Master Thesis

AUTOMATED OPTIMIZATION
IN PRODUCTION PLANNING

September 25, 2018
Henry Lotze

First examiner: ProOF. DR. ERIKA ABRAHAM
Second examiner: ProOF. DR. MARCO LUBBECKE
Examiner @Q Bosch: OLIVER INKMANN

Declaration of Originality

This is to certify that to the best of my knowledge, the content of this thesis is my own work and
has been done without inadmissable help of others. I have not used any other sources or aids
other than those mentioned in this work. This thesis has not been submitted for any degree or
other purposes in this or similar form. I certify that the intellectual content of this thesis is the
product of my own work and that all the assistance received in preparing this thesis and sources
have been acknowledged.

Selbststandigkeitserklarung

Ich versichere hiermit an Eides Statt, dass ich nach bestem Wissen und Gewissen die vorliegende
Arbeit selbststéandig und ohne unzuléssige fremde Hilfe erbracht habe. Ich habe keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt. Die Arbeit hat in gleicher oder &hnlicher
Form noch keiner Priifungsbehorde vorgelegen. Ich versichere, dass der geistige Inhalt dieses
Werkes Produkt meiner eigenen Arbeit ist und dass jegliche Quellen, welche die Erarbeitung
dieser Ergebnisse unterstiitzt haben, vollstandig genannt wurden.

Ort, Datum Unterschrift

Abstract

In this work, we solve a planning problem for the Robert Bosch GmbH. We are given a set of
orders, each representing a number of parts of a certain individual configuration that are to be
produced in varying numbers over several time periods. Our task is to automatically find an
assignment of these orders to a number of production lines over a horizon of time periods such
that all parts of all orders can be produced. In order to be able to produce a part, a line has to
have a certain configuration, which means that individual production lines have to be upgraded
during production.

We are to capture the given planning problem in a mathematical form in order to produce a
valid plan that is optimal or optimal to a certain degree. The degree of optimality is measured
with respect to an objective function, which represents some cost of a valid plan. The directives
under which our plan is evaluated and are thus part of our objective function are the utilization
amount of each production line, the costs of buying so-called customer releases without an order
may not be assigned to a line, the costs of upgrading and constructing production lines as well
as trying to ensure that an order is produced near its delivery location and not switched around
several lines over our planning horizon.

For capturing and solving the given problem, we make use of solvers for satisfiability modulo
theory (SMT) as well as mixed integer programming (MIP). We detail the formulation of our
objectives and our constraints in formulations for both kinds of solvers.

In order to solve this problem, we developed a software tool that is able to parse real data on
the one hand as well as generate artifical data on the other hand. This data is then processed
by so-called problem handlers which implement our mathematical formulations in order to find
and output a valid and optimal or near-optimal plan.

Additionally, we evaluate the performance of three SMT and four MIP solvers on our given
problem.

Contents

5.1

5.2
5.3

1 Introduction
2 Preliminaries
2.1 Notation o e
2.2 Satisfiability Checking Lo
2.3 Satisfiability Modulo Theory (SMT)
2.3.1 Less Lazy SMT-Solving
2.4 Mixed Integer Linear Programming (MIP)
3 Modelling
3.1 The Objective Function
3.2 The Set of Constraints: Reduced Problem
3.3 The Set of Constraints: Complete Problem
3.3.1 Compressed Variant L L
3.3.2 Distributed Variant oL
3.3.3 A Comparison Between the Two Variants
3.4 A Complete Mathematical Formulation
3.4.1 Descriptions of Variables and Constants
3.5 Challenge: The Size of P o e
3.6 Quality Evaluation of our Formulation
4 Implementation
4.1 Building the DataBundle Object
4.2 Creating and Solving the Mathematical Model
4.2.1 Implementation of SMT: pySMT
4.2.2 Implementation of MIP: Pyomo
4.3 User Parameters L
44 OutputofaRun
5 Performance Evaluation

Generating Randomized Test Sets
5.1.1 Generating Line Configurations
5.1.2 Randomized Values for Constants
5.1.3 Disproportional Memory Usage during Runtime
Benchmark Criteria L
Benchmark Results
5.3.1 First Benchmark: Doubling Dimensions
5.3.2 Second Benchmark: Converging to Original Dimensions

5.3.3 Optimizing Using SMT Solvers
5.3.4 Runtime Behaviour on Real Data

6 Conclusion
6.1 Future Work

Chapter 1

Introduction

Production planning is a common problem in the industry. In its most basic form, a planner is
given a set of jobs, orders or workers that are to be assigned to a set of production machines or
production sites. Usually, not just any valid assignment of jobs to machines is desired, but an
optimal one regarding some costs, e.g. if the machines are stationed at different sites and one
wants to minimize the distance a worker has to travel to his or her workplace.

Real-world problems are usually more complex than this simple description. Machines may have
limited capacities of jobs or pieces they can process per time, order sizes may change over time
and additional machines may have to be built if the given capacities are not sufficient. These
restrictions, combined with the desire to be able to introduce or remove constraints to the system
over time make it hard and often unsustainable to write efficient special-purpose algorithms to
tackle these problems.

As companies are still interested in automating the process of finding a solution to these prob-
lems, general mathematical solving tools are often employed. On a very abstract level, given a
compatible mathematical formulation of the problem, these tools are able to find solutions in a
rather efficient way in practice. Given a function that models some inherent or artificial costs in
the system as an objective, it is even possible to find a solution that is optimal with regard to
this function or provably close to the optimal solution. The two most used techniques in this field
are those of (linear) mixed integer programming (MIP) as well as satisfiability modulo theory
(SMT).

In this work, a planning problem for the Robert Bosch GmbH was formulated and solved. The
problem was that of finding a valid assignment of a set of orders to a set of production lines
over several time periods, such that each order is completely produced. The result should give
the planner information about how many pieces of what order are supposed to be produced on
which line, which lines may have to be upgraded to which configurations and which lines may
be deconstructed due to inactivity. Additionally, the planner wants to know for which orders
she or he has to buy so-called “customer releases”, without which no assignment of an order to
a line may be done. Under all valid assignments, one is to be found that is optimal regarding
several objectives, such as minimizing the number of needed line upgrades, utilizing lines to a
certain percentage of their possible capacities and ensuring that orders are not switched around
production lines if not needed. We discuss these objectives in more detail in chapter 3.

The underlying task for this work is three-fold: We are to find mathematical formulations that
model our problem as close as possible. Then, we are to implement a software tool that is able
to extract all data necessary for solving the model and which is able to generate problem files
for both SMT and MIP solvers - and solve them - and to finally investigate the performance of

Page 1

Chapter 1. Introduction

our concrete mathematical formulations using different solvers.

The rest of this paper is structured as follows. First, we properly introduce and define the terms
of satisfiability modulo theory- and mized integer programming-solving and give a short overview
over how they work. Then, we introduce our given planning problem in detail and construct
mathematical formulations that are compatible with both types of solving. We then shortly dis-
cuss some aspects of our implementation and conclude by taking a closer look at the performance
of our formulation on real data as well as on artificially generated data.

Page 2

Chapter 2

Preliminaries

Before we start our modelling process, we need to discuss what we are modelling and how the
underlying solution mechanisms work. We want to give the reader a short introduction to MIP-
and SMT-solving and explain in which way we are to construct our constraints and objectives.
We start by giving a short overview over the notation used throughout this work.

2.1 Notation

In the following chapters, we will use the following notation for variables and constants: Con-
stants will be completely capitalized while variables will always be written in lowercase notation,
i.e.variable, and CONSTANT, ;. We may sometimes omit the concrete sets that they range
over if the index makes it clear to which set we are referring to, e.g. the index of variable, ranges
over the set of all our orders, O, implicitly.

In the context of MIP-solving, the values of booleans are internally represented as the integers 0
or 1, which stand for the valuations False and True respectively. Whenever a boolean value is
multiplied with some arbitrary value v, we thus multiply v with either 0 or 1.

If not specified otherwise, we assume the values of all single-letter symbols such as n and m to
be elements of Ny.

2.2 Satisfiability Checking

The basic satisfiability problem is for a given formula ¢ in propositional logic to decide whether
there exists an assignment « : {p1,p2,...,pn} — B to all of the variables p; of ¢ such that ¢
evaluates to true under this assignment. If such an assignment exists, we call ¢ satisfiable, else
unsatisfiable. We call a variable and its negation literals.

Definition 2.2.1 (Conjunctive Normal Form). A propositional formula ¢ of the form
n m
AV e
i=1j=1

with literals ¢; ; is in conjunctive normal form. We call each disjunction of literals in this form
a clause.

Page 3

Chapter 2. Preliminaries

For every propositional formula, there exists an equisatisfiable formula v in conjunctive nor-
mal form (CNF), introduced in Definition 2.2.1. This transformed formula can be generated in
polynomial time and linear in size of the original formula ¢ by using Tseitin’s transformation|[1].
Furthermore, we assume the reader to be familiar with the fact that SAT is one of the most
famous NP-complete problems, i.e. we assume that no polynomial time algorithm for solving
general satisfiability problems exists. While SAT is considered a hard problem in theory, algo-
rithms have been developed to solve a vast range of instances efficiently in practice. One of the
most famous of these heuristic algorithms and the de-facto standard in implementations is the
Davis-Putnam-Logemann-Loveland (DPLL) algorithm[2][3] combined with conflict-driven clause
learning (CDCL)[4][5].

The basic idea behind the algorithm is a rather efficient exploration of the space of all possible
assignments. It makes use of three sub-procedures in order to solve the satisfiability problem.
The first sub-procedure is boolean constraint propagation (BCP), which checks if the presented
formula currently contains unsatisfied clauses with a single undecided literal, so-called unit
clauses. If this is the case, this single literal has to evaluate to True, for otherwise, we would
know the whole formula to be unsatisfiable. This assignment is then applied to all occurrences
of the variable contained in the literal. Afterwards, the check for unit clauses is done again on
the formula, until no further unit clauses are found or a contradiction occurrs.

The second procedure is that of deciding the values of undecided literals. How this is done in
detail depends on the implementation, as one has to choose an order of the variables that are to
be decided and the value that variables are assigned to.

The third and most involved of the sub-procedures of the DPLL algorithm is backtracking or
conflict resolution when using CDCL. If the algorithm creates an assignment that is not satis-
fying through both propagating and deciding variable values, a pruning of the space of possible
assignments based on the current contradiction is desirable. Without going into detail, this is
achieved through the - often implicitly used - data structure of an implication graph. This graph
allows the algorithm to reason about the contradiction that occurred and to learn and add new
clauses to the formula. This speeds up the search process by a big margin, making the DPLL
algorithm with CDCL the core of essentially all modern SAT-solvers.

2.3 Satisfiability Modulo Theory (SMT)

SAT-solving algorithms can only be used for formulae of propositional logic, which is not powerful
enough to (efficiently) encode all actual computational problems that one comes across. For this
reason, solvers were developed that try to reduce the computation overhead from more rich
and complex logics back to propositional logic encodings in order to benefit from the good
performance and completeness of SAT-solvers. Usually, a SAT-solver is used in order to decide
which subsets of higher logic constraints have to be satisfied simultaneously and this set is then
solved by a complete solution mechanism for this higher logic. The actual process of applying
this reduction can be further divided into two strategies, eager and lazy SMT-solving, with the
latter again being subdivided into less lazy and full lazy. For the purpose of this chapter, we will
only look at the most commonly used strategy, namely that of less lazy SMT-solving.

2.3.1 Less Lazy SMT-Solving

One of the most commonly used forms of SMT-solving is the so-called less lazy approach, depicted
in Figure 2.1. We are given some formula ¢ over some logic. We then use Boolean abstraction
to obtain a formula that can be processed by our SAT-solver. Most primitively, this abstraction
introduces a Boolean variable for each theory constraint, encoding whether it is to be satisfied

Page 4

2.4. Mixed Integer Linear Programming (MIP)

Boolean abstraction

luti t
solution or unsat SAT or UNSAT

SAT-solver

(partial)
solution

. (partial)SAT
(In)equation Set C)r UNSAT + explanation

Theory solver(s)
Figure 2.1: Less-Lazy SMT-Solving Process

or not. This Boolean formula is then solved, e.g. by using the DPLL algorithm. The solver
does initially not completely solve the given formula, it rather applies BCP to the formula with
its current (initially empty) assignment and decides on a variable if BCP did not find any new
assignments. If a decision was made, BCP is applied again. Only then the current partial
solution is passed on. Notice that by this procedure we only argued which constraints have to
be satisfied, without checking whether the selected subset is free of contradictions regarding its
theory. Thus we pass the subset of constraints to the theory solver, which then checks whether a
satisfying assignment for the theory constraints exists. If the theory solver finds the subformula
to be unsatisfiable, backtracking with conflict resolution is applied if possible. If this is not
possible, we know of the formula to be unsatisfiable. If, however, the theory solver finds the
subformula to be satisfiable, the SMT-solver returns SAT (if a complete assignment was made
by the SAT-solver before) or the current subformula is passed back to the SAT-solver which then
decides on the next unassigned variable.

Since SMT solvers are very modular in their design, they are in principle able to decide every
logic for which there exists a solution mechanism. We will however see that for the problem that
we are given in this work, decision procedures for linear integer arithmetic (LIA) are sufficient.

2.4 Mixed Integer Linear Programming (MIP)

The theory behind SMT-Solving has a heavy background in mathematical logic. Contrary to
this, the solving of linear programs stems from a background of linear algebra. We will thus now
introduce a way to model a constrained optimization problem, i.e. especially a constrained deci-
sion problem, from an algebraic view. We base the following section on the work of Schrijver|[6].
From an algebraic perspective, an inequality constraint of the form i, a; ; - x; < b;, where a; ;
and b; are constants and x; is a variable, is a half-space. We can define a polytope P C R" as a
mathematical space induced by the cut of finitely many half-spaces, i.e. P = {x € R" | Az < b}
with A € R™*™ and b € R™. If we construct a polytope this way, it is convex.

Linear optimization problems are problems that maximize or minimize the value of an objective

function ¢z with ¢ € R™ inside a polytope. We define this kind of optimization problem in

Page 5

Chapter 2. Preliminaries

definition 2.4.1.

Definition 2.4.1 (Linear Optimization Problem). Given A € R™*" b€ R™, ¢ € R". A linear
optimization problem is defined as

T

min ¢ x
st. Az <b
r eR

The area of solving problems from linear real arithmetic is well-studied and efficient general
solving procedures have been proposed over the decades, with the most popularly used procedure
being Simplex[7]. However, a majority of problems cannot be modelled using linear real arith-
metic since often discrete values are wanted. An intuitive example would be that of a decision:
Should an action be taken or not? For such a decision, only a valuation of True or False makes
sense. Another example would be that of assigning a number of workers to a job, for only the
assignment of a discrete number of workers results in a valid plan. If we want to model over
a discrete space using linear integer arithmetic, we call the resulting model an integer linear
program (ILP). Generally, for modelling linear optimization problems over a space that is partly
discrete and continuous, we use mized-integer programs (MIP), introduced in definition 2.4.2. We
will see that the planning problem of this work is indeed a MIP, as it contains only continuous
variables and Boolean Variables. Note that in the context of LP-solving, B is defined as the set
{0,1}, i.e. especially, B C Z.

Definition 2.4.2 (Mixed Integer Optimization Problem). Given A € R™*" b € R™, c € R". A
mixed integer optimization problem is defined as

min ¢’z

st. Ax <b
z; €Rie{l,... k}
zj€Zie{k+1,...,n}
In order for a solver to be able to process our objective and set of constraints, we will need

to make sure that all our terms are linear. In particular, this excludes the multiplication of
variables and the use of abstract values.

Page 6

Chapter 3

Modelling

Now that we have established the general solving procedures, we turn to creating mathematical
formulations out of the constraints that our problem consists of.

We are given a set of orders O which consist of a number of parts that are to be produced.
We are supposed to assign these orders to a set of production lines L over some discrete time
periods T. In this chapter, we sometimes abbreviate the term production lines by lines. Every
production line is able to produce a certain subset of all possible products, depending on its
current configuration. We denote the current configuration of a line by the term “line type” and
the set of all line types by P. Lastly, production lines are located at production sites, of which
the set we will call S. On an abstract level, our goal is to find a valid assignment of all orders
to a set of lines over all time periods such that each order can be completely produced, while
possibly upgrading or constructing new lines in the process.

In the following, we will explain the modelling of and the motivation behind each constraint

in more detail. The modelling process is split into two parts: Constructing a basic, reduced
model that does not capture concepts such as upgrading a line or continuity of assignments to
a line and constructing a complete model. We have chosen this approach to first ensure that
the given data is consistent on a smaller model and to make the process of debugging our model
easier by iteratively adding the constraints of the complete formulation.
We will first mention the formulation of the reduced model and afterwards add additional infor-
mation encoded by the complete model. We will mention the constraints for both the SMT and
MIP formulations together or shortly one after another instead of seperating them into different
sections. A reference for all variable and constant names along with descriptions can be found
at the end of this chapter.

3.1 The Objective Function

Our objective consists of five optimization directions that compete with one another.

Firstly, it is given that we want production lines to be utilized around a certain threshold of
a fixed percentage, which is usually around 85%. This is so that - at the end of the planning
phases or during one of the discrete time periods - more capacities can be scheduled to existing
production lines. To calculate the concrete percentage for each line, we are given concrete target
production values in a number of pieces, as well as the maximum number of parts a production
line is able to produce. We thus obtain our target percentage by simply dividing the target
capacity by the maximum capacity for each line.

Secondly, we may have to obtain customer releases in order to assign orders to lines, since

Page 7

Chapter 3. Modelling

customers want to retain a certain degree of control over where the parts that they have ordered
are produced. We assume that the cost of obtaining a release is only dependent on the order
- i.e. the customer behind it - and not the concrete line for which a release has to be bought.
Obtaining a release is a matter of both money and time, and this part of the objective function is
supposed to encode the actual monetary costs as well as the overhead of the process of obtaining
a release. As the plan that we are trying to obtain is only realized starting a year after being
made, we assume all customer releases to having been obtained by the start of production, thus
not requiring additional constraints which may restrict production in the first time periods.

As a third part of the objective, we are to respect the concept of “local for local”, i.e. matching
the location of the production site with the location of delivery. This is rather intuitive, as
shipping produced parts around the world is costly and causes a delayed delivery.

The fourth part of the objective is encoding the cost of incontinuity, i.e. moving orders from line
to line over discrete time periods. This produces a multitude of costs, as not only is the customer
unable to deduce why the order is moved around without reasoning, it also means managing the
actual logistics and planning of these changes.

Lastly, if we want to be able to upgrade or construct production lines, we have to encode the
costs of each of these processes. As we will see in this chapter, upgrading and building are
similar enough for the model to be joined together in the abstract process of upgrading. Note
that for simplification, we assume the process of upgrading itself to be free of costs, while of
course the applied upgrades themselves may still cost money. This means that our objective
function assumes the costs of adding two features to a line at once to be the same as adding
the features in two different upgrade steps. This is further discussed in section 3.3.3. While the
process of upgrading existing lines itself is assumed to be free of costs, newly constructing a line
does have an inherent cost additional to the costs of newly built features.

As not all terms of the objective function can be directly measured by a monetary cost, such as
e.g. splitting an order between multiple lines, all cost coefficients contain artifical cost values of
similar dimensions. As priorities among the different terms of the objective function may change
over time and since changing each single cost coefficient by hand is not feasible regarding the
effort, we additionally multiply each cost coefficient term by a factor ws ...ws to allow for an
easy weighing of the objective terms against one another by the user.

For readability, we introduce the constant TUTIL;; to hold the target utilization that is given
by the capacity constants. We let € be a value greater than 0:

CAPS;; + CAPNS;
CAPM;; + CAPNM;+ +¢

—TUTIL,, VI€L,teT

If we combine these verbal descriptions, the following is a first proposition for modelling the
objective function for a MIP:

. Yocoprodo $
TUTILy; - actvy; — L \UTIL} - 3.10
i t; ; | Lt A = BT, + CAPN My, ¢ Lo (8.10)
+ > buyrel,; - RELEASES - w, (3.11)
0€0 leL
+ >N Y lasgnoss - (1— LOCAL,))] - LFORLS | - ws (3.12)
teT o€O lEL

+ Z Z Z [(asgnois—1 — asgnois)| - CONT® - wy (3.13)

teTso0€0 l€eL

+ Z Z Z UPGrip.t - UPG?p -ws - 21717t 4 newby, - BLD® (3.14)
teT peP leL

Page 8

3.1. The Objective Function

(3.10) Penalty costs for not reaching the expected percentage of utilization, if the line is
used. (g > 0)

(3.11) Costs for aquiring a customer release for a line.

(3.12) Penalty costs for not honoring “local for local” when assigning an order to a pro-
duction line.

(3.13) Penalty costs for switching the production of a task to a different line.

(3.14) Costs for building or upgrading a line to a new type. We will discuss the additional
factor 2171~ in the section Challenge: The Size of P.

Looking at the formulation, we can see that it is not in a linear form needed for a MIP or SMT
formulation that we are aiming for. The objective function still utilizes absolute values, in detail,
the following two parts of the objective are non-linear:

EonPTOdo It $
NN ITUTILy, - actu, — o LUTILS - 3.10
e | Lt UL T G AP, + CAPN M, + - e (3.10)

Z Z Z [(asgno,t—1 — asgno i)l - CONT® - w, (3.13)

t€T~ 0€0 IEL

As both terms include a simple difference, we are able to linearize them by introducing a new
variable for each. We make use of the following fact:

pl<qge(p<gA(-p<q) VpgeR

The reformulation of (3.10) is thus:

min Z Z uauTy ;- UTIL;$ “w1 (3.10)
teT I€L
Eoeop’rOdo,l,t
CAPMLt —+ OAPNM[J[+ €

s.t. wauxyy > TUTIL,, - acty, — VieLteT (3.27)

waux . > ZOEOPTOdoJ,t
"= CAPM, + CAPNM;, +¢

uaur;; € Ry Vie L,teT

—TUTIL;; - actv ¢ VieLteT (3.28)

With the SMT reformulation being:

min Y Y wauy, - UTIL] - wy (3.10)

teT lel
Z prOdo,l,t
t. act > TUTIL,; — 0€0
s:t. acto = (uauzy, > TUT L CAPM,, + CAPNM,, + 2
Z prOdo,l,t
A > 0€0 ~ TUTIL VieLteT (327
(v 2 G, + CAPNM;, + ¢) €Ltel (327)

—actvyy — (uauz;y = 0) VieLiteT (3.28)
uaur;; € Ry VieLteT

Page 9

Chapter 3. Modelling

And, following the same reformulation scheme, (3.13) becomes:

min Z Z Z aauTo,; - CONT? - w4 (3.13)

tETs0 0€0 IEL

St QQUTH 1 > ASGNo L -1 — ASGNo, 1t Yoe O,l € Lt € Tsy (3.29)
AAUT, 1,1 > ASGNo 11 — ASGNo 1 1—1 Yoe O,l € L,t € Tsg (3.30)
aauTe € By Yoe O,l € Lt € Twy

Looking at the SMT formulation of this transformed objective, one can see that we can combine
both of the MIP constraints into one:

min Z Z ZITE(aau:co,l,t,CONT$ - w4, 0) (3.13)
teTs0 0€0 IEL

st aauz, s <> (asgne i i—1 B asgne i) Yoe O,l e L,t e T>y (3.29,3.30)
aauTo € By Yoe O,l € Lt € T5g

The complete objective function for the MIP formulation with the initially mentioned weighing
factors thus becomes:

min Z Z uauzyy - UTTLY - w (3.10)
teT leL
+ 3 > buyrely; - RELEASE - w (3.10)
o€0 leL
+3 3 "> lasgnous - (1 — LOCAL,,)) - LFORLY | - ws (3.12)
teT o€O leL

+ Z Z Zaauwo’m -CONT? - w, (3.13)

tET>0 0€0 IEL

+ Z Z Zupgrlﬁpﬁt : UPG?p cws - 2717t 4 newd, - BLD® (3.14)
teT peP leL
And for the SMT formulation:
minz Z UaUT] g - UTIL;$ “wy (3.10)

teT leL

+ Y ITE(buyrel,,;, RELEASE; - w,,0) (3.10)
0€0 leL

+> "N ITE(asgnes: A~LOCALg - ws, LFORLS |, 0) (3.12)
teT ocO leL

+ 3 NS ITE(aaua, ., CONT® - w4, 0) (3.13)
teT~o 0o€O leL

+> 3N ITE(upgrips, UPG - ws - 21717 4 newb, , - BLD®,0) (3.14)
teT peP lel

With the added constraints as we have just discussed.

3.2 The Set of Constraints: Reduced Problem

In order for our objective function to give us any meaningful results, we need to define the
solution space, onto which it is supposed to be applied. This is done by a set of constraints,

Page 10

3.2. The Set of Constraints: Reduced Problem

which restrict the solution space to the space of consistent and realistic solutions. In this section,
we want to capture the planning problem while ignoring upgrades, line configurations and the
continuity of assignments to a line for the moment.

There are two constraints that may come to mind right away, as they can be seen as the most

natural constraints of the problem. First, the amount of parts that each order specifies should
be completely produced. Secondly, to do so, a line may not produce more parts than physically
possible in each time period.
The first constraint can be modelled as follows: In each time period and for each order, ensure
that the amount produced over all lines is equal to the amount that is supposed to be produced
during this time period. The mathematical formulation is identical for both the SMT and the
MIP-formulation:

> prodoss = SIZE,; Yo O,teT (3.15)
leL

For our second constraint, the amount produced over all orders on a single line in every time
period is to be smaller or equal to the capacity that this line is able to provide. Again, the
formulation is the same for both SMT and MIP:

> prodo,s < CAPMy, Vi€ LteT (3.1)
0€O

As each product that is produced at the production sites of the Robert Bosch GmbH can
vary in its required features, not every line is able to produce the parts of every order. For this
purpose, we are given the information which line is able to produce which order initially. In
order to restrict our possible assignments of orders to lines, we choose the following constraint -
first formulated for a MIP and then for SMT:

asgne 1 < POSS,; YoeO,le L,iteT (3.2)
asgne i+ — POSS,; Yoe O,leL,teT (3.2)

The binary constant POSS,; only reflects the possible assignments at the very start of produc-
tion and is thus only suited for our reduced model. We will discuss the changes that are needed
for the complete model in the respective sections.

The next point that we have to care for is that of already given assignments of orders to lines
or production sites. As the production process for which we are trying to create a plan for the
next years is already in action today, we cannot simply disregard the current established plan.
For this purpose, we are given a constant INITLINE,; for every order o and line [/, stating
whether in time period 0, i.e., the start of our plan, an order is already assigned to a line.

INITLINE,; < asgne o Yo€ O,l€L (3.17)
INITLINE,; — asgne o Vo€ O,l €L (3.17)

Similarly, an order may not be assigned to a specific line, but to a production site. We are given
this information in the form of the constant INITSITE, s.

INITSITE, ; < atsite, 50 Yo€ O,s€ S (3.25)
INITSITE, ; — atsite, s0 Yo€ O,s€ S (3.25)

Finally, an order may be needed to be produced during a certain range of time periods or even
exclusively at a certain site. For this purpose, we are given the constants FIXSITES, s+ which

Page 11

Chapter 3. Modelling

indicate whether an order o is fixated to a site s at time period ¢. The corresponding constraint
is the following;:

FIXSITES,; < atsitess; YocO,seS,teT (3.26)
FIXSITES, s+ — atsite, s+ Yoe€ O,s€ S, teT (3.26)

One can see that the variable atsite, . states whether an order o is produced at site s in time
period t. In order for this initial assignment to take effect, we need to couple the value of this
variable with another one of our decision variables, i.e. the variable asgn,;: which encodes
whether an order o is assigned to a line ! during some time period t. We want two directions of
linking these variables in each time period t:

o If the value of asgn,;; becomes true, order o is produced at the site s of line [.

o If the value of atsite, s+ becomes true, order o is assigned to one of the lines of site s.

We formalize these two directions as follows as a M IP formulation:

atsitey st > asgnes - LINKED, s Yoe O,l € L,se S, teT (3.23)
atsiteo s < Zasgnoﬁu -LINKED,;, YoeO,seS,teT (3.24)
leL

And similarly for the SMT formulation:

(asgno it NLINKED, ;) — atsite, s, Yo€ O,l€ L,se S,;teT (3.23)
atsite, st — \/(asgnoyl,t NLINKED, ;) YoeO,se S, teT (3.24)
leL

Next, we encode the fact that for producing certain orders on certain lines, customer releases
may have to be bought. While our objective function already models the concrete costs of buying
customer releases, we do not yet restrict the variables buyrel,; that encode whether a customer
release has to be bought, so they may all be set to 0 as of now. For this purpose, similar to our
POSS,,; constant, we use a constant REL,; that indicates if for producing an order o on line [
a release is already present.

buyrel,; > (1 — REL, ;) -asgne ;s Yoe O,le L,teT (3.22)
(mREL, N asgne,) — buyrel,; Yoe O,le LiteT (3.22)

To conclude the needed constraints for the mentioned reduced mathematical problem, we need to
link a few more variables with one another. If our variable prod, ;: indicates that some amount
of parts from order o are to be produced on line [in time period ¢, then the order is also be
assigned to this line at the specified time period.

prode ;s < asgne- CAPM;; Yoe O,le LiteT (3.19)
—asgne 1t — (prode; =0) Yoe O,le LiteT (3.19)

Lastly, when an order is assigned to a line, then this line becomes active for this time period.
The other direction should hold as well, i.e. we are only allowed to activate lines if any order is

Page 12

3.3. The Set of Constraints: Complete Problem

assigned to them.

asgne i < actvyy Yoe O,le LiteT (3.18)

asgne i+ — actvyy Yoe O,le LiteT (3.18)

actyy; < Z asgne s Vle L,teT (3.20)
0€0

actvy,; — \/ asgne : Vle L,teT (3.20)
0€O

Note that by these couplings, the variables actv; ; and prod, ;. are transitively coupled as well.

3.3 The Set of Constraints: Complete Problem

Now that we have discussed the constraints needed for the basic model, we focus on the con-
straints needed for the complete model, i.e. everything needed for allowing the change of line
types in form of upgrades and continuity of assignments.

If we allow line types to change over time, lines may in consequence gain or lose the ability
to produce certain orders. This means that the constraint 3.2 is not sufficient anymore as it can
only make statements over the initial time period 0. To replace it in our complete model, we
make use of another binary constant named ASGN, , which states whether an order o can be
produced on an arbitrary line of configuration p. We can thus replace our constant POSS,; and
reformulate our constraint using the information which type a line is currently configured to:

asgnos < > ASGN,, -isltipy Vo€ O,1€ LteT (3.21)
pEP
asgno,it — \/ (ASGN,p, Nislt) YoeO,le LiteT (3.21)
peP

A special requirement given by the Robert Bosch GmbH was that of line utilization, as

introduced when discussing the objective function in section 3.1. While we already attended to
the program trying to reach a certain amount of utilization, there is a second aspect that goes
along with this first one. If a line is not used during a whole time period, it is supposed to be
deactivated and deconstructed. The idea is to identify lines that are not necessary for production
of all orders such that resources of the company can be saved.
There is one special case that we have to be aware of: There may be lines that may still be in
construction when we calculate our plan. These constructions are not explicitly given and can
only be identified by the fact that a line may not have any capacities during some of the first time
periods, although already having the line configuration of a regular line. From these capacities,
we can construct constants F'I;; that become true at exactly the first time period after the initial
time period 0 at which the capacities of a regular line rise from 0 to some nonnegative, nonzero
amount. Over all time periods, this constant thus evaluates at most once to T'rue for every line.
Apart from this special case, this constraint is rather easy to model. We simply let the value of
our variable actv;; depend on the value of the previous time period.

actvy; < actvg_1 +FT;y Vi€ Lt €Tsg (3.35)
actvyy — actvy—1 V FTy, Ve Lt € Tsg (3.35)

We will shortly see that the given formulation would be sufficient in a scenario in which lines
are assumed to be either activated for production or deactivated for upcoming deconstruction.

Page 13

Chapter 3. Modelling

With the possibility of upgrading lines at hand, we have to regard a third scenario: A line may
be currently deactivated because it is not constructed yet. In this case, being able to activate
the line after building it is desirable. We will revisit this constraint later in the chapter to see
which possibilities we have to encode this property.

As with the releases that can be assumed to having been bought before the calculated plan
is put into action, we can assume some upgrades to be completed before production starts. The
following properties regarding upgrades now additionally need to be encoded:

e A line may not be upgradeable to every possible configuration.
e There may be more than one upgrade for every line.
e After being built, a line should be able to become active.

e The current linetype has be determined based on the initial linetype and possibly multiple
upgrades that have happened in previous time periods.

e The construction times of a line have to be honored.

e The capacities of newly built lines are ramping up over time and are dependent on the time
since construction.

We will discuss two ways of encoding these constraints and which advantages and disadvantages
they bear. Their main difference stems from how we decide to encode the property of upgrading
a line in a variable. The first variant uses a binary variable upgr; p, p,: in order to keep track
of which line [in which time period ¢ was upgraded from which line configuration p; to which
other configuration ps. We will call this variant compressed as our upgrade variable holds most
of the relevant information for the constraints it is involved in.
Our second variant of this variable is almost identical to the first one, with the difference of not
encoding the line configuration a line was upgraded from. That is, the upgrade variable of our
second variant is upgr; . with p only encoding to which configuration a line was upgraded. We
will call this second variant distributed as most of the relevant information for the constraints is
distributed among the upgr-variable and other auxiliary variables. In both cases, the variable
upgr evaluates to True if the line construction is completed in the current time period, i.e.
the line is ready to produce in the current time period. We will discuss the advantages and
disadvantages of both versions in section 3.3.3.

There is one constraint that both variants share, as it is independent from the upgr variable.
Any line | has exactly one type of configuration p during every time period. For lines that are
not constructed yet, this is the “empty” line type Py:

> isltyyy =1 Vi€ LteT (3.36)
peP
EzactlyOne(islt; p,) Vie L,iteT (3.36)
peP

We further note that due to possible constructions of new lines, constraint 3.19 has to be ad-
justed for the MIP-version, as the CAPM; ; constants are inherently 0 for lines that are not yet
constructed. This will be further discussed in the following subsections.

7|1
prodos < asgnous- (Y CAPNM;;+CAPM,;) Vo€ O,l€ LiteT (3.19)
=0

Page 14

3.3. The Set of Constraints: Complete Problem

3.3.1 Compressed Variant

First, not every line can be upgraded to every configuration of the set P. In order to limit the
search space to the set of possible upgrades, we make use of the constants UPGRABLE; ;, which
state for every line [and configuration p whether this specific upgrade is possible or not. Thus,
we can combine this constant with our upgr-variables very easily:

UPGTi.py ,pa .t < UPGRABLEl7p2 Vie Lyp1,po e PteT (33)
UPYTLpypat = UPGRABLE; ,, YVl € L,p1,ps € P,teT (3.3)

As we determine which assignment of orders to lines is possible based on the current configuration
of a line, we need to couple the variables islt and upgr with one another. First, we look at the
case that is very straight-forward: If a line is upgraded to a certain type ps, its configuration
should change accordingly:

Z UPGT Ly pot L 18U p, e VYIE Lipo € Pt €T (3.4)
p1EP

\/ UPGT L py pot — 18l p, et VIE Lipp € PiteT (3.4)
p1EP

We are not done with the coupling of the variables yet. While the previous constraint correctly
sets the linetype once an upgrade is completed, we still need to correctly determine the type of
a line in between updates. For this, we distinguish two cases.

A line [is of type p if:

e This was its initial configuration and until the current time period, no upgrade was made
on this line.

e This was not its initial configuration, it was however upgraded to it and since then, no
second upgrade was made away from the current type.
We formalize these two statements for the MIP:

t
isltypy <1— Zupgrl,pypz,i Vie L,p,po € Pt e TANILT;,, (3.5)
i=0

t
islty s < Z(Z UPGTL py pri — Z UPYTL pps.i) VieL,pe Pte TAN-ILT}, (3.6)

=0 p1eP p2EP

And as an SMT formulation:

t
islty py — \/ UPGTipps,i VI E Lypi,ps € Pt € TAILT;, (3.5)

=0
t
islty p.t — \/(\/ UPGT 1 pypyi N T \/ UPYTLpps,i) VIE L,pe PiteTAN-ILT, (3.6)
1=0 p1€P p2EP

Looking at constraint 3.5 of the MIP formulation, we see that we run into problems if a line
is upgraded away from its initial line type to some other configuration, then back to its initial
line type and then again upgraded. In this scenario, the sum of variables in the constraint may
become larger or equal 2, resulting in our whole formulation to be infeasible, as we would force a

Page 15

Chapter 3. Modelling

binary variable to evaluate to a value smaller than 0. As the situation that we just described is
not desirable but also not quite realistic, we choose to restrict lines to be of a fixed configuration
p only once over the whole planning horizon - in this variant - by the following constraint:

Z Z upgrippt <1 Vie Lipe PteT (3.7)
teT p1eP
Att%%itgopnempgrl’pl’p’t) Vie Lpe PteT (3.7)

Next, we do have to restrict our solver from ignoring the construction time of a production line.
While upgrades can be seen as instantaneous, newly constructing a line takes BT time periods.

1 — upgry,py pt > Z Z UPGri, Py pei VIE L,pe Pt eT (3.8)
i=max{t—BT,0} p2€P
\/ \/ UPGTL, Py pai — “UPGTLPypt VIEL,pePteT (3.8)

i=max{t—BT,0} p2€P

Finally, we revisit the constraint of line continuity. Given our compressed variant, we now can
easily state that either a line has been active in the previous time period in order to still remain
active in the current time period, or a construction - an upgrade from the “empty” line type - is
completed in the current time period or a line is only able to start production for the first time
in the current time period:

actvy; < actvy—q + Z UPGTL, Py,pa,mac{t—BT,0y T F1it V€ Lt € Tso (3.35)
p2€P

actvy; — actvg 1 V \/ UPYTL, Py o max{t—BT,0} V FT1e VI € Lt € Ts (3.35)
p2€P

Note that “upgrading” a line to P, is not possible as we explicity exclude this option while
acquiring our data.

When newly constructing a line, it is not able to start production at full capacity right away.
Rather, its capacity is slowly ramping up until it reaches its maximum. For this purpose, we
are given constants CAPNM; ; for every line which encode this rampup in the following way:
CAPN M, encodes the maximal capacities line [has in the time period in which the construction
of the line is completed. Accordingly, CAPNM; ; is the capacity of the line in the first time
period after construction and so on.

We can assume the following: For every line that is initially already constructed, the values of
CAPN M, ; will always be 0 and the values of CAPM; ; will generally be unequal to 0. For lines
that are initially not constructed, the opposite is the case: The values of CAPM,;; will always
be 0 and the values of CAPN M, will generally be unequal to 0. This observation makes a
reformulation of our initial line capacity constraint 3.1 rather easy:

t
ZPTOdo,l,t < Z(CAPNMI,Z‘ : (Z upgrypypi)) + CAPM;y NYle L,teT (3.9)
0€0 i=0 peP

3.3.2 Distributed Variant

The distributed variant of our constraints does not keep track of the linetype a line was upgraded
from, as we have mentioned before. This means that at each point in which we have previously
used the explicit linetype that we upgraded from, we now have to find a workaround in order to

Page 16

3.3. The Set of Constraints: Complete Problem

obtain the same information.
Upgrading a line is even more straightforward than in our other variant, as we can simply couple
each pair of upgr p+ variables and UPGRABLE; ,, constants:

upgrypt < UPGRABLE,,, VleLpePteT (3.31)
upgrypt — UPGRABLE;, Yle Lipe P,teT (3.31)

Coupling our islt variables with our upgr; ,+ variables is just as simple:

upgrips <isltip,y Vle Lpe PiteT (3.37)
upgripe —>isltp,y VYle Lpe PiteT (3.37)

The coupling in the other direction becomes a bit more involved. In our compressed variant, we
could make statements about a line “losing” its configuration p by stating that an upgrade with
p as its basis was made. Obviously, this is no longer possible, so we introduce a new auxiliary
variable {wu; +, which simply encodes whether a given line | was upgraded any number of times
up to the current time period ¢ or if no single upgrade was made to it. We propose the following
three constraints in order to completely determine the linetype of every line:

isltipy <1—lwu, VI€LpePteTAILT, (3.32)

islty pr < isltypi—1 +upgrip: Vi€ L,pe PteT AN-ILT, (3.33)
islty po < upgripo Vi€ L,pe PA-ILT, (3.34)

islt s — —lwu, Vi€ LpePteTAILT, (3.32)

islt; py — isltyp -1 Vupgrip: Vle€e L,pe Pit€ TAN-ILT, (3.33)
islt; po — upgripo Vle€ L,pe PAN-ILT, (3.34)

We want to shortly discuss why constraint 3.33 is sufficient in order to correctly force a consistent
and correct configuration for every line over every time period beyond the first one. Using
constraints 3.32 and 3.34, we force every single line to have a unique configuration in time period
0: For every line [there is exactly one configuration p such that ILT; , is True, i.e. every line has
a unique initial line type. It may however still be the case that this initial line type is no longer
valid in time period 0 because an update was completed in this time period. For this purpose,
3.34, together with constraint 3.37 correctly forces the variable to its new type.

This is the reason why in constraint 3.33, we can always state that either a line still has the type
of its previous time period or that an upgrade was completed in the current time period, which
allows a line to be of another configuration.

As we have used the newly introduced lwu;, variable, we need to assure that its values are
consistent with the rest of our formulation. We thus couple the variable with our upgr; .+
variable in two directions. This is very simple in SMT:

t
lwuyy < \/ \/ upgrip: Vlie L,teT (3.38)
pEP i=0

For an MIP formulation however, a single type of constraint is not sufficient. Our first type of
constraints states that the value of lwu;; can only become True if some upgrade on the given
line [was made up to and including the time period ¢:

t

lwuy <Y upgrip: VIELtET (3.38)
pEP i=0

Page 17

Chapter 3. Modelling

For the other direction, we state that when an upgrade to the line [is made, the value of lwu; +
should be set to True accordingly:

t
lwuy g - min(t + 1, |T)) > Z Zupgm,p,iw elLteT
pEP i=0

This constraint is correct in principle but is rather “loose” for the MIP model, as it is utilizing
a “big M” coupling. We can reformulate this constraint using two other constraints which result
in a “tighter” formulation:

lwup e > lwug e Vlie Lt € Tsg (3.40)
upgrips <lwuyy Vle Lipe PteT (3.39)

We turn to our problem of continuously using lines or deconstructing them. This is the other
case in which we cannot use the formulation of our compressed variant, as we cannot directly
state that a line was upgraded from the “empty” configuration Py in our MIP. Again, we need
to use an auxiliary variable newb;; which states whether a line [is upgraded from F,; to some
other configuration p in time period ¢:

actvyy < actvp—1 +newby + FTiy Vi€ Lt € Tsg (3.35)
actv;; — actvg—1 Vnewb; vV FTy, Vi€ Lt € Tsg (3.35)

Again, note that “upgrading” a line to P, is not possible as we explicity exclude this possibility
while acquiring our data.

As in our compressed variant, we want to hinder our solver from ignoring the time that it takes
to newly construct a line. For this, we utilize our newb; ; variables:

t—1
1 — newby; > Z Z upgrip; Vie L,iteT (3.43)
pEP i=max{t—BT,0}
t—1
\/ \/ upgryp; — “newby Vie L,teT (3.43)

pEP i=max{t—BT,0}

As we have already mentioned when constructing constraint 3.9 of our compressed variant, the
line capacities, given by CAPNM;; are reduced during the first time periods after construc-
tion. We can model this constraint very similarly, utilizing our newb; ; variables instead of our
UPGT1 p, po,t Variables:

t
> prodoss <> (CAPNM,; -newby,;) + CAPMy; V€ LteT (3.16)
0€O =0

Lastly, we need to couple the value of this newly introduced auxiliary variable newb; ; with the
rest of our variables in order to let it only obtain correct and consistent valuations:

2 -newby; < Z upgrype + (L —lwuy—1) - ILT p, Vi€ L,t €Ty (3.41)
pEP
2 - newby o < Z upgripo+I1LT p, Vi€ L (3.42)
peP

Page 18

3.3. The Set of Constraints: Complete Problem

newby ¢ <> \/ upgrype A -lwuy sy ANILT; p, Vi€ Lt €T (3.41)
peEP
newby g < \/ upgripo AN LT p, Vi€ L (3.42)
pEP

Note that since the solver does not gain any advantage by setting the value of newb;; to False
- it does not allow him to activate lines or make use of the capacities of the constructed lines -,
it is sufficient that our MIP-constraints limit the variables in the upper direction.

3.3.3 A Comparison Between the Two Variants

In this section, we want to discuss the reasoning behind introducing two different formulations
of the same problem and how they compare.

Through the course of constructing the constraints of the problem at hand, we first formulated
the compressed variant, as it seemed like a very natural way to calculate the upgrade costs in
our objective function, which would then precisely reflect the costs of every single feature that
was added.

Formulating the constraints in the way that we have documented them in this chapter reveals
however, that we need to make a compromise in order to correctly determine the current config-
uration of a line - i.e. éslt; p ¢ - in constraint 3.5. This compromise is that of the constraint 3.7,
which states that each line can only be configured to the same configuration only once over all
time periods. This is necessary as otherwise, the sums used in the aforementioned constraints
could result in values bigger than one and in consequence, an otherwise satisfiable problem would
become unsatisfiable.

For practical usage, this does not really restrict the plan, as upgrading from a certain line type
p1 to some other line type ps and then later back to p; does not make sense economically, as
each reconfiguration is costly. Especially, there is no general use for downgrading a line except
for possibly very specific reasons that go beyond the scope of this formulation.

There is, however a much more pressing issue with this formulation in that the number of all
UPYTL py py,¢ variables scales quadratically with the size of the set P. As performance, especially
with regards to memory consumption became an issue, we formulated the distributed variant of
our problem as an alternative which we also use in our implementation.

While the variable space of the upgr; ;, ; variables scales only linearly in the size of P, formulating
equivalent constraints to those of the compressed version becomes a new challenge as we no longer
know from which type an upgrade is made. This results in the introduction of the additional
variables lwu;; and newb; ; of which the first states whether a line was already upgraded at least
once up to and including the current time period, and the latter variable indicating whether a
line is newly constructed in the current time period.

While this formulation no longer relies on the assumption that each linetype can only be taken
once for every line, formulating an equivalent for the objective function proves to be challenging.
When using our reformulated upgrade variable, we are only able to state what the costs of up-
grading a line to a certain configuration is, measured relative to its initial configuration, as we
lack the information from which configuration the upgrade is made from. In order to see how
this proves to be a problem and to show how our solution to this problem works, we take a look
at the following small example.

Example 3.3.1. Assume a line [with some initial configuration of features F' of which we
assume that it does not include the features f; and f>. In order to produce an order that is
assigned to it in time period 1, it needs to add the feature f;. For another order that is assigned

Page 19

Chapter 3. Modelling

to this line in time period 3, the features f; and f; are required, such that the final configuration
of the line is f1 and fy (additional to the features given by the initial configuration F).

In this example, our compressed model would have the choice between first adding the feature

f1 to the line [only to later add the feature fo and the option of adding both features at once,
as the costs of both upgrades are the same, since we do not pay for the cost of upgrading itself.
Le., if ¢({features}) is a function that projects adding a set of features to the cost of adding
these features, c({f1}) + c({f2}) = c¢({f1, f2}) holds for our compressed variant.
Our distributed variant, however, would always choose the option to directly add both features
at once, since the upgrade costs are always compared to the initial configuration of the concrete
line, as it is the only common point of reference. Thus, it would “pay” twice for feature fq,
ie. c({f1}) + c({f1, f2}) > c({f1, f2}). This is undesirable for the Robert Bosch GmbH, since
upgrades are supposed to be made only when they become necessary, i.e. a line should only
gain features that are necessary for production in this time period. For this purpose, we add an
exponential backoff to the objective function, namely the term 2U71=*) This means that over all
possible upgrades in all time periods, there is always a solution in which buying the same upgrade
as late as possible is cheapest. In both the distributed and the compressed variant, the solvers
will thus try to buy the cheapest upgrade that satisfies the minimal requirements for production
local to the current time period t. Thus, especially our distributed variant will now work as
desired regarding upgrades. A side effect of this multiplication is that the cost of upgrades now
dominates the objective function, thus if we weight all parts of the objective equally, we will find
an optimal solution regarding minimal upgrade costs.

3.4 A Complete Mathematical Formulation

Based on the descriptions of the previous paragraphs we are able to construct the following
mathematical formulation for modelling the given problem:

min » > " uauwy, - UTIL] - wy (3.10)

teT lel

+ 3> buyrel,; - RELEASES - ws (3.11)
o€eOleL

+3° > S lasgnous - (1= LOCALyy)] - LFORLY | - w3 (3.12)
teT o€OlEL

+ >0 D> aaumeys - CONT® -y (3.13)
teTsoo0€OlEL

33" Tupgripe - UPGE - ws - 21717 + newd, , - BLDS (3.14)
teT pePIlEL

st. > prodois = SIZEo; YoeO,teT (3.15)
lel
t
> prodese <> (CAPNM, ; - newby ;) + CAPM, VieL,teT (3.16)
o0 =0
INITLINE,; < asgne o Vo€ O,l€L (3.17)
asgne 1+ < actvy Yoe O,le L,teT (3.18)
|T|—1
prode < asgneus-(> CAPNM;; + CAPM,;) YocO,l€L,teT (3.19)
=0
actvy ; < Z asgne |+ VieL,teT (3.20)
0€0

Page 20

3.4. A Complete Mathematical Formulation

asgnogs < Y ASGNo,p - islty p YoeO,leL,teT (3.21)
pEP

buyrel,; > (1 — REL,) - asgng i+ Yoe O,le L,teT (3.22)

atsiteo st > asgne ¢ - LINKED; g YVoeO,le L,se S, teT (3.23)

atsiteo st < Zasgno‘l,t -LINKED, , Yoe O,se S,teT (3.24)
leL

INITSITE,, s < atsiteo,s,0 Yoe O,s €S (3.25)

FIXSITES, s+ < atsiteo,s,t Yoe O,se€ S;teT (3.26)

z3060107”0510,1,15

uauzryy > TUTIL - actvy; — CAPM, + CAPNM; ;¢ Vie L,teT (3.27)
wauiy s > ocoprodo,i,t —TUTIL,, - actv, VieLteT (3.28)
’ CAPM; s +CAPNM;; +¢ ’ ’
AAUT o1 ¢ = ASGNo 1 t—1 — ASGNo 1t Yoe O,l € L,it € Tso (3.29)
AQUT o1 > ASGNo,1 — ASGNo L t—1 Vo€ O,l€ L,teTs (3.30)
upgrip+ < UPGRABLE,, VieLpePteT (3.31)
islty pe <1 —lwuyy Vie L,pe Pt TANILTy, (3.32)
islty py < islty p¢—1 4+ upgry p¢ Vvie Lipe Pt € TA-ILTy, (3.33)
islty p.o < upgryp,o vie L,pe PAN-ILTy), (3.34)
actvyy < actvy 1 + newby y + FTy ¢ Vie L,teTso (3.35)
D sl pp =1 VieL,teT (3.36)
peP
upgrypr < islty p ¢ VieLpe P,teT (3.37)
t
lwuy ¢ < Z Zupgrz,p,i VieLteT (3.38)
peEP i=0
upgryp,e < lwuy g VieL,pe PteT (3.39)
lwuy,; > lwuy,—y Vi€ LteTso (3.40)
2-newbyy < Y upgryp + (1 —lwugy 1) - ILT, p, vie Lt € Tso (3.41)
pEP
2-newby o < > upgripo + LT, p, Vie L (3.42)
pEP
t—1
1 —newby ; > Z Z UpgTy pi Vie L,teT (3.43)
pEP i=max{t—BT,0}
aauz,) € By Yoe O,l e L,t € Tso
uauz;; € Ry Vie L,teT
prod, ;¢ € Ry Yoe O,le L,teT
asgne ¢ € B Yoe O,le L,teT
atsiteo,s,;t € B YVoe O,s€ S, teT
actv; ; € B VieL,teT
buyrel,; € B Yoe O,l e L
upgryp,t € B VieLpe PteT
islty ¢ € B ViELpePteT
newb; ; € B Vie L,teT
Const:CONT® € R4
BLD® e R
UPG} € Ry VieLpeP

Page 21

Chapter 3. Modelling

UTIL} € Ry
RELEASES € Ry
LFORL} , € Ry
POSS,; €B
REL,; € B
LOCAL,; €B
LINKED, , €B
SIZEo,: € Ly
CAPM,, € Ly
CAPS;; € Z4
INITLINE,; € B
INITSITE, s € B
FIXSITES,s: €B
FT,, €B
CAPNM;; € 7
CAPNS; €L
ASGN,p € B
UPGRABLE;, € B
ILT, €B
TUTIL;; € R

vVieL
Yo € O
Yoe O,le L
Yoe O,le L
Yoe O,le L
Yoe O,le L
Vie L,se S
Yoe O,teT
Vie L,teT
Vie L,teT
Yoe O,le L
Yoe O,s€ S
Yoe O,se S,teT
Vie L,teT
Vie L,teT
Vie L,teT
Yoe O,p e P
VieL,pe P
VieL,pe P
Vie L,teT

Next, we present our complete SMT formula. We want to mention that inherently, an SMT
formula does not include an objective function and that we are thus abusing notation in the
following. By including the objective function, we want to express that we can simulate the
optimization process by including the sum of the objectives and demanding its value to be below

a certain threshold. This is further discussed in section 5.3.3.

min Z Zuauwl,t . UTIL;$ cw1

teTlel

+ > S ITE(buyrel, , RELEASES - ws,0)
o€0Olel

+3° 3" ST ITE(asgne s A=LOCAL,, - ws, LFORLS |,0)
teT ocOleL

+ Z Z ZITE(aauxo’lyt,CONT$ - wyq, 0)
tET>(0€0 IEL

+3° 5 ST ITE(upgri e UPG - ws - 27171 + newb; , - BLD®,0)
teT pePlel

s.t. Zprodo,u =SIZFE,;+
leL
t
> prodey s <> ITE(newby;_;, CAPNM,;,0) + CAPM; ,
o0cO 1=0
INITLINE,; — asgno,io
asgne it — actvy ¢
asgne it — (P"’Odo,l,t =0)
actvy ¢ — \/ asgno it
o€0
asgno,i,t — \/ (ASGNo,p Nisltyp 1)
pEP

Yoe O,teT

VieLteT

YocO,leL
Vo€ O,l€L,teT
Vo€ O,l€L,teT

vieL,teT

Yoc O,l € L,teT

(3.10)
(3.11)
(3.12)
(3.13)
(3.14)

(3.15)

(3.16)

(3.17)
(3.18)
(3.19)
(3.20)

(3.21)

Page 22

3.4.

A Complete Mathematical Formulation

(mRELy; Nasgne) — buyrel,

(asgne,i s NLINKED, ;) — atsiteo,s,t

atsiteo st — \/ (asgne, i+ NLINKED)
leL

INITSITE, s — atsiteo,s,0

FIXSITES, st — atsiteo,s,t

Zoprodo,z,t
actv; ; — (uwaux; > TUTIL; — S
Le = (bt = LY CAPM,, + CAPNM,, +s)
> prodo ¢
oeO

A (uauzy —TUTIL; ;)

= CAPM; s + CAPNM,; ; +¢
—actvy ¢ — (vaux; s = 0)

aauz,,i, < (asgno,i,t—1 © asgno,i,t)
upgry p ¢+ — UPGRABLE; ,

islty ¢ — —lwug

islty ¢ — 180t p 1 V UPGTy pt

islty .0 — UPITL p.0

actv; ¢ — actvy 1 V newby ¢ V FTy ¢

EzactlyOne(islt; p +)
peP

upgry p.¢ — islty p ¢

t
lwug ¢ \/ \/ upgry pi
peP i=0

newby ; <> \/ upgry ¢ A ~lwug s ANTLT p,
peEP

newb; o <> \/ upgry p.o N ILTy p,
peP
t—1

\/ \/ upgry p.; — —newby
PEP i=max{t—BT,0}

aauz, ¢ € By
uauzx;; € Ry
prody,; € Ry
asgne ¢ €B
atsiteo,s,t € B
actv;y € B
buyrel,; € B
upgry p,t € B
islt; , ¢ € B
newb; ; € B
Const:CONT® € Ry
BLD® ¢ R
UPG} € Ry
UTIL} € Ry
RELEASES e R,
LFORLY , e Ry

VocO,le LiteT (3.22)
Yoe O,le L,seS,teT (3.23)

Yoe O,se€ S,;teT (3.24)

Yoe O,s€ S (3.25)
Yoe O,se€ S,teT (3.26)

VieL,teT (3.27)

VIELteT (3.28)

Vo€ O,l € L,t€Tso (3.29,3.30)

VIeLpePteT (3.31)
VieLpe P,te TAILT;, (3.32)
VieL,pe Pt e TA—ILT,, (3.33)
Vie L,pe PA-ILT,, (3.34)

Vi€ LteTso (3.35)

VieL,teT (3.36)

Vie L,pe P,teT (3.37)

VieLiteT (3.38)
VieLteTsy (3.41)

Vie L (3.42)

VieL,teT (3.43)

Yoe O,l € L,t € Tso
Vie L,teT
YoeO,le L,teT
YoeO,le L,teT
Yoe O,seS,teT
Vie L,teT

Yoe O,le L

Vvie L,pe P,teT
VvieL,pe P,teT
Vie L,teT

VvieL,peP
vie L
Yoe€ O

Yoe O,le L

Page 23

Chapter 3. Modelling

POSS,; €B Yoe O,l €L
REL,; €B Yoe O,l €L
LOCAL,, € B Yoe O,l €L
LINKED; ; €B vieL,seS
SIZE, € 7y Yoc O,t€T
CAPM; ; € Z+ VieLteT
CAPS,, € Z+ VieL,teT
INITLINE,; €B YoeO,l€L
INITSITE, s €B Yoe O,s€ S8
FIXSITES, st € B Yoe O,s€ S,teT
FT,,€B VieL,teT
CAPNM,; €7 VieL,teT
CAPNS;; €Z VieLteT
ASGN, , € B Yoc O,pE P
UPGRABLE; , € B VieL,peP
ILT, , €B VieLpeP
TUTIL;; €R VieL,teT

We obtain the reduced models by replacing constraint 3.21 with constraint 3.2, constraint
3.16 by 3.1, adjusting constrain 3.36 and by leaving out constraints 3.29 to 3.43. Addtionally,
parts 3.13 and 3.14 of the objective function are deactivated.

3.4.1 Descriptions of Variables and Constants

Below, we give a reference for all variables and constants that are used throughout all formula-
tions.
Variables:

o uaux;: Auxiliary variable, reflects deviation from target utilization of a line [at time
period t.

e prod,;: Amount of parts from an order o that are produced on a line [at time period t.
® asgn,+: Decides whether any part of an order o is produced on line [at time period t.
e atsite, s Decides whether an order o is produced at production site s at time period ¢.
e actuyy: Decides whether line [is active (i.e. used) at time period ¢.

e buyrel,;: Decides whether a customer release has to be acquired for assigning an order o
to a line [.

® aaut,:: Auxiliary variable, reflects whether an order o was continuously assigned to a
line [in between two time periods ¢t — 1 and ¢.

® upgryp:: Decides whether a line ! is to be upgraded to configuration p at time period ¢.
o islt; p+: Decides whether a line [has a certain configuration p during time period .

o newb; +: Decides whether a line [is upgraded from Fy to some other configuration p in time
period t.

Constants:

Page 24

3.4. A Complete Mathematical Formulation

UTlIl L?: Costs for not reaching the target production percentage on any line [which is
given by the ratio between CAPS;; and CAPM,; as well as between CAPNJS; and
CAPNM, ;.

RELEASEf: Costs for not having a customer release when assigning an order o to any
line.

LF ORL§ ;: Costs for not honoring local for local regarding any assignment of an order o
to a line [.

CONT?: Costs for changing the assignment of orders between lines.

UPGip: Costs for upgrading a line [to a certain type p.

BLD?®: Costs for constructing a new line.

POSS,,;: Indicates whether an order o can be technically assigned to a line [in the reduced
problem.

REL,;: Indicates whether there is a customer release already present for the assignment
of an order o to a line [.

LOCAL,;: States whether the delivery triad of an order o is local to that of a line I.
LINKED, ,: States whether a line [is stationed at site s.

SIZE,;: Number of parts that are to be produced for order o in time period ¢.
CAPM,;;: Number of parts that a line [is able to maximally produce in time period ¢.
CAPS; +: Target production value of a line [in timestep ¢, always below or equal CAPM; ;.

CAPN M, +: Number of parts that a line [is able to maximally produce in time period ¢
after being constructed.

CAPNS;;: Number of parts that a line [is targeted to produce in time period ¢ after
being constructed.

INITLINE,;: Orders may initially be already be produced on a line during planning
or this assignment of an order to a line is given otherwise. This binary constant reflects
whether an order o is initially fixed to a line [.

INITSITE, s: Orders may initially be already produced at a site. This binary constant
reflects whether an order o is initially fixed to a site s.

FIXSITES, s +: Indicates whether an order o is fixated for production to a site s during
a time period t.

ASGN, ,: Indicates whether an order o can be produced on an arbitrary line of type p.
ILT; ,: Indicates the initial configuration p of a line [in time period 0.
UPGRABLE, ,: Indicates whether a line [can be upgraded to a configuration p.

Py: The “empty” linetype, used for lines that are not constructed yet.

Page 25

Chapter 3. Modelling

e FTj,: For a line [that can start production only later after the initial time period, this
constant becomes true at the first time period at which the production amount of a line,
i.e. CAPNM,;,; becomes greater than 0.

e TUTIL,;,: Percentage of utilization that is to be reached for a line / in a time period ¢.

3.5 Challenge: The Size of P

The specific production lines in the given optimization problem are special in that they are
designed to be very modular regarding their configuration. A line configuration is defined by
the presence or absence of line features. One can interpret a line configuration as a boolean
vector fvec in the length of all possible features n, with an index fvec|i],i € {0,...,n — 1}
evaluated to True if the feature is present and to False if it is not. Particularly, there are no
interdependencies between line features, i.e. adding a feature to a line will not make it impossible
to additionally add another feature that was also previously possible to be added.

In theory this means that every vector of features has to be regarded when determining the set
of all line types P that may be relevant for the model, resulting in an exponential blowup in the
size of n. In our given problem, the lines have a total of 35 features relevant for determining
whether an order can be produced on a line or not. In practice however, most lines have a small
set of features that can be added, with the highest number of features that can be added per
line being only six. As the possible variation in line configurations is this small, we decided
that simply enumerating every possible line configuration for every line was not going to give
as much blowup as theoretically expected. We found the number of all possible and unique line
configurations over all lines to be around 300, which is a smaller by a great margin than the
expected 23° configurations and deemed acceptable for our problem.

3.6 Quality Evaluation of our Formulation

We want to briefly evaluate which aspects of our mathematical formulations may be further
enhanced in the future.

Right now, by our design, the objective function is dominated by the cost of upgrades, as we
found this to be an easy way to handle both the delay of upgrades time-wise and from the aspect
of only upgrading what needs to be upgraded. We suggest revisiting the involved constraints in
order to find an alternative way of modelling upgrades that is both as memory-efficient as well
as precise as our variant, but is able to differently express the objective function so as to get rid
of the exponential backoff.

From the standpoint of implementation, it may be desirable to directly propagate the values of
constants in the impementation, so as to reduce the number of constraints and the number of
variables that need to be decided. While some MIP solver like SCIP do this propagation to a
certain degree automatically as part of their “presolving” routine, we cannot assume all solvers
to implement this behaviour.

Regarding the coupling of assignment variables and production-amount variables in constraint
3.19, it may be desirable to find a “tighter” formulation that does not need the multiplicative
factor of CAPM;; and CAPN M, ;. We assume that a reformulation of this constraint may help
the perfomance of our solvers.

Page 26

Chapter 4

Implementation

Besides finding a mathematical formulation of the problem stated by the Robert Bosch GmbH,
one of the main goals of this work was to write a software tool that is capable of extracting the
raw data given by the Robert Bosch GmbH in the form of a multi-sheet workbook, followed by
constructing an object for both the MIP and the SMT formulations, invoking a solver on this
object containing our parsed input data and writing out a solution in a processable form, if a
solution exists.

The software implementation was done using the programming language Python in version 3.6.
All of the source code was thoroughly commented for the generation of a documentation using
the tool Doxygen [8]. A doxyfile is included in the Code folder.

Structurally, there are several components interacting with one another such as the parser, a
benchmark generator and an abstract problem handler. We give an abstract overview of the
control flow in a usual run of the software in figure 4.1: The main module is invoked with a set
of options - detailed in section 4.3 - which include the path of the file needed for processing the
problem. If no input file is specified via the options and the user has a graphical frontend, a file
selection dialog is opened to select the needed file.

A data object, which we call a DataBundle, is created and invokes a call to the parser on the
given file. The parser then extracts the necessary data from the given input files and passes them
back to the DataBundle object, which in turn checks the extracted data for general consistency,
such as non-empty data fields and correct typing, but also for inconsistent data, which we detail
later.

After being returned the DataBundle object, the main module then invokes a call to a problem
handler - SMT or MIP - in order to generate a mathematical problem of the according format.
The created problems may optionally be exported to .smt2 or .mps files. Finally, the main
method invokes a call to solve the generated problem, using a tool specified by the user via the
options passed in the beginning. If a solution is found, it is then written out for the user to
inspect.

For testing and benchmarking, artificial and randomized data - with regards to a seed - can be
created using the provided benchmark generator. This will create a DataBundle object as well,
and thus the program flow that we described is identical after the DataBundle object is returned.
We will go into more detail on how this data is generated in the Performance Evaluation chapter.
The structure of a benchmark run is depicted in figure 4.2.

We will now discuss the components of the software in more detail.

Page 27

Chapter 4. Implementation

4.) Stores data,

. 2.) Extract data
checks consistency

from inputfiles

0

DataBundle Fileparser

_/

5.) Returns DataBundle 3.) Returns extracted data

1.) Create DataBundle
from inputfiles

6.) Build problem

Main from DataBundle

8.) Returns Problem
Handler (MIP/SMT)

Problem Handler 7.) Builds and
(MIP/SMT) stores problem

U

10.) Solves Problem

9.) Solve problem

Figure 4.1: The simplified control flow throughout a normal run. After the last step, the main
module invokes an output of the solution.

Page 28

DataBundle

1.) Create empty 2.) Returns empty

DataBundle object DataBundle
) 7.) Builds and
6.) Build problem (.o problem
from DataBundle Q
. 9.) Solve problem 7\ Problem Handler
Main 1 (MIP/SMT)

8.) Returns Problem Handler (MIP/SMT) 10.) Solves Problem

5.) Returns 3.) Generate artificial
DataBundle data in DataBundle
Benchmark
Generator

U

4.) Fill DataBundle
with artifical data

Figure 4.2: The simplified control flow throughout a benchmark run. After the last step, the
main module invokes an output of the solution.

Page 29

Chapter 4. Implementation

4.1 Building the DataBundle Object

The data that is provided to us in order to generate our concrete problem is given in the form
of a multi-sheet workbook. This workbook contains a total of ten sheets that are relevant for
our problem, of which six are raw input data and four are exclusively used to detail the artificial
cost parameters for our objective function. Additional to configuring rather natural parameters
of the problem such as line capacities or possible upgrades for production lines, the user is able
to control the following parameters during planning inside the input file:

e Assigning orders to lines and sites at the initial time period.

e Assigning orders to sites during any time period.

Setting cost parameters for underutilization of each line.

Setting cost parameters for buying customer releases for each order.

Setting cost parameters for violating the concept of “local for local”.

Setting the cost parameter for incontinuity of line assignments across time periods.

Setting the cost parameter for constructing production lines.
e Setting the initial time period for planning.

In order to extract the necessary data, we implemented a parser module that first converted the
file of .xIsb format into several files of .csv format - one for each relevant workbook sheet, using
the library pyxlsb[9]. The mentioned parser is invoked by the DataBundle module, which checks
the extracted data for consistency in regards to non-empty fields, correct typing and consistent
naming of orders, lines and sites across the different input data sheets. Additionally, after all data
is acquired, further checks are made which allow for the early detection of data inconsistencies
which would result in unsatisfiability:

In the context of the reduced model, it is checked whether orders are initially assigned to lines or
sites which are incapable of producing them. As no upgrades are possible in the reduced model,
this would mean that the order can simply not be produced. Similarly, in the complete model,
orders may be initially assigned to a line which even when upgraded is unable to produce the
order or to sites of which no line is able to produce the order for the same reason. There may
be orders that require a certain line configuration that none of the lines is able to provide, even
when upgraded and lastly, all the lines that are capable to produce a certain type of order may
have their capacities set to 0, i.e. shut down.

If any of the checks for the extended model are unsuccessful in that they find an inconsistency,
the program is terminated at the end of the checks. The user is then able to extract the exact
contradictions from the generated logs.

4.2 Creating and Solving the Mathematical Model

Given our required input data in form of a DataBundle object, the next step is to create an
object that is able to generate, solve and print our mathematical problem. We have chosen to
create an abstract problem handler class as a parent class for both the MIP and SMT formulae.
This way, we can rely on a unified interface independent of the underlying problem formulation
format. Apart from requiring the implementation of a few attributes, e.g. for timing, this class
enforces the following methods: Creating the concrete model from a DataBundle object using

Page 30

4.3. User Parameters

_create_problem_from_data_bundle(), writing the created problem with write_problem(), solving
the problem using a solve()-method and finally the ability to print a solution - if one exists -
using write_solution().

Our requirement for the implementation of both problem formulations was the ability to
create problem objects of a common format for most solvers and the ability to directly interface
as many common solvers as possible. These criteria were met by two libraries, which we will
introduce in the following.

4.2.1 Implementation of SMT: pySMT

The established standard for describing SMT formulae is the SMT-lib standard[10] with the
.smt2 file format. For the implementation of our SMT formula, we decided to use the python
library pySMT[11], released under the Apache 2.0 license. The library provides interfaces to
common SMT solvers such as Z3, MATHSAT and CV(C4 and an SMT-lib interface in order to
interface any SMT-lib compatible solver. Additionally, created formulae can be output in the
SMT-libs own .smt2-format.

4.2.2 Implementation of MIP: Pyomo

For the implementation of our MIP, we decided to use the python library Pyomo[12][13], released
under the BSD license. The library provides interfaces to common LP- and MIP-solvers, such
as Gurobi, GLPK, SCIP and CPLEX. Additionally, the output of a Pyomo object to common
formats such as the AMPL-format .nl and the CPLEX .Ip-format is supported.

4.3 User Parameters

In order to control parameters of the mathematical and the general behaviour of the software, the
user is provided with two ways of configuration: a configuration file and command line options.
The configuration file has a very simple structure, a sample file named config.ini is included in
the Code-directory. Using this file, the user is able to control two things: General parameters
for solver behaviour and parameters for creating a benchmark run with artificial data. The
parameters are the following:

e solution_gap: If a solution was found that deviates at most this percentage from the
optimal solution, a run is to be preemptively terminated and the current solution is to be
output.

e line_utilization_weight: Weighing factor w;. Used to control the weight of line utilization
in the objective function.

e customer_release_weight: Weighing factor wy. Used to control the weight of customer
releases in the objective function.

e local for_local_weight: Weighing factor ws. Used to control the weight of “local for
local” in the objective function.

e line_continuity_weight: Weighing factor ws. Used to control the weight of line continuity
in the objective function.

e upgrade_costs_weight: Weighing factor ws. Used to control the weight of upgrade costs
in the objective function.

Page 31

Chapter 4. Implementation

seed: An integer number used for generating the seed for randomization. If a value of 0 is
entered, the current timestamp is used to seed a benchmark run.

nOrders: Number of orders for a benchmark run.
nLines: Number of lines for a benchmark run.

nSites: Number of production sites for a benchmark run.
nPeriods: Number of time periods for a benchmark run.

nLineTypes: Number of different line configurations for a benchmark run.

The command line options are used to control more general behaviour of the software. The
following options are available:

{-h,--help}: Show a help message displaying all options.

--tpz_file: Path to the main data file in .xIsb format.

{-1, --disable_logging}: Disable all logging.

{-c, --do_not_log_to_console}: Disable forking the logging output to stderr.

--write_problem_files: Write out .mps/.smt2 files after the according problems are gen-
erated.

--mip_solver: Specify the name of the MIP solver to be used. All solvers mentioned in
the section “Benchmark Criteria” are possible.

--smt_solver:Specify the name of the SMT solver to be used. All solvers mentioned in the
section “Benchmark Criteria” are possible.

--solution_filename: Specify the name of the solution folder which is also the prefix to
all of its file names, if a solution exists. If no name is specified, the current timestamp is
used.

{-v, --verbose}: Include all debug messages in the log.

--only_write_problem file: Converts the input files to .smt/.mps files without invoking
the solving process.

--only_check satisfiability: Stop the solving process once a feasible solution was found.
--config_file: Path to a configuration file to be used for the run.

--run_benchmark: Flag to indicate whether a benchmark is supposed to be run. User
needs to provide a config file specifying the parameters for the benchmark. See --config_file.

--reduced_problem: Flag, only creates the reduced problem if set.

--smt_gap: Triggers optimization using the selected smt solver. Maximal derivation from
an optimal solution value that is to be searched for.

Page 32

4.4. Output of a Run

4.4 Output of a Run

For every run, output files are produced. This output is placed inside a timestamped folder as a
subdirectory of the outputfiles directory in the Code directory, if not specified differently by the
input options. Every run produces a log - if not explicitly disabled. Problem files in .smt2-format
for the SMT problem formulation or in .mps-format for the MIP problem formulation can be
written, either alongside a run in which they are also solved or as the only purpose of the run.
If a solver was invoked and a solution was found, multiple files of .csv format are written out in
order to visualize the results of the run:

e A file indicating which lines are active in which time periods.

e A file that details to which concrete configuration lines have to be upgraded to in which
time period.

e A file specifying for which combination of orders and lines customer releases have to be
acquired.

For each time period a file that details how many parts of which order are to be produced
on which line.

An additional requested feature by the Robert Bosch GmbH was a file of .csv format that
details which orders can technically be produced on which set of lines, using their initial line
configuration and the features needed for producing the order as a basis. This file is generated
during every run.

Page 33

Chapter 5

Performance Evaluation

One of the goals of this work was to test and compare the performance of multiple SMT- and
MIP-solvers on our given problem. To this end, we only generated artificial test sets due to
hardware restrictions on the machines provided by the Robert Bosch GmbH and the restriction
that the data may not leave the infrastructure of the Robert Bosch GmbH. For randomization,
we use Python’s own random module and give the user the ability to control the seed in a
configuration file. We will provide the seeds that we are using for each benchmark run along
with the results, so that the reader has the ability to verifiy the results themselves. Please note
that when these benchmarks were performed, the model did not include constraint 3.20, which
means the reader has to comment out the regarding constraint in the problem handlers in order
to obtain the same results.

We will first discuss how we generate our test data, then motivate which variations of the problem
formulation we are going to test and finally provide benchmark results for each of the given test
sets.

5.1 Generating Randomized Test Sets

As we have mentioned in our Implementation chapter, our benchmark_generator module can
be used to generate artificial DataBundle objects in order to test and benchmark our problem
formulations. We have already learned that our problem consists of five different dimensions:
Orders, production lines, line configurations, production sites, and time periods. The user is
able to specify the size of each dimension in a configuration file that is passed when invoking the
main module. In this section, we will detail how the data is generated in order to give the reader
the ability to better evaluate the benchmark results. For this, we need to go over the values of
each constant.

5.1.1 Generating Line Configurations

We first need to discuss how we handle line types internally, as some constants can only be
created in a consistent way if the handling of line configurations is clear. If we e.g. choose a
random value for a constant ASGN, ;,, we state that an order o can be produced on an arbitrary
line of type p. However, lines are upgradeable and are able to produce strictly more different
kinds of products afterwards. This means that if a configuration p; is suitable to produce order
o, then also the configuration ps should be suitable to produce o if configuration ps is the result
of an upgrade from p;. Since it would be rather tedious to keep track of such dependencies

Page 35

Chapter 5. Performance Evaluation

by simply generating arbitrary and non-specific line configurations, we decided to use the same
approach as we use for encoding line types when handling real data.

As we have already learned, a line configuration is the collection of present and absent features.
Internally, we encode this by a boolean vector, with an entry for each feature. We then simply
generate random vectors of same length, which are then our line configurations. As we do want
it to be possible for a lot of line types to be upgradeable into one another, we restrict the length
of these vectors to [logs(nLineTypes)]. The “empty” configuration, which is a vector of False
entries is always part of our line type set, as well as the full feature vector, of which all entries are
True. The latter is added in order to ensure satisfiability of our benchmark data, as this adds
the solution in which every line is upgraded to the full feature vector. Obviously, this means that
the number of line configurations that the user can choose may not fall below 2. All other line
configurations are created by generating random vectors and adding them to our line type set if
they are not already part of it, until we have the desired number of vectors. As we set the length
of our vectors to [logs(nLineTypes)], we can always ensure that this procedure terminates in
expectation.

Before we move on, we observe that this vector encoding allows us to define a half order on this
particular set of P as follows:

Definition 5.1.1 (The Half-Order < on P). Given two boolean vectors p1,ps € P. Let n be
the length of these vectors. Let v[i] be the i-th entry of vector v. We define the half-order < as
follows:

p1r<p2 < pifi] <pofi] Vie{l,...,n}ATie{l,...,n} st p1[i] < p2li]

5.1.2 Randomized Values for Constants

LINKED,s: Every line is stationed at exactly one site, thus we randomly choose the site of
each line.

LOCAL,,: The information whether an order is local to the line that it is produced on is both
dependent on the site that the line is located at as well as the delivery location of the order. As
this delivery location is in theory completely arbitrary, we randomly choose a site from the set
of all sites S which is then the site of which each line is local to the order. Note that each order
is local to at least one production site by definition.

POSS, 1: In our reduced model, we utilize the constant POSS, ; which states whether an order
can be technically produced on a line or not. For each pair of orders and lines we flip a coin
whether this line is able to produce it or not. As our reduced problem can only be satisfied if
each order can be produced on at least one line and in theory, each coin flip can result in an
order not being assignable to a line, we additionally randomly determine a line for each order on
which it can be produced.

REL, ;: Customer releases for producing orders on lines can be seen as being completely ar-
bitrary. For this reason, we throw a coin for every pair of orders and lines whether there is a
release present in order to produce the given order on the given line.

SIZE, : For the size of each order, we try to mimic the real data closely. It is often not the
case that the time periods in which an order is to be produced span from time period 0 to time
period |T'|—1. Usually, there is a window of time periods in which the product is to be produced.
Thus, for each order, we pick a random subinterval of [0, |T’| — 1] which is supposed to be the
production interval and randomly pick the size of the order out of the interval [1,100000] for
each time period inside the interval.

ILT, ,: The intial linetype is randomly picked from the list of all linetypes for every line.
CAPM, ;: The maximal capacities of the lines are depending on the sizes of our orders: For

Page 36

5.1. Generating Randomized Test Sets

each order, we determine all lines on which the order can be produced - either initially or after
upgrades - and determine a subset of these lines. Then, for each line and time period, we evenly
distribute the size of the order on all of these lines for the current time period.

CAPS;;: As the target utilization of a line in percent is given by dividing the target capacities
of a line by the maximal capacities of this line. We generate our standard capacities by randomly
picking a value from the set {0.5,0.6,0.7,0.8,0.9,1.0} and multiplying this value with the maximal
capacities that we have generated before.

CAPNM, ¢: We can check whether we have generated lines that are not constructed by inspect-
ing the values of ILT},. If there is at least one member in the set of “empty” lines, we choose
one line at random from this subset. Additionally, we choose a line for which we have already
calculated our capacities. For every time period, half of the capacities that this constructed line
was assigned is now shifted towards the capacities of the line that is not yet constructed. As the
capacities are calculated from the size of all orders and as there are exactly as many capacities
in lines as there are parts to be produced, this ensures that this randomly selected line has to be
constructed.

CAPNS; ;: Just like the standard capacities for already built lines, we randomly choose a per-
centage from the set {0.5,0.6,0.7,0.8,0.9,1.0}.

UPGRABLE, ,: Given our initial line type, we allow it to be upgraded to every other line
type of our set P if the chosen candidate vector can be ordered above our initial line type with
respect to our half-order < defined in definition 5.1.1. This especially means that in our setting,
each line can be upgraded to our full feature vector.

ASGN, p: Based on the values of ILT;, and UPGRABLE; ;, we can now randomly determine
to which configuration an order is supposed to be assignable. We simply collect all line types
from ILT;, and UPGRABLE; ,, and for each order pick a line type from this set. This order
is then assignable to this line type and to all of its possible upgrades.

INITLINE, ;, INITSITE, ;: Next, we look at generating assignments of orders to sites and
lines at time period 0. In the core, the mechanism for determining initial assignments is the
same in both the complete and the reduced problem: For each order, a random line is picked
from a list of lines on which it can be produced and for this line, a coin is tossed to tell whether
the order is initially assigned to it or not. If the line is not assigned, a random site from a list
of compatible sites is picked and another coin is tossed to determine whether the order is afixed
to the site. A site is compatible if at least one line of this site is able to produce the order. The
difference between the complete and the reduced model is how the list of compatible lines and
sites is determined: In the reduced version, we determine compatible lines and sites by using the
values of our constant POSS,; while in the complete model, we utilize the values of ILT;, and
ASGN, p in order to determine whether an order could be produced on a line initially or after
an upgrade.

Po: Our empty line type is the vector of length [logs(nLineTypes)] that only consists of False
entries.

FIXSITES, s +: We decide not to fixate any orders to certain sites, as in our original data, only
3 orders were fixated beyond the first time period.

BT: For the construction time of every line, we choose a single value randomly from the set
{1,2,3}.

FT,: The values of this constant are completely dependent on the values of the (maximal)
capacity values, which we randomly generated as described above. As with real data, the first
time of production is the time period in which the production amount switches from 0 to some
nonzero value for the first time.

UTILi$: For each line, we choose a random integer value between 1 and 100.

RELEASE?: For each order, we choose a random integer value between 1 and 100.

Page 37

Chapter 5. Performance Evaluation

LFORLE’I: For each pair of orders and lines, we choose a random integer value between 1 and
100.

CONT®: We choose a random integer value between 1 and 100.

UPGfp: For each feature, we choose a value between 1 and 10 and accumulate the costs for
each vector.

BLD?®: We choose a random integer value between 1 and 100.

5.1.3 Disproportional Memory Usage during Runtime

During development, we noticed that the libraries pySMT and pyomo consumed disproportional
amounts of RAM both when writing out a problem file and when invoking a solver with the
dimensions of the original problem data. For the SMT case, this resulted in us being unable to
simulate a run with artificial data based on the dimensions of the original problem, as our most
performant machine had only 32 Gigabytes of memory, which were exceeded.

When using Pyomo, interfacing a solver with a problem on the basis of the dimensions of our
original data, we reached almost 24 Gigabyte of RAM usage. These dimensions were: 1093 orders,
41 production lines, 5 production sites, 13 time periods and around 300 line configurations. Since
the hardware that we used for creating our benchmarks was only equipped with 16 Gigabytes of
RAM - specified in more detail in the next section -, this resulted in us being unable to test the
runtime of our problem on instances of a size similar to our original problem.

5.2 Benchmark Criteria

As we have both a SMT as well as a MIP formulation at hand, we would like to use this
opportunity to compare both kinds of solvers with one another as well as compare the solvers
of both categories with one another. As we have already mentioned in our preliminaries, SMT
solvers are not inherently built to optimize problems but rather to find a satisfying solution of
arbitrary quality to a given problem. This is why we only compare MIP and SMT solvers in the
criteria of finding the first satisfying solution to a given problem.

When comparing the solvers of the two categories with one another, we are mainly interested
in their performance on finding single satisfying solutions for problems of increasing dimensions,
while in the case of MIP solvers we are also interested in the time needed between finding a
solution of a given quality (gap) and finding the optimal solution to a problem.

In order to ensure that the performance of a solver is not enhanced or worsened disproportionally
by the concrete data of an instance, we generate three differently seeded test sets for each
benchmark test and average the results for each solver. Our time measurement starts by passing
the input file to the solver and ends as soon as the program terminates. This especially means
that we ignore the runtimes output by the solvers themselves.

As we have already mentioned, we will provide the seeds for each run such that the reader may
verify the results themselves. Due to time limitations, we set the timeout for each solver run to
10 minutes (600 seconds). All benchmarks are made on an Intel i7-7500U with 16GB of RAM (no
swap) running Arch Linux. As not all solvers allow for parallelization, we run every benchmark
on a single thread. To obtain the runtime, we preceed every call to the solver with the command
time timeout 600, i.e. we measure the time between invoking the given tool and the time it takes
for a solver to return control.

Due to time constraints, we are unable to compare the performance of the compressed variant
to that of our implmented distributed variant. We suggest this evaluation to be done in a future
work. We compare the following solvers:

MIP:

Page 38

5.3. Benchmark Results

Name Seeds nOrders nLines nSites nPeriods | nLineTypes
Base 1,2,3 125 15 5 5 75
Ord. 1,2,3 250 15 5 5 75
Line 1,2,3 125 30 5 5 75
Site 1,2,3 125 15 10 5 75
Time 1,2,3 125 15 5 10 75
Type 1,2,3 125 15 5 5 150

Figure 5.1: Complete list of all benchmark sets for our doubling dimensions benchmark using
artifical test data. Each set is defined by 3 differently seeded instances.

e Gurobi 8.0.1 [14]

e SCIP 6.0.0 [15][16]

¢ CPLEX 12.8.0.0 [17]

e GLPK (glpsol) 4.65 [18]
SMT:

o 73 4.7.1 [19]

o MATHSAT 5.2.10 [20]

o CVC4 1.6 [21]

We run two different kinds of benchmarks, each with a different goal. The first benchmark
is structured as follows. We choose a fixed set of dimensions as our Base set and iteratively
double one of the given dimensions. The sets are listed in figure 5.1. We choose the size of the
dimensions such that each of our tested solvers at least passes the benchmark on the Base set.
On each set, we then measure the time it takes for a solver to find a single satisfying solution, a
solution that is at most 50%/10% /2% away from the optimal solution and the time to find an
optimal solution.
The purpose of this benchmark is to compare the performance of our tested solvers under different
criteria. On the basis of the benchmark data, we can also make assumptions on which dimensions
of our problem are the most critical regarding runtime.

For our second benchmark, we also choose three test sets of which the dimensions are fractions
of the dimensions of the input data given by the Robert Bosch GmbH.

Finally, we investigate the option to optimize our problem using the SMT solver Z3.

5.3 Benchmark Results

In the following, we list and discuss the results of our benchmarks.

5.3.1 First Benchmark: Doubling Dimensions

The amount of time to find a single satisfying solution, depicted in the tables of figures 5.2 and
5.3 and visualized in figure 5.8, yields a noticeable result: The solvers Gurobi and CPLEX are
both faster than any of the SMT solvers. The solvers reported these solutions to be found by

Page 39

Chapter 5.

Performance Evaluation

Testset || GUROBI | CPLEX SCIP GLPK 73 MSAT CVC4
Base 0.31 0.89 18.88 386.29 6.66 51.26 77.55
Ord. 0.51 1.55 47.3 600411 10.79 35.1 383.29
Line 2.12 1.78 60011 60011 35.1 160.23 | 341.71
Site 0.87 1.03 20.48 600111 8.32 51.41 83.61
Time 1.1 2.72 90.76 600111 21.18 150.65 | 399.83
Type 0.37 1.16 28.92 348.531 9.78 64.79 115.19
Sum 5.3 9.16 806.35, | 3134.83, 91.85 623.03 | 1401.19

Figure 5.2: Benchmark doubling dimensions: Finding a single satisfying solution. Values mea-
sured in seconds. Runtime averaged over passed instances. Each { symbolizes a timeout on one
instance of the set. Green entries: Lowest runtime on set.

Testset || GUROBI| CPLEX | SCIP GLPK 73 MSAT | CVC4
Base 0.39 2.69 56.64 | 1158.89 19.99 15378 | 232.67
Ord. 1.54 2.66 141.9 180011 32.38 434.07 | 1149.87
Line 6.37 5.36 180041 | 18001 || 10532 | 480.69 | 1025.14
Site 2.63 3.1 61.45 1800111 24.98 154.23 | 250.83
Time 3.3 8.18 272.29 | 18004 63.55 451.96 | 1199.49
Type 1.13 3.5 86.78 | 1297.071 || 29.34 194.38 | 230.38
Sum 15.9 2749 | 2419.06, | 9655.96, || 275.56 | 1869.11 | 4088.38

Figure 5.3: Benchmark doubling dimensions: Finding a single satisfying solution. Values mea-
sured in seconds. Runtime summed over all instances of a set. Each { symbolizes a timeout on
one instance of the set. Green entries: Lowest runtime on set.

heuristics.

The runtimes for finding a solution that is at most 50% away from the optimal solution is depicted
in figure 5.4 and visualized in figure 5.9. Similarly, the runtimes for the gap of 10% and 2% are
given in the tables of figures 5.5 and 5.6, and visualized in figures 5.10 and 5.11. The runtimes
to find an optimal solution can be found in the table of figure 5.7 with a visualization of the
runtime in figure 5.12 We additionally provide a runtime overview of all MIP-solvers over all of
our types of benchmarks in figure 5.13. From this, one can clearly see that for almost all solvers,
a solution of a quality that derivates by at most 10% from the optimal solution is found rather
quickly, while trying to find a solution that derivates by at most 2% is in part time intensive
and finding an optimal solution is not realistic for most instances and solvers, even for the given,
rather small data set. To better visualize this observation, we have plotted the reported solution
quality of the solver gurobi on the three instances of the basic benchmark set in figure 5.14. It is
noticeable how long the solver needs to close the last percent of derivation between its currently
found and the optimal solution.

5.3.2 Second Benchmark: Converging to Original Dimensions

For our second benchmark, we want to investigate the runtime behaviour on instances whose
dimensions are fractions of the original input data. We created three test sets, again each
consisting of three instances, which are to represent a quarter, half and three fourths of our
original dimensions of around 1100 orders, 40 production lines, 5 production sites, 13 time

Page 40

5.3. Benchmark Results

Testset GUROBI CPLEX SCIP GLPK
Base 2.42 7.28 11.2 33.6 1883 | 56.64 | 386.29 | 1158.89
Ord. 5.73 17.2 1991 | 59.74 47.3 141.9 | 600" | 18001
Line 10.71 | 3215 | 12877 | 386.32 | 6005T | 180011T | 600l" | 180011
Site 2.81 8.44 21.74 | 6524 | 2048 | 61.45 | 600L7 | 180041
Time 1.99 5.98 4778 | 143.35 | 90.76 | 272.29 | 6004 | 180041
Time 3.41 10.23 | 17.98 | 53.96 | 28.92 | 86.78 | 34853 | 1297.07)
Sum 27.00 | 81.28 | 2474 | 74221 | 806.35, | 2419.06;| 3134.83;| 9655.96

Figure 5.4: Benchmark doubling dimensions: Finding a solution whose objective value is at most
50% away from the optimal solution. Columns: Runtime averaged over passed instances | Sum
of runtimes over instances of set. Values measured in seconds, cut off after two decimal digits.
Averaged over passed instances. Each 1 symbolizes a timeout on one instance of the set. Green
entries: Lowest runtime on set.

Testset GUROBI CPLEX SCIP GLPK

Base 3.09 9.27 1120 | 33.60 | 18.88 | 56.64 | 386.29 | 1158.89
Ord. 6.33 1899 | 1991 | 59.74 | 47.30 | 141.90 | 600iT | 18004t
Line 1291 | 3875 | 12877 | 386.32 | 6005 | 180011T | 600l" | 1800%1
Site 3.49 1047 | 2174 | 6524 | 2048 | 61.45 | 600LT | 1800%1
Time 14.02 | 4206 | 173.35 | 520.05 | 90.86 | 272.29 | 6001T | 18001
Type 4.12 12.36 | 17.987 | 53.96 | 28.927 | 86.78 | 348.535| 1297.07).
Sum 43.96 | 131.90 | 372.97 | 111891 | 806.35; | 2419.06,| 3134.83;| 9655.96

Figure 5.5: Benchmark doubling dimensions: Finding a solution whose objective value is at most
10% away from the optimal solution. Columns: Runtime averaged over passed instances | Sum
of runtimes over instances of set. Values measured in seconds, cut off after two decimal digits.
Averaged over passed instances. Each T symbolizes a timeout on one instance of the set. Green
entries: Lowest runtime on set.

Testset GUROBI CPLEX SCIP GLPK
Base 16.17 | 48.52 11.2 33.6 | 154.75 | 464.24 | 600111 | 180011
Ord. 6.31 1895 | 1991 | 59.74 | 136.02 | 408.07 | 600L" | 180041
Line || 324.421 | 1248.85%| 307.87 | 923.6 | 6005 | 1800%" | 600l | 1800%t
Site 3265 | 97.97 | 37.64 | 11293 | 257.89 | 773.68 | 600LT | 180011
Time | 59.62 | 178.86 | 173.35 | 520.05 | 71.331 | 742.66, | 600" | 1800%
Type 2153 | 64.61 | 1941 | 5825 | 219.96 | 659.88 | 60011" | 18001
Sum || 460.72, | 1657.76, 569.39 | 1708.17 | 1439.95] 3048.53,| 36001 | 10800

Figure 5.6: Benchmark doubling dimensions: Finding a solution whose objective value is at most
2% away from the optimal solution Columns: Runtime average over passed instances | Sum of
runtimes over instances of set. Values measured in seconds, cut off after two decimal digits.
Averaged over passed instances. Each { symbolizes a timeout on one instance of the set. Green
entries: Lowest runtime on set.

Page 41

Chapter 5. Performance Evaluation

Testset GUROBI CPLEX SCIP GLPK

Base || 260.35 | 781.05 | 188.117 [976.22% | 600" | 1800%" | 600%1T | 18001
Ord. 2050 | 641l | 6057 | 721% | 213.6111 | 14131 | 600l | 1800%!
Line 60011 | 18001t | 6001 | 18001 | 6001T | 1800iT | 600l | 1800%t
Site 6001 | 1800%t" | 60011 | 18001 | 6001T | 1800iT | 600l | 18001t
Time || 6001 | 1800%" | 600iT | 18001" | 600l | 1800%" | 600" | 180011
Type || 138.117 | 414.35 | 243.2611 | 1443.26'1 600" | 1800%1" | 600" | 18001
Sum || 2218.96,] 7236.40,| 2291.87| 8540.48,| 3213.61,| 10413.61] 3600, | 10800,

Figure 5.7: Benchmark doubling dimensions: Finding an optimal solution. Values measured in
seconds. Columns: Runtime averaged over passed instances | Sum of runtimes over instances of
set. Values measured in seconds, cut off after two decimal digits. Averaged over passed instances.
Each 1 symbolizes a timeout on one instance of the set. Green entries: Lowest runtime on set.

Type |- =
Time [o~ Gurobi |
£ -=— SCIP
=% _ |-e—CPLEX
5 Site| GLPK n
é —— 73
g _ |-e-Mathsat
M Line|_g . CvVC4 -

Ord.

Base

10° 10! 102
Time (sec.)

Figure 5.8: Average time needed to find a single satisfying solution on the benchmark for doubling
dimensions. Missing points for a set indicate a timeout on all instances of a set.

Page 42

5.3. Benchmark Results

Type

Time N
g
fﬁg Site .
g
=
[}
g
M Line R
—e— Gurobi
—a— SCIP
Ord. e CPLEX | |
—— GLPK
Base A+

10t 102

Time (sec.)

Figure 5.9: Average time needed to find a solution whose objective value is at most 50% away
from the optimal solution on all test sets on the benchmark for doubling dimensions. Missing
points for a set indicate a timeout on all instances of a set.

Type

Time |
g
f% Site .
g
=
[}
5
M Line R
—e— Gurobi
-=— SCIP
Ord. e CPLEX | |
—— GLPK
Base &
10! 102
Time (sec.)

Figure 5.10: Average time needed to find a solution whose objective value is at most 10% away
from the optimal solution on all test sets on the benchmark for doubling dimensions. Missing
points for a set indicate a timeout on all instances of a set.

Page 43

Chapter 5. Performance Evaluation

Type

Time -
g
é Site |
g
=
(S}
g
M Line 1
—e— Gurobi
Ord. . SCIP -
—e— CPLEX
Base | | | | | | | | | |

| |
0 50 100 150 200 250 300 350 400 450 500 550 600
Time (sec.)

Figure 5.11: Average time needed to find a solution whose objective value is at most 2% away
from the optimal solution on all test sets on the benchmark for doubling dimensions. Missing
points for a set indicate a timeout on all instances of a set.

Type |- ° ® .
g
o
z
g
=
o
=
()
aa)]
—eo— Gurobi
Ord. | " —a— SCIP |
—eo— CPLEX
Base | | | | | | | | |

® o | |
0 50 100 150 200 250 300 350 400 450 500 550 600

Time (sec.)

Figure 5.12: Average time needed to find a solution that is optimal on all test sets on the
benchmark for doubling dimensions. Missing points for a set indicate a timeout on all instances
of a set.

Page 44

5.3. Benchmark Results

OPT - |
fﬁg 2% | A
£
=
[}
=
&
5 10% 8
8]
2,
>
=
—e— Gurobi
50% " —=— SCIP h
—e— CPLEX
—— GLPK
AT | - | | | | | |
SATS 500 1,000 1,500 2,000 2,500 3,000 3,500

Time (sec.)

Figure 5.13: Average time needed for each MIP-solver to reach the given gaps on the benchmark
for doubling dimensions. Missing points for a set indicate a timeout on all instances of a set.
Time: Sum over all sets, taken from the “sum” entries of every benchmark table. Timeout runs
weighted as 600 seconds, actual runtime is higher.

70[‘ ‘ :
60 .
S
50 .
E —e— Base;
% —m— Bases
= 40 —e— Bases N
Q,
&
&0
2 30 |- .
‘g ®
B
g 20| |
Q
oo
10 - .
0 2 2 2 2 o
0 20 40 60 80 100 120 140 160 180 200

Time (sec.)

Figure 5.14: Reported solution quality and solution time of the solver Gurobi on the three seeded
instances of the base benchmark set. The solver spends most of its time closing the last percent
of the solution gap.

Page 45

Chapter 5.

Performance Evaluation

Name Seeds nOrders nLines nSites nPeriods | nLineTypes
Setl 1,2,3 300 10 5 3 75
Set2 1,2,3 600 20 5 6 150
Set3 1,2,3 900 30 5 10 225

Figure 5.15: Complete list of all benchmark sets for our converging dimensions benchmark using
artifical test data. Each set is defined by 3 differently seeded instances.

Testset || GUROBI| CPLEX | SCIP GLPK 73 MSAT | CVC4
Setl 0.66 1.62 24.88 131.67 7.25 144.4 222.29
Set2 16.33 21.15 | 1800%" | 1800%T || 392.36 | 18005 | 18001
Set3 200.68 | 124.01 | 18004T | 18004" || 18001"" | 18001"" | 180011
Sum 217.67 | 146.78 | 3624.88, | 3731.67, | 2199.61, | 3744.4, | 3822.29,

Figure 5.16: Benchmark converging dimensions: Finding a single satisfying solution. Values
measured in seconds. Runtime summed over all three instances of a set. Each { symbolizes a
timeout on one instance of the set. Green entries: Lowest runtime on set.

periods and 300 line configurations. As discussed before, we are unable to test on the dimensions
of the original problem due to insufficient memory. As we only have 5 sites in our original data
and as we have seen that doubling the number of sites does not have a significant impact on the
runtime with our previous benchmark, we chose not to scale this dimension.

The test sets are further detailed in the table of figure 5.15.

The results of our benchmark are given in the tables of figures 5.16 to 5.20. It is quite noticeable
how this benchmark compares to our first one: The runtime for our second set is not much
higher, and further underlines the observed runtime overhead by adding additional lines and
time periods.

5.3.3 Optimizing Using SMT Solvers

As discussed in the preliminaries chapter, SMT solvers are inherently built to find single sat-
isfying solutions. In practice, a valid solution of unknown quality is good to see whether the
solution space is well defined, but may be unsuitable for actual planning. For this purpose, we
implemented a routine that tries to incorporate a SMT solver into an iterative solving routine.

Testset GUROBI CPLEX SCIP GLPK

Set1 1.37 4.11 1.69 508 | 6005 | 18004 | 600iT | 180011
Set2 58.58 | 175.74 | 190.74 | 572.22 | 6004" | 1800%" | 600LT | 180011
Set3 || 24.78'" | 1274.341 6004T | 180057T | 600" | 18004T | 600" | 18001
Sum || 84.73, | 1454.19| 79243, | 2377.3, | 1215.8, | 3647.41,| 1243.89,] 3731.67

Figure 5.17: Benchmark converging dimensions: Finding a solution whose objective value is at
most 50% away from the optimal solution. Columns: Runtime averaged over passed instances
| Sum of runtimes over instances of set. Values measured in seconds, cut off after two decimal
digits. Averaged over passed instances. Each t symbolizes a timeout on one instance of the set.
Green entries: Lowest runtime on set.

Page 46

5.3. Benchmark Results

Testset GUROBI CPLEX SCIP GLPK

Setl 1.37 411 1.69 5.08 158 | 4741 | 4389 | 131.67
Set2 58.58 | 175.74 | 190.74 | 572.22 | 600iT | 1800%f" | 6001T | 18001
Set3 60051" | 1800%1" | 60011T | 18001 | 6001" | 18001"" | 600%iT | 18001
Sum || 659.95, | 1979.85| 79243, | 2377.3, | 1215.8, | 3647.41,| 1243.89,| 3731.67

Figure 5.18: Benchmark converging dimensions: Finding a solution whose objective value is at
most 10% away from the optimal solution. Columns: Runtime averaged over passed instances
| Sum of runtimes over instances of set. Values measured in seconds, cut off after two decimal
digits. Averaged over passed instances. Each t symbolizes a timeout on one instance of the set.

Green entries: Lowest runtime on set.

Testset GUROBI CPLEX SCIP GLPK

Setl 1.37 411 1.69 5.08 158 | 4741 | 4389 | 131.67
Set2 58.58 | 175.74 | 190.74 | 572.22 | 600iT | 1800if" | 600" | 180011
Set3 6005T" | 1800%1" | 60011T | 18001 | 6001T | 18001"" | 600" | 18001
Sum || 659.95, | 1979.85| 79243, | 2377.3; | 1215.8, | 3647.41,| 1243.89,] 3731.67

Figure 5.19: Benchmark converging dimensions: Finding a solution whose objective value is at
most 2% away from the optimal solution. Columns: Runtime average over passed instances |
Sum of runtimes over instances of set. Values measured in seconds, cut off after two decimal

digits. Averaged over passed instances. Each 1 symbolizes a timeout on one instance of the set.
Green entries: Lowest runtime on set.

Testset GUROBI CPLEX SCIP GLPK

Set1 260.35 | 781.05 | 188.11F | 976.22% | 600l [18001 | 6001 | 180011
Set2 || 213.097 | 1239.29%| 152.03'" | 1656.097] 6001" | 18001" | 6001 | 18001
Set3 6004 | 180041 | 600" | 18001T" | 600%" | 1800i/T | 600l | 180011
Sum || 1015.34,] 3046.04,| 1154.2, | 3462.6, | 1226.2; | 3679.53;| 1700.56,| 5101.68

Figure 5.20: Benchmark convering dimensions: Finding an optimal solution. Values measured in
seconds. Columns: Runtime average for passed instances | Sum of runtimes over instances of set.
Values measured in seconds, cut off after two decimal digits. Averaged over passed instances.
Each 1 symbolizes a timeout on one instance of the set. Green entries: Lowest runtime on set.

Page 47

Chapter 5. Performance Evaluation

Name Seed nOrders nLines nSites nPeriods | nLineTypes
Instl 1 10 5 5 3 20
Inst2 3 15 5 5 3 20

Figure 5.21: Test instances for demonstrating optimization using the Z3 SMT solver.

At any point during our routine, we want to be able to give an interval in which an optimal
solution has to reside in. Iteratively, we try to find satisfying solutions in order to lower our
upper bound, and simultaneously try to find unsatisfying solutions in order to raise our lower
bound:

First, as in a regular run, a single satisfying solution is calculated, of which we can determine

the objective value. We then start two workers in parallel: One with the added constraint that
the objective value of a found solution has to be lower or equal than two thirds of our current
solution value. Accordingly, a second worker is started that tries to find a solution valued at a
third of our current solution value.
As soon as one of the workers finds a result, either satisfactory or unsatisfactory, both workers
are terminated. If the found result is a valid solution, the upper bound of our current solution
interval is updated to the value of the solvers added bound. Similarly, the lower bound is updated
to the value below which a solution was to be searched for if the worker reported for there to be
no solution. The idea behind this procedure is to do an aggressive search on the solution space
in order to reduce the solution interval to a size such that the relative difference between the
upper and the lower bound is below a certain percentage, similar to the so-called “gap” in MIP
solving. In theory, one could extend this procedure to an arbitrary number of cores, splitting
the interval accordingly. For this scenario, one may optionally not want to terminate all of the
given workers at once, but possibly only those that were cut off by an intermediate result.

We did not have time to test our implemetation in detail, however, with a timeout of 1200
seconds, only very small test sets could be solved to a maximal gap of 5% using Z3, the fastest
of our given SMT solvers. The sets we have tested are listed in the table of figure 5.21. A visual-
ization of the development of the maximal deviation the optimal solution is given in figure 5.22
for the first instance and in 5.23 for the second instance. As one can observe, the solution time
for both proving satisfiability as well as unsatisfiability increases the more we converge towards
our optimal solution.

5.3.4 Runtime Behaviour on Real Data

We shortly want to go over the observed runtime behaviour of our implementation on real data
at the Robert Bosch GmbH. Unfortunately, due to company and technical restrictions, we were
unable to acquire precise numbers. Our runs were made using the solver CPLEX on a machine
with a Xeon E5-1620 with 32 Gigabytes of RAM, running in parallel on 8 threads.

We were able to split the data into two sets that could be run independent of each other: The
dimensions of the first set were around 800 orders, 20 lines, 5 production sites, 13 time periods
and 50 line configurations, for which we were able to acquire a result with a gap of 10% after
around 50 minutes, with a solution with a gap of 2% being found in the range of 2-3 hours.
For a large number of orders in this set, an assignment to a line for the initial time period was
already given and the variation in line configurations was relatively low, with a lot of lines having
disjunct features, both present and upgradeable.

Our second set was smaller than the first one, with only around 300 orders, 20 lines, 4 production

Page 48

5.3. Benchmark Results

5,000

4,000

Objective Value

1,000

3,000 |

2,000 -

200%

133.3% 61.5%

41.0%

27.3%

16.7%

.11,1%

10° 101 102

Time (sec.)

103

Figure 5.22: Gap delevopment of the solution value when using Z3 for optimization in our parallel
solution loop on instance Inst!. Maximal gap: 5%. Every increase of the lower bound represents
an UNSAT result, every decrease of the upper bound a SAT result.

3,500

3,000

2,000

1,500

Objective Value

1,000 +

500

2,500 |

oo

200%

133.3% 61.5%
41% 24%
I 16% 10.1% 6.5%

4.2%
]

100 10! 102
Time (sec.)

103

Figure 5.23: Gap delevopment of the solution value when using Z3 for optimizing in our parallel
solution loop on instance Inst2. Maximal gap: 5%. Every increase of the lower bound represents
an UNSAT result, every decrease of the upper bound a SAT result.

Page 49

Chapter 5. Performance Evaluation

sites, 13 time periods and 64 line configurations. However, this set proved to be much harder to
solve, with the solver only having found dual solutions but no valid primal solutions, even after
14 hours. This seemed curious to us as the dimensions of this problem were smaller than those of
the first problem by a margin. As we allowed for new lines to be built in this scenario, we ruled
out that the number of possible configurations was the relevant factor by reducing the number
of possible line configurations to 16, with the runtime behaviour not changing. We suspect that
the lack of initial assignments is responsible for the long runtime, however, we had no time to
verify this assumption.

Page 50

Chapter 6

Conclusion

In this work, we have solved an optimization problem by the Robert Bosch GmbH. We were
to automate the planning process of assigning roughly 1100 orders to a set of production lines,
while possibly upgrading or constructing new lines.

First, we developed compatible formulations for both satisfiability module theory (SMT) and
mixed integer programming (MIP) solvers. For this purpose, we split the process into two parts:
Constructing a model for the scenario in which lines cannot be upgraded and in which continious
assignments of orders to lines are not possible and then constructing a complete formulation on
the basis of this reduced model.

For the complete model we presented two alternative solutions. In the first one, the corresponding
upgrade variable contained the information which configuration a line was upgraded from when
doing an upgrade. This approach was rather easy to formulate, but proved to be too memory
intensive for our implementation, as the number of these variables grew quadratically with the
number of line configurations.

For our second approach, the upgrade variables no longer contained the infomation which type a
production line was upgraded from, which resulted in additional constraints that we had to use
as a workaround.

After the modelling process, we developed a software tool to extract the concrete data from
files that were provided to us by the Robert Bosch GmbH. We implemented our models using
the python libraries Pyomo and pySMT and used them to interface several different solvers, to
then output a human-readable solution.

Finally, we benchmarked the runtime of our software and formulations on several bench-
marks, investigating the runtime behaviour when doubling single dimensions of the problem,
converging to the original problem dimensions and constructing a prototype to use SMT solvers
for optimziation.

6.1 Future Work

While our model and implementation already yield plausible results, there are still some points
that we would like to address for future work.

Our tool provides the user with all the necessary options to configure a number of parameters
and to read and process data files, however only by the means of input via the command line.
We recommend the implementation of a graphical user interface in order to better streamline
the configuration of parameters and the selection of the input file.

Furthermore, although we have tried to use all the best practices during modelling that were

Page 51

Chapter 6. Conclusion

known to us, we deem it reasonable to invest additional time in trying to further improve our
formulations.

Although being very memory-intensive, we recommend exploring the performance of our
compressed formulation. If one can ensure that the number of given line configurations is very
small (< 100), this formulation may be reasonable to use.

Page 52

Bibliography

[1]

[14]

G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus, pages 466—483.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM,
7(3):201-215, July 1960.

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Com-
mun. ACM, 5(7):394-397, July 1962.

J. P. Marques Silva and K. A. Sakallah. Grasp: A new search algorithm for satisfiability. In
Proceedings of the 1996 IEEE/ACM International Conference on Computer-aided Design,
ICCAD ’96, pages 220-227, Washington, DC, USA, 1996. IEEE Computer Society.

R. J. Bayardo, Jr. and R. C. Schrag. Using csp look-back techniques to solve real-world sat
instances. In Proceedings of the Fourteenth National Conference on Artificial Intelligence and
Ninth Conference on Innovative Applications of Artificial Intelligence, AAAT'97 /TAAT97,
pages 203-208. AAAIT Press, 1997.

A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003.

G. B. Dantzig. A history of scientific computing. chapter Origins of the Simplex Method,
pages 141-151. ACM, New York, NY, USA, 1990.

The Doxygen Documentation Software. http://www.doxygen.nl/index.html.
The Pyxlsb Python Library. https://pypi.org/project/pyxlsb/.

C. Barrett, P. Fontaine, and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-
LIB). www.SMT-LIB.org, 2016.

M. Gario and A. Micheli. Pysmt: a solver-agnostic library for fast prototyping of smt-based
algorithms. In SMT Workshop 2015, 2015.

W. E. Hart, J. Watson, and D. L. Woodruff. Pyomo: modeling and solving mathematical
programs in python. Mathematical Programming Computation, 3(3):219-260, 2011.

W. E. Hart, C. D. Laird, J. Watson, D. L. Woodruff, G. A. Hackebeil, B. L. Nicholson,
and J. D. Siirola. Pyomo—optimization modeling in python, volume 67. Springer Science &
Business Media, second edition, 2017.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018.

Page 53

Bibliography

[15]

A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L. Gottwald, G. Hendel,
C. Hojny, T. Koch, M. E. Libbecke, S. J. Maher, M. Miltenberger, B. Miiller, M. E.
Pfetsch, C. Puchert, D. Rehfeldt, F. Schlosser, C. Schubert, F. Serrano, Y. Shinano, J. M.
Viernickel, M. Walter, F. Wegscheider, J. T. Witt, and J. Witzig. The SCIP Optimization
Suite 6.0. Technical report, Optimization Online, July 2018.

A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L. Gottwald, G. Hendel,
C. Hojny, T. Koch, M. E. Liibbecke, S. J. Maher, M. Miltenberger, B. Miiller, M. E.
Pfetsch, C. Puchert, D. Rehfeldt, F. Schlosser, C. Schubert, F. Serrano, Y. Shinano, J. M.
Viernickel, M. Walter, F. Wegscheider, J. T. Witt, and J. Witzig. The SCIP Optimization
Suite 6.0. ZIB-Report 18-26, Zuse Institute Berlin, July 2018.

The CPLEX Optimization Suite. http://www.cplex.com.
The GNU Linear Programming Kit. https://www.gnu.org/software/glpk/.
The Z3 Theorem Prover. https://github.com/Z3Prover/z3.

A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani. The MathSAT5 SMT Solver.
In Nir Piterman and Scott Smolka, editors, Proceedings of TACAS, volume 7795 of LNCS.
Springer, 2013.

C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovi’c, T. King, A. Reynolds,
and C. Tinelli. CVC4. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Proceedings
of the 28rd International Conference on Computer Aided Verification (CAV ’11), volume
6806 of Lecture Notes in Computer Science, pages 171-177. Springer, July 2011. Snowbird,
Utah.

Page 54

	Introduction
	Preliminaries
	Notation
	Satisfiability Checking
	Satisfiability Modulo Theory (SMT)
	Less Lazy SMT-Solving

	Mixed Integer Linear Programming (MIP)

	Modelling
	The Objective Function
	The Set of Constraints: Reduced Problem
	The Set of Constraints: Complete Problem
	Compressed Variant
	Distributed Variant
	A Comparison Between the Two Variants

	A Complete Mathematical Formulation
	Descriptions of Variables and Constants

	Challenge: The Size of P
	Quality Evaluation of our Formulation

	Implementation
	Building the DataBundle Object
	Creating and Solving the Mathematical Model
	Implementation of SMT: pySMT
	Implementation of MIP: Pyomo

	User Parameters
	Output of a Run

	Performance Evaluation
	Generating Randomized Test Sets
	Generating Line Configurations
	Randomized Values for Constants
	Disproportional Memory Usage during Runtime

	Benchmark Criteria
	Benchmark Results
	First Benchmark: Doubling Dimensions
	Second Benchmark: Converging to Original Dimensions
	Optimizing Using SMT Solvers
	Runtime Behaviour on Real Data

	Conclusion
	Future Work

