in case the constraint is added again later in the decision
process. How this is handled is explained in this section.

When a constraint is removed all polynomials resulting from the corresponding
polynomial become irrelevant. This includes not only direct successors of the poly-
nomial but also their successors recursively. Formerly all these polynomials were
deleted. This is quite inconvenient if the constraint is added again later, because then
the polynomials have to be recalculated. The case that the necessity of polynomials
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Algorithm 5 Active polynomial

function 1SACTIVE(polynomial p)
if isPurged(p) then > true if p is neglected due to bounds
return false;
else
for all origin o of p do
if o.active; A o.actives then
return true;
end if
end for
return false;
end if
end function

changes occurs even more often when the restricted projection described in Chapter [3]
is used, and we see more about this in the next section.

These circumstances require to keep polynomials even if they are currently not
part of the projection in order to save computation time. Therefore instead of remov-
ing polynomials they become deactivated. In the section before deactivation could be
achieved by simply setting a bit corresponding to the polynomial. This is not practi-
cable here, especially later when it comes to implementing the restricted projection.
The reason for this is that there may be several different causes for a polynomial
to be inactive, as indicated by Example To update whether a polynomial is
active would require to check all predecessors in the projection, which would be quite
time consuming due to the size of the projection. Therefore are not just the direct
predecessors stored for each polynomial but also for each tuple of predecessors the
reasons for inactivity.

Example 4.2.1 (Multiple predecessors).
Let a projection contain amongst others the polynomials p, p1, p2, ps and py. Fur-
thermore let p = res(p1,p2) = res(ps,p4).

o Assume p1 is removed. Then p is still part of the projection due to p =
res(ps.pa).

e Assume p3 is removed as well, then p is supposed to be inactive.

In the implementation this is realized as follows. For each polynomial p a list of
origins is stored. Every origin (see Definition contains a level and two polyno-
mials in this level (the direct predecessors of p). Now the origins store additionally
two Booleans, one for each polynomial, which indicate whether the polynomials are
active. If a predecessor polynomial is inactive the corresponding Boolean is false.

Definition 4.2.1 (Origin data structure).
polynomial predecessory; bool activey
polynomial predecessors; bool actives

Then the list of origins of a polynomial can be used to determine whether it is
active, which is shown in Algorithm |5l Each origin is active if both predecessors are
active, otherwise inactive. The polynomial is then active if it has at least one active
origin and is not neglected due to bounds (see Section .
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Example 4.2.2 (BaseType).
1. Add p15 with p = disc(pis,p13)-
2. Remowve p1g.
3. Remove p13.
D D p

P1o; true p P1o; true 2 p1o; false P p1o; false
ps; true —— | ps; true ——— | p5; true —— | ps5; true

p13; true p13; true p13; false
p13; true p13; true pi3; false
This is illustrated without bounds in Example There blue is used for active

BaseTypes and black for the inactive ones. An active polynomial is denoted with p,
while p is inactive.

..’ﬁ

4.3 Use of equational constraints

After describing how to deactivate polynomials in general in the last section here
the implementation of the restricted projection as defined in Chapter [3| can be intro-
duced. It is started with a description of what exactly is implemented followed by an
explanation about how it is implemented.

In principle the restricted projection operator as in Definition [3] is implemented,
however, as mentioned in Subsection [2:3.1] does SMT-RAT not calculate a square-
free basis. This restriction of the projection operator is therefore ignored. It is also
mentioned before that the use of the restricted projection operator is not yet validated
for more than just the first projection level. Nevertheless is the restricted projection
operator in this implementation used in as many directly successive levels as possible,
starting with the first level.

When implementing this restricted projection it has to be ensured that the CAD
module remains an SMT-compliant theory solver. SMT-compliancy is defined in
Subsection and includes incrementality. This means it has to be possible to
add and remove individual polynomials, including equational constraint polynomials
(ECPs). Therefore the formerly used function to add polynomials described simplified
in Algorithm [3| needed to be modified. The new (still simplified) version of this
function can be found in Algorithm [6] The input EC' is true if p is an ECP.

Definition 4.3.1 (Conditions for restricted projection).

No other equational constraint polynomial is used for restricted projection in lvl yet
and vl = n or in vl — 1 another equational constraint polynomial is used for
restricted projection already.

The main difference to the former version is the execution of the method RE-
STRICT PROJECTION. In this method nothing happens if EC' is false. But when
adding a new ECP it has to be checked whether it can be used to apply the restricted
projection operator instead of Brown’s operator. The conditions under which the
restricted projection operator can be used with the new ECP added to the projection
level [vl are listed in Definition it is assumed that level n is the first level. All
three conditions need to hold. If the ECP can not be used the method does nothing
but this check.
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Algorithm 6 Adding polynomials in an incremental projection considering ECPs
function ADD POLYNOMIAL(polynomial p, EC')
level — MAIN VARIABLE(p) > index of p’s main variable

1:
2
3: Prevel < Prevel Y {p}

4 RESTRICT PROJECTION(p,EC,level)
5

6

COMPLETE PROJECTION({p},level)
: end function

BN

: function COMPLETE PROJECTION( set of polynomials P, index of main
variable level)
8: if level =1 then

9: break

10: end if

11: for all pe P do

12: if USE_EC(level) then = true if restricted projection is used in level
13: P — {res(p,e)} = for the used ECP e
14: else

15: P — {ldcf(p),dlsc(p)} Y {7"68(])7(]) ‘ qe Plevel}

16: end if

17: Pirevei—1 < Plever—1 W P’

18: COMPLETE PROJECTION(P’, level — 1)

19: end for

20: end function

It should be noted that to check these conditions for each level has to be stored
whether an ECP is used for restricted projection in that level and if so which one.
Therefore these information are stored if the new ECP turns out to be usable for
restricted projection. In that case are furthermore all polynomials that become negli-
gible deactivated, how exactly is described later. These are basically all polynomials
in the next projection level and all their successors, since only the leading coefficient
and the discriminant of the ECP as well as the resultants of each polynomial in [vl
and the ECP are needed in the next level. An exception are only polynomials that
were directly added to the next level from the input and their successors.

When the restricted projection operator could be applied for Ivl it is checked
whether it can also be applied for the next level, since there might be another ECP
that could not be used for restricted projection before due to the absence of an ECP
in a higher level. In that case the above described process is executed repeatedly until
a projection level with no ECP occurs.

Additionally to the previously described change COMPLETE PROJECTION is
slightly modified. In case a polynomial p is added to a level in which the restricted
projection operator is used only the resultant of p and the used ECP is added to the
next level. Otherwise the method behaves the same as before.

The method to remove polynomials had to be changed as well, just like the
method to add polynomials described above. The changes basically reverse those
in ADD_POLYNOMIAL. If an ordinary polynomial is removed the method behaves
the same as before and just deactivates the polynomial and all its successors. In case
an ECP should be removed there are several possibilities. Either the ECP is not used
for restricted projection, then it is removed like any other polynomial, or the ECP
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is used for restricted projection. In the latter case there are again two possibilities.
There might be another ECP in the same level which can be used for restricted pro-
jection instead, then this is done and the projection is changed suitably. If there is no
other ECP the projection operator needs to be changed back to Brown’s operator and
the projection must be expanded accordingly. This has to be done for all subsequent
levels, which are using the restricted projection operator, as well.

In the next subsection is briefly explained how polynomials become deactivated
in this implementation of the restricted projection.

4.3.1 Deactivation

To deactivate polynomials due to an ECP used for restricted projection the Base-
Types mentioned before in Section[4.2)are extended by another Boolean that indicates
whether the BaseType is inactive due to an ECP. This Boolean is set to true in a
BaseType (lvlidy,ids), if and only if in the projection level lvl an ECP with ID id,
is used for restricted projection and id; # id. and id; # id. hold.

An extended BaseType is active iff none of the additional Booleans is true. And
a polynomial p is active exactly when at least one BaseType in its origin is active and
p is not purged by bounds.

Example 4.3.1 (Extended BaseType).
2. Remove p1g.
3. Remove p13.

p p
P1o; true p1o; false
ps;true ps; true
EC: false EC: true
p13;true p13; true p13; false
p13;true p13;true p13; false
EC: true EC: true EC: true

This concept is illustrated in Example It should be noted that for successors
of a polynomial p, which is inactive due to an ECP, the reason for inactivity is the
inactivity of p and not an ECP, unless there is one in the same level as p used for
restricted projection.
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Experimental results

In this chapter the implementations described in Chapter [f] are examined as part of
the CAD module in SMT-RAT. Therefore a set of input problems is necessary. Since
SMT-RAT accepts the problem description format .smt2, which is a common standard
specified in the SMT-LIB [3], as input format the set of QF NRA benchmarks also
provided by the SMT-LIB is used. In the following this set of benchmarks is called
QF NRA.

To analyze the performance of the implementations made in the course of this
thesis, SMT-RAT is executed on the problems in QF NRA with different settings
and a time limit of 30 seconds. The possible outputs are the following:

e sat and unsat - the problem was solved correctly and is satisfiable respectively
unsatisfiable

e timeout - the solver did not find a solution within 30 seconds
e memout - the solver used all the available memory before finding a solution
e wrong - the solver computed a result but it was not the correct solution

First it has to be checked that no wrongs occur, when executing SMT-RAT while
using the restricted projection, since in this implementation the operator might be
used repeatedly, which is not validated. On this set of benchmarks the solver works
correctly, despite using the restricted operator not just in the first level. With that
being ensured the implementation can be examined.

Five different settings are regarded: A default setting Default, where the former
implementation is used, to test whether any of the changes improved the previous
implementation and four settings for different combinations of the new implementa-
tions. These four settings all include to deactivate polynomials instead of deleting
them, as described in Section The first one has no other difference to Default
and is called InAct. In the second one bounds are used to simplify the projection
(see Section , this one is called B, while in the third, named EC, the restricted
projection operator explained in Section [£.3] is used. And finally the forth setting
includes both and is called EC__B.

The overall solver performance for these five settings is shown in Table The
columns SAT and UNSAT contain the numbers of examples that were correctly solved
with the respective solution. And in the column no result are the problems with out-
puts timeout and memout collected. It can be seen that with the Default setting
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Table 5.1: Overall solver performances

Settings | SAT | UNSAT | no result
Default | 4852 3905 3327
InAct 4577 3778 3729
B 4627 3770 3687
EC 4559 3782 3743
EC B | 4609 3769 3706

approximately 260 more problems that are satisfiable and 130 more unsatisfiable prob-
lems are solved than with the other settings. Amongst the four settings using the new
implementation the differences are rather small. These results are unforeseen because
the changes were expected to reduce the computational effort and the complexity
of the projection and therefore enable SMT-RAT to solve more problems, but this
is apparently not the case. So next it is necessary to investigate why the overall
performance is worse.

One reason for the worse results might be the increased memory consumption due
to the fact that polynomials are just deactivated and not removed, which might make
a difference for large problems. There are more memouts with InAct, namely ~ 380
compared to ~ 180 with EC involved and ~ 110 for Default.

Table 5.2: Complexity for different settings

Settings | projection | computed | avg. running time
size polynomials (ms) on solved

Default 6.690 9.222 555.37

InAct 4.922 7.124 623.35

B 6.438 4.960 599.71

EC 4.709 6.465 606.45

EC B 6.281 4.427 585.45

For the more detailed examination in Table[5.2] only the 8247 problems that could
be solved under all settings are considered. The column projection size contains the
average of the maximum projection sizes for each problem, while the column computed
polynomials contains the average number of total computed polynomials, which are
leading coefficients, discriminants and resultants. Both projection size and number of
computed polynomials decreased for the settings including deactivation as expected.
Still the average running times are worse than when using Default.

Amongst the four settings with deactivation InAct is on average the slowest, so
compared to this basic setting the simplification by using bounds and the restricted
projection do speed up the computations. The best average running time occurred
for the setting that combined both of them. The average numbers of computed
polynomials fit this observation as well. However the projection size does not, since
it is smaller when bounds are not used for simplification.

When using the settings B or EC B the average number of purged polynomials
per problem is 0.027, respectively 0.015, which corresponds to on average one poly-
nomial in every 37th respectively 67th problem. Besides was at least one ECP added
to the projection in 2752 problems and with the settings EC and EC_ B was the
restricted projection operator used at least once in 1645 of these problems. From
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these numbers in combination with the results in Table it can be concluded that
the implemented changes are actually applied to some problems and they also do
have positive effects on the running time and the number of computed polynomials,
compared to InAct.
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Figure 5.1: Running times of individual problems using Default and InAct

However Default has still better average running times, despite computing more
polynomials. To find a reason for this first the running times of Default and InAct
are compared for the individual problems. This is shown in Figure [5.1] The figure
contains one point for each of the considered problems, which has the running time in
milliseconds for Default on the problem as x-value and the one for InAct as y-value.
The points on the diagonal represent problems for which with both settings similar
running times are achieved. It stands out that there are many points on the lines
parallel to the x- and y-axis through about 33000, which represent problems that
could only be solved for one of the settings, while only a few points are in-between
these three lines. A similar plot is achieved when comparing Default and B, see
Figure [5.2]

The reason for this might be the incremental implementation, which is not entirely
explained in this thesis. Incrementality in the sense of adding and removing polyno-
mials individually is explained in Subsection [2.3.1] but it was not mentioned before in
the sense of computing CADs incrementally when new polynomials are added. This
means basically that partially computed CADs are used to check for satisfiability be-
fore the full projection is computed. If different polynomials are included in partial
projections for different settings one of the projections might be sufficient to find a
sample point to satisfy the constraints while the other is not. So even small differences
in the projection seem to cause a different behavior.

This is also the case when using two settings that both include deactivation of
polynomials, as can be seen in Figure[5.3] In this figure something else is noticeable:
there are more problems that can be solved by using B but not EC than the other way
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Figure 5.2: Running times of individual problems using Default and B

round. This might be explained by the degrees of the polynomials in the projection.
The degree shrinks on the leading coefficients, while the degrees of discriminants and
resultants are likely to grow. So a partial CAD based on leading coefficients results in
less sample points and can return answers faster, but when using restricted projection
with EC or EC_ B less leading coefficients are added to the projection.

When it comes to lifting it should also be considered that, while polynomials
are only deactivated and not anymore deleted, the corresponding elements in the
CAD are currently deleted. However, a test showed that when these elements are
neither deleted nor deactivated nearly no impact on the results (runtimes and solved
benchmarks) is noticeable.

For further insight into the reasons why the implemented changes in the CAD
method do neither improve the number of solved problems nor the average running
time, additional statistics need to be collected and evaluated.
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Chapter 6

Conclusion

This thesis started with an introduction to different decision problems and selected
decision procedures, namely the DPLL algorithm for SAT and the CAD method for
real algebra. It was continued with a description of the SMT solver SMT-RAT in
which both methods are combined. Next the restricted projection operator by Mc-
Callum was explained. This operator allows to use equational constraints to compute
less polynomials in the projection phase of the CAD method.

In the further proceeding is a description of the extension of the CAD method
in SMT-RAT with an implementation of this restricted projection operator given.
Furthermore is described how a simplification of the projection due to bounds and
the deactivation of polynomials were implemented.

It turned out that the changes in the implementation did not have the desired effect
to improve the overall performance of SMT-RAT, even though it did not cause any
errors to use the restricted projection operator repeatedly. The projection size and
the number of computed polynomials decreased when applying the modified method,
however the number of solved problems and the average running time were worse.
To gain further insight to the reasons why this is the case more statistics should be
collected and evaluated.

It should be noted that using the restricted projection operator did improve the
average running time compared to a setting where only the deactivation of polynomials
was used. Applying the simplification due to bounds improved the result even further,
so did a combination of both. It could be tried to implement these approaches for a
CAD implementation where polynomials are deleted instead of deactivated. Further
possible future work is suggested in the next section.

6.1 Future work

There are several options to continue this work, some are already mentioned in the
previous chapters. One possibility is to change the implementation for the lifting
phase as well to deactivate sample points instead of removing them. Currently the
polynomials in the projection are deactivated and not removed, however the corre-
sponding sample points are still removed. So when polynomials are often removed
and again added several sample points might be computed repeatedly, which is time
consuming as well. Another possibility for improvement is the variable order, which
is discussed in the next subsection.
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6.1.1 Variable ordering

A CAD depends heavily on the variable order. When using the restricted projection
operator the variable order may have an even bigger impact on the CAD, particularly
on the complexity, than with a conventional projection operator. This is illustrated
in the Example [6.1.1] Therefore it could be tried to find a variable order to use the
restricted projection operator in as many levels as possible.

Example 6.1.1 (Impact of the variable order).

Given the following set of polynomials P,, = {e3 = x3 -T2 + x1; €3 = T3 - 71; €1 =
5-a%; ...}, where e1,es and e3 are equational constraint polynomials, the size of the
projection depends strongly on the variable order:

x1 Ps={es; ea; eg; ...}

1. xTo 732
z3 P1
I3 733 = { ] }
2. Z9 7)2 = { ) }
1 P1={e; ..}

In the Example [6.1.1] two variable orders are examined. In the first case the re-
stricted projection operator can only be applied in the first projection level. Compared
to this case the variable order in the second case seems advantageous, since in all three
levels the restricted projection operator can be used. However it has to be consid-
ered that the CAD implementation is incremental. Lets assume that the constraint
corresponding to the equational constraint e becomes removed, see Example [6.1.2]
In that case using the first variable order the restricted projection operator can still
be applied, only for a different equational constraint polynomial, but when using the
second variable order the restricted projection operator can not be applied anymore
at all.

Example 6.1.2 (Variable order in an incremental projection).
New set of polynomials P, = {ea = 23 - x1; e1 =5-a3; ...}.

x1 Psg={e er; ...}

1. x9 Po
z3  Pi
z3 Ps

2. xTo PQ = {62; }
x1 Py ={e; ...}

Regarding this problem the incremental projection may cause when using the re-
stricted projection operator, it might be a good approach to aim for a variable ordering
like the first one in the above examples and additionally implement the resultant rule,
which propagates ECPs such that restricted projection can be used more often. An-
other promising approach is to implement the semi-restricted projection mentioned in
Subsection which could be used in every projection level as long as its applicable
and not just in consecutive ones.
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