
Fakultät für Mathematik, Informatik und
Naturwissenschaften der Rheinisch-Westfälischen

Technischen Hochschule Aachen

Masterarbeit im Fach Informatik
im August 2018

Linearization Techniques for Nonlinear
Arithmetic Problems in SMT

Linearisierungstechniken für nichtlineare,
arithmetische Probleme in SMT

vorgelegt von

Ömer Sali

Angefertigt am
Lehrstuhl i2 für Informatik

bei
Prof. Dr. Erika Ábrahám

Zweitgutachter:
Prof. Dr. Peter Rossmanith





Abstract iii

Abstract

Polynomial constraint solving plays a prominent role in several areas of soft- and hardware
verification, optimization and planning. Unfortunately, the nonlinear constraint solving
problem over the integers is undecidable. The situation is not much better when consid-
ering the reals since, although the problem is decidable as it was shown for the first-order
theory of real closed fields by Tarski, using the related algorithms in practice is unfeasible
due to their complexity. More efficient, but incomplete decision procedures implementing
sufficient conditions only are hence applied to decide simpler instances prior to a call of
more elaborate decision procedures. In this thesis we present the theoretical foundations
of two new incomplete modules for the Satisfiability Modulo Theories (SMT) toolbox
SMT-RAT, namely the subtropical and the case-splitting methods. They are dedicated to
proving satisfiability of nonlinear real and integer arithmetic formulas by encoding them
into an SMT problem considering only linear arithmetic. These linearizations are in turn
solved using linear arithmetic solvers implementing a Simplex or Branch-and-Bound ap-
proach, respectively. Extensive experiments on the SMT-LIB benchmarks demonstrate
that these methods are not strong decision procedures by themselves but valuable heuris-
tics to use within a portfolio of techniques.





Contents v

Contents

Abstract iii

Introduction vii

Chapter 1. Preliminaries 1
1.1. Satisfiability Modulo Theories . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. DPLL-based SMT solving . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. SMT-RAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2. Subtropical Satisfiability 7
2.1. Limiting behaviour of multivariate polynomials . . . . . . . . . . . . . . . 7
2.2. Restriction process as geometric projection . . . . . . . . . . . . . . . . . . 9
2.3. Exploiting the linear separabilty of frame vertices . . . . . . . . . . . . . . 10

2.3.1. Strictly separable frame vertices . . . . . . . . . . . . . . . . . . . . 10
2.3.2. Weakly separable frame vertices . . . . . . . . . . . . . . . . . . . . 11
2.3.3. Linearly inseparable frame vertices . . . . . . . . . . . . . . . . . . 14

2.4. Application to the SMT problem . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1. Single constraint with an arbitrary relation . . . . . . . . . . . . . . 15
2.4.2. Common solution of multiple constraints . . . . . . . . . . . . . . . 15
2.4.3. Extension to mixed-integer problems . . . . . . . . . . . . . . . . . 16

2.5. Benchmarking results and conclusion . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3. The Case-Splitting Method 23
3.1. Case-splits for monomial equalities . . . . . . . . . . . . . . . . . . . . . . 23
3.2. Purification of nonlinear constraints . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1. Discretization of real-valued variables . . . . . . . . . . . . . . . . . 24
3.2.2. Extraction of nonlinear monomial equations . . . . . . . . . . . . . 25

3.3. Case-splitting for variables with bounded domains . . . . . . . . . . . . . . 26
3.3.1. Handling small domains . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2. Handling large domains . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4. Unsatisfiability and learning for unbounded domains . . . . . . . . . . . . 28
3.4.1. Unsatisfiability and learning . . . . . . . . . . . . . . . . . . . . . . 28



vi Contents

3.4.2. Optimal choice of reduction sequences . . . . . . . . . . . . . . . . 31
3.5. Benchmarking results and conclusion . . . . . . . . . . . . . . . . . . . . . 32

Appendix A. STropModule source code 37

Appendix B. CSplitModule source code 49

Bibliography 69

Statutory Declaration 71



Introduction vii

Introduction

The satisfiability problem poses the question of whether there exists an assignment to the
variables of a given logical formula such that the later becomes true. Propositional logic
is well-suited for a broad range of problems like the verification of logic programs or the
bounded model checking of discrete systems. Accordingly, a lot of effort has been put into
the development of fast solvers for the propositional satisfiability problem (SAT). Other
inherently continuous problems in the areas of system analysis and verification require
the expressiveness of theories. Therefore, propositional logic is extended with first-order
theory constraints to so called Satisfiability Modulo Theories (SMT).
Especially polynomial constraints are ubiquitous and it is paramount to have efficient

automatic tools that, given a polynomial constraint with integer or real indeterminates,
either return a solution or notify that the constraint is unsatisfiable. Unfortunately, the
polynomial constraint solving problem over the integers is undecidable. The situation is
not much better when considering the reals since, although the problem is decidable as
it was shown for the first-order theory of real closed fields by Tarski, using the related
algorithms in practice is unfeasible due to their complexity. Therefore, all methods used
in practice for both integer and real solution domains are incomplete. There are two
approaches, namely focusing on proving satisfiability or focusing on proving unsatisfiabil-
ity. In general, the decision on the approach is guided by the problem in hand. Current
techniques focusing on satisfiability encode the problem into SAT known as bit-blasting.
Following the success of the translation into SAT, it is reasonable to consider whether
there is a better target language than propositional logic to keep as much as possible the
arithmetic structure of the source language. Thus, in this thesis we consider methods
for solving nonlinear constraints based on encoding the problem into an SMT problem
over linear real or integer arithmetic. An interesting feature of this approach is that, in
contrast to SAT translations, by having linear arithmetic built into the language, negative
values and sums can be handled without additional codification effort.





1

Chapter 1.

Preliminaries

In this chapter we give an overview of the classical approaches in SMT solving both in
general and in the context of the SMT-RAT framework. For this purpose, we first define
the notion of SMT problems for arbitrary underlying theories and introduce the existen-
tial fragments of nonlinear real and integer arithmetics as two of their most important
instances. We then sketch the basic scheme of DPLL-based SMT solving and show its
impact on the modular design of the SMT-RAT framework. This will clarify the setting in
which our own implementationary work is settled.

1.1. Satisfiability Modulo Theories
The Satisfiability Modulo Theories (SMT) problem is a generalization of the well-known
satisfiability (SAT) problem. A SAT problem instance consists of a formula Φ in proposi-
tional logic, which is a combination of Boolean-valued variables b1, . . . , bm with connectives
¬, ∧, ∨ and →. It asks for an interpretation I : {b1, . . . , bm} → {True, False} of the
variables, such that Φ evaluates under I to True, which is abbreviated by I |= Φ.
The SMT problem replaces the Boolean-valued variables in favor of constraints c1, . . . , cm

that are expressed in the context of a theory T , consisting of a domain D (like R) along-
side with interpretations for all function symbols f1, . . . , fk (like +) and predicate symbols
∼1, . . . ,∼l (like <). The variables x1, . . . , xd in Φ are no longer Boolean-valued, but range
over the domain D. Solving the SMT instance Φ in the theory T means deciding whether
an interpretation I : {x1, . . . , xd} → D exists, such that I |= Φ with respect to T .
The SAT problem is known to be NP-hard, though decidable, since we may simply

enumerate all possible interpretations for a given instance. The decidability of the SMT
problem, on the other hand, depends heavily on the underlying theory T and additional
restriction to specific fragments of the first-order logic. The focus of this thesis lies the
quantifier-free fragment of the nonlinear real and integer arithmetic:

Definition 1.1 The syntax of a formula in the quantifier-free fragment of the nonlinear



2 Chapter 1. Preliminaries

real and integer arithmetic is defined by the following grammar:

formula ::= constraint | (¬formula) | (formula ∧ formula) | (formula ∨ formula)

constraint ::= term ∼ term for ∼ ∈ {<≤,=, 6=,≥, >}

term ::= v | c | term+ term | term · term for v ∈ {x1, . . . , xd}, c ∈ R

Depending on the domain D = R or D = Z, we distinguish the nonlinear real (QF_NRA)
from the integer (QF_NIA) arithmetic and simply write QF_NA do denote any of these
nonlinear arithmetic problems.

The QF_NA formulas Φ are hence arbitrarily shaped Boolean combinations of polynomial
inequalities. For a concise description of these formulas, we will subsequently rely on the
outcome of the the following lightweight normalization steps:
(i) For an exponent vector p = (p1, . . . , pd) ∈ Rd and a vector of real- or integer-valued

variables x = (x1, . . . , xd), we denote by x · p := ∑d
i=1 xipi the usual dot product

and by xp := ∏d
i=1 x

pi
i the monomial exponent. Every multivariate polynomial

f(x) ∈ R[x1, . . . , xd] can now be written in a sparse distributive notation as

f(x) =
∑

p∈fr(f)
fpxp with fr(f) := {p ∈ Zd | fp 6= 0},

where the frame fr(f) denotes its supporting set. Every constraint ci in Φ can thus
be written as fi(x) ∼i 0 for a relation symbol ∼i ∈ {<,≤,=, 6=,≥, >}.

(ii) The given QF_NA formula Φ can be transformed in linear time into an equisatisfi-
able formula ΦCNF in conjunctive normal form by using Tseitin’s encoding to get

ΦCNF =
k∧
i=1

li∨
j=1

`ij with `ij ∈ {cij,¬cij}

for QF_NA constraints cij. Next, the negations in negative literals `ij = ¬cij with
a constraint cij = fi,j(x) ∼ij 0 can be eliminated by pushing them to the theory
constraints: <, ≤ and = get replaced with ≥, > and 6= and vice versa.

In the following, we will assume that these transformations were already done and that Φ
is a CNF formula consisting of unnegated constraints in sparse distributive representation

Φ =
k∧
i=1

li∨
j=1

cij with cij = fij(x) ∼ij 0.

For i = 1, 2 let Φi := ∧ki
j=1 ωi,j be two of these CNF formulas with clauses ωi,j. For a



1.2. DPLL-based SMT solving 3

clause ω we denote by ω ∈ Φi the existence of an index j ∈ {1, . . . , ki} with ω = ωi,j.
Following this set theoretic nomenclature, we further write

• Φ1 ⊆ Φ2, if and only if for all ω ∈ Φ1 it holds that ω ∈ Φ2.

• Φ1 ∩ Φ2 for a CNF formula with ω ∈ Φ1 ∩ Φ2 if and only if ω ∈ Φ1 and ω ∈ Φ2.

Any unsatisfiable formula Φ1 with Φ1 ⊆ Φ2 is called an unsatisfiable core of Φ2.

1.2. DPLL-based SMT solving
Several tools for deciding the satisfiability of SMT formulas over a quantifier-free first-
order theory T rely on the DPLL(T ) framework: They combine a Boolean satisfiability
solver based on the Davis-Putnam-Logemann-Loveland (DPLL) procedure to resolve the
Boolean structure of a given formula, and a dedicated theory solver capable of verifying
the consistency of theory constraints conjunctions. In what follows, we have a closer look
on the DPLL(QF_NA) approach (see [KS08, Chapter 2]).
From a normalized input formula Φ as described in the last subsection, the Boolean

abstraction ΦBool is constructed by introducing a fresh Boolean variable eij for every
constraint cij and keeping the Boolean skeleton intact, which gives

ΦBool =
k∧
i=1

li∨
j=1

eij.

A DPLL-based SAT solver operating in less lazy mode now systematically tries to find
partial interpretations I for the variables eij that do not contradict the Boolean skeleton
ΦBool (see Figure 1.1). After each variable assignment, the constraints conjunction

ΦTheory =
∧
I|=eij

cij

is handed over to the theory solver and checked for consistency. Recall that the Boolean
abstraction ΦBool does not contain any negations and is therefore a monotone formula.
Hence, the original formula Φ must be satisfiable if and only if ΦTheory is consistent. If
the theory solver fails to find a solution of the given constraints conjunction ΦTheory, it
provides a preferably minimal unsatisfiable core ΦInf ⊆ ΦTheory as explanation to the SAT
solver, which is used to narrow down the search for feasible assignments. Depending on
the answer of the theory solver on this constraint conjunction, the SAT solver can adjust
its partial solution until a complete assignment is found. The formula is declared to be
unsatisfiable, if the SAT solver is not able to find any further interpretations for ΦBool.



4 Chapter 1. Preliminaries

φ

SAT solver SAT or
UNSAT

Constraints
conjunction

partial SAT
or Explanation

Theory solver

Boolean
abstraction solution or

unsatisfiability
partial

assignment

partial solution
or unsatisfiability

Figure 1.1.: The basic scheme of DPLL-based SMT solving

This DPLL(QF_NA) approach in less lazy mode requires a theory solver for the QF_NA
theory that supports the following minimal functionality known as SMT-compliance:

Incrementality It has to manage an internal state to make use of previous consistency
checks as the input formulas ΦTheory do not vary too much between two successive
invocations of the theory solver. It should therefore allow the belated assertion of
new and removal of already asserted constraints to the constraints conjunction.

Correctness and Termination The consistency check over all asserted constraints must
terminate in finite time and return a SAT/UNSAT answer. In case of satisfiability a
model must be constructed and returned. Otherwise, it must provide a preferably
minimal unsatisfiable core ΦInf as explanation for the unsatisfiability of ΦTheory.

For many theory solvers that only implement a sufficient satisfiability condition like our
own linearization approaches, the second point is illusory. We therefore allow a third
answer Unknown that can be returned, if the consistency of ΦTheory is undecidable.

1.3. SMT-RAT
The SMT toolbox SMT-RAT [Cor+12] is an open-source project written in C++ for SMT
solving over several background theories. The toolbox is structured into its basic ar-
chitectural components called modules that provide SMT compliant implementations of
decision procedures. Every module maintains a list Crec of received formulas whose con-
junction needs to be checked for consistency the next time when the check method is
called. This list can be modified in an incremental fashion with the use of the assert
and remove methods to add new and remove already added formulas. Different modules
can be stacked together with the help of managers to a complete solving strategy. Every



1.3. SMT-RAT 5

SATModule LinModule

SATModule

LRAModule

Backends
Φ

Figure 1.2.: General structure of the strategy tree for our linearization modules.

module decides himself which formulas to delegate to succeeding modules that we call
his backends. Figure 1.2 shows a strategy in which the prototypical linearization module
LinModule is a placeholder for any of our two modules STropModule and CSplitModule.
It is preceeded by an instance of a SATModule that implements a DPLL-based SAT solver
to resolve the Boolean skeleton of the input formula Φ. Our linearization modules there-
fore do not receive arbitrary formulas, but only conjunctions of polynomial constraints as
described in Section 1.2. They perform a linearization of the nonlinear input and pass
the result to an internal linear arithmetic solver LRAModule. Since the later also expects
its own input to be a constraints conjunction, the linearization must be piped beforehand
into a second instance of a SATModule. The linearization modules are both sound, but
incomplete, for which reason they call their Backends on their complete input Crec in case
they are unable to decide the consistency themselves. In our experiments, the Backend
strategy is a combination of the following decision procedures already implemented as
SMT-RAT modules:

LRAModule This is a misnomer, since it not only implements the Simplex method to
tackle linear real arithmetic problems, but also performs Branch-and-Bound on all
integer-valued variables to effectively handle any linear mixed-integer problems.

ICPModule Interval Constraint Propagation uses the given constraints to iteratively con-
tract the search space until an interval for every variable is reached that tightly
over-approximates the solution set satisfying some preset precision requirement.

VSModule The Virtual Substitution method exploits the existence of closed form solutions
for univariate polynomials up to degree four to successively eliminate variables.

CADModule The Cylindrical Algebraic Decomposition algorithm decomposes the search
space into a finite number of connected sets called cells, on which each polynomial
of the input constraints has constant sign. The satisfiability can then be decided by
testing their consistency at single sample points in each cell.





7

Chapter 2.

Subtropical Satisfiability

In this chapter we provide the theoretical foundations for our SMT-RAT implementation of
the subtropical module (STropModule) that is fully presented in Appendix A. It is inspired
by the incomplete but terminating subtropical real root finding method as described in
[Stu15] that identifies roots of very large multivariate polynomials. The algorithm takes
an abstract view of a polynomial as the set of its exponent vectors tagged with sign
information on the corresponding coefficients. It then examines the limiting behaviour
of the polynomial in the direction of a normal vector to find real zeros. The search for
such a normal vector is translated into a linear problem in the space of the polynomial’s
exponent vectors and in turn solved using a linear real arithmetic solver. In the context
of nonlinear real arithmetic problems in SMT, this algebraic root finding method was first
generalized in [Fon+17] to find solutions of a conjunction of strict polynomial inequalities.
In the following sections, we will describe further enhancements that could improve the
completeness of the original method with slightly more overhead.

2.1. Limiting behaviour of multivariate polynomials
In the following we will examine sufficient conditions for the existence of solutions to the
problem description given below. These results based on the subtropical real root finding
method will be used afterwards to decide the satisfiability of a conjunction of nonlinear
real and integer arithmetic constraints in the context of Sat Modulo Theories solving.

Problem 2.1 Let f(x) ∈ R[x1, . . . , xd] be a multivariate polynomial. Find a real-valued
variable assignment a ∈ Rd such that the inequality f(a) > 0 is fulfilled.

The idea of an incomplete algorithm for Problem 2.1 is best described in the one-dimen-
sional case d = 1: For a univariate polynomial f(x) ∈ R[x] consider the limiting process
lima→L f(a), as a approaches one of the one-sided limits L ∈ {±0,±∞}. Repeatedly test
the sign of f(a) until finally f(a) > 0 is fulfilled, if this happens at all. The examination of
four different limit values L can be reformulated as the choice of a sign s ∈ {±1} and an



8 Chapter 2. Subtropical Satisfiability

0

2

4
0 2 4

−50

0

50

x

y

z
f(x, y)

f(x, y) = 0
L(t | f , s,n)

(a) Momentum curve m(t | s, n) := (t−2, t3) on its
surface that eventually becomes positive.

−2 2 4

−2

2

4

b

n

px

py

fr+(f , s)
fr−(f , s)

(b) Projection of frame vertices onto the
hyperplane in direction of n = (−2, 3).

Figure 2.1.: Visualization of the polynomial f(x, y) := −4x4y4 − x3 − 3x2y2 + 2xy3 + y.

exponent n ∈ Z, and equivalently considering the single limiting process limt→+∞ f(stn)
instead. The success of this method is clearly predetermined by the leading coefficient of
the Laurent polynomial expression L(t | f , s, n) := f(stn) ∈ R[t, t−1] in a single indetermi-
nate t. The leading coefficient can be calculated prior to the execution of this method to
ensure the desired positivity of its sign. In order to generalize this idea to the multivariate
case d > 1, we similarly parametrize a univariate subcurve of f(x) ∈ R[x1, . . . , xd] along
which the limiting behaviour of the multivariate polynomial will be explored.

Definition 2.2 Let s ∈ {±1}d be a sign vector and let n ∈ Zd be an exponent vector.
The oriented momentum curve in the direction of the normal vector n with the sign
variant s is given by the mapping m(· | s,n) : R+ → Rd, t 7→ (s1t

n1 , . . . , sdt
nd).

A momentum curve m(t | s,n) is used to restrict the domain of the polynomial f(x) via

L(t | f , s,n) := f(m(t | s,n)) =
∑

p∈fr(f)
fp(s1t

n1 , . . . , sdt
nd)p =

∑
p∈fr(f)

spfpt
n·p.

The result is a Laurent polynomial L(t | f , s,n) ∈ R[t, t−1] in a single indeterminate t that
allows an analysis of its limiting behaviour for t → +∞ just like for ordinary univariate
polynomials considered above, provided that its leading coefficient is also positive.

Example 2.3 Consider the bivariate polynomial

f(x, y) := −4x4y4 − x3 − 3x2y2 + 2xy3 + y ∈ R[x, y].



2.2. Restriction process as geometric projection 9

Figure 2.1a shows an example for a good choice of a normal vector n = (−2, 3) and a sign
variant s = (1, 1) such that the resulting Laurent polynomial

L(t | f , s,n) = 2t7 − 4t4 + t3 − 3t2 − t−6 ∈ R[t, t−1]

eventually becomes positive, for instance at t = 2. A corresponding satisfying assignment
for the inequality f(x, y) > 0 in Problem 2.1 is then given by a := m(t | s,n) = (2−2, 23).

The search for a variable assignment a ∈ Rd for the strict inequality f(x) > 0 hence boils
down to a search for a normal vector n ∈ Zd and a sign variant s ∈ {±1}d such that
the resulting polynomial L(t | f , s,n) has a positive leading coefficient. A corresponding
variable assignment for the inequality can then be reconstructed as the image of the
momentum curve m(t | s,n) for a large enough t ∈ R+, where L(t | f , s,n) > 0 is fulfilled.

2.2. Restriction process as geometric projection
The coefficients of L(t | f , s,n) are composed of those of the multivariate polynomial
f(x). To make this calculation process explicit, take the above definition of the Laurent
polynomial and reorder its terms according to the same integral exponents to get

L(t | f , s,n) =
∑

p∈fr(f)
spfpt

n·p =
∑
k∈Z

Lkt
k with Lk :=

∑
p∈fr(f)
n·p=k

spfp.

Graphically speaking, the exponent vector n of the momentum curve defines a hyperplane
in the Z-lattice of all possible exponent vectors Zd onto which the frame vertices of f(x)
are projected. Those frame vertices p ∈ fr(f) with equal projection length n ·p = k to the
origin contribute to the same coefficient Lk weighted with the sign sp. Let us therefore
partition the frame fr(f) into a variant positive and a variant negative frame by

fr+(f , s) := {p ∈ fr(f) | spfp > 0} and fr−(f , s) := {p ∈ fr(f) | spfp < 0}.

Example 2.4 To better understand the choice of the exponent vector n = (−2, 3) in
Example 2.3, consider the visualization of the frame fr(f) in Figure 2.1b and its projection
to the hyperplane defined by n. The frame vertex p = (1, 3) has the largest projection
length n ·p = 7 and hence constitutes the leading coefficient L7 = spfp = 2. Since this is
positive, we can deduce the positive divergence of L(t | f , s,n) for a large enough t ∈ R+.

Let us enumerate all existing projection lengths descendingly by n · fr(f) = {k1, . . . , kl}
with k1 > . . . > kl. As this example suggests, we have a special interest in the sign of



10 Chapter 2. Subtropical Satisfiability

the coefficient Lk1 with the largest existing projection length k1 := maxp∈fr(f) n · p. But
note that this is not necessarily the leading coefficient of L(t | f , s,n), since the signed
coefficients spfp it is composed of may cancel out each other yielding an overall value of
zero. In the worst case, the whole Laurent polynomial can vanish through the projection
making it impossible to draw any conclusions about the limiting behaviour of f(x) for this
particular choice of the normal vector n and the sign variant s. Nonetheless the approaches
we will review in the following sections rely on a positivity check of this coefficient with
largest projection length only. Linearization based methods that deduce the sign of the
true leading coefficient of L(t | f , s,n) performed poorly in all of our experiments.

2.3. Exploiting the linear separabilty of frame vertices
The positivity condition on the coefficient Lk1 can be formulated as a linear real arithmetic
formula ΦConstr without the need of calculating the entire Laurent polynomial L(t | f , s,n).
In the following subsections we will derive two variants of this formula ΦConstr dedicated
to different linearization approaches to test the positivity of Lk1 = ∑

n·p=k1 spfp:

• The linearization ΦStr
Constr of Subsection 2.3.1 is based on the original method in

[Fon+17]. It verifies whether the coefficient Lk1 is composed of variant positive
frame vertices p ∈ fr+(f , s) only, since this trivially implies its own positivity.

• In the concluding remarks of [Fon+17] it is therefore left as a research question to
find a linearization method that also allows the summation over variant negative
frame vertices as long as the overall value of Lk1 is positive. In Subsection 2.3.2 we
propose a novel linearization ΦWk

Constr that solves this issue with a more sophisticated
analysis of the projected frame vertices. It increases the completeness of the original
method while its consistency check is still feasible in a reasonable amount of time.

2.3.1. Strictly separable frame vertices

For a frame vertex p ∈ fr(f) the sign of sp is fully determined by only those si with an odd
exponent pi. Treating negative signs as True and encoding the sign variant accordingly as
a Boolean vector, it can be caclulated as the parity of the individual signs by the formula

ΦSgn(s | p) :=
⊕

i=1,...,d,
pi odd

si.



2.3. Exploiting the linear separabilty of frame vertices 11

Since the coefficients fp are already known constants at the time of linearization, we can
encode the membership p ∈ fr+(f , s) as one static branch of the following case distinction

ΦPosFrm(s | f ,p) :=

¬ΦSgn(s | p) , if fp > 0,

ΦSgn(s | p) , if fp < 0.

The coefficient Lk1 = ∑
n·p=k1 spfp with the largest distance k1 := maxp∈fr(f) n · p solely

consists of positive frame vertices if and only if there exists a threshold b ∈ R such that
(i) for all negative frame vertices p ∈ fr−(f , s) it holds that n · p ≤ b, and

(ii) there exists at least one positive frame vertex q ∈ fr+(f , s) with n · q > b.
By strictly separating at least one positive from all negative frame vertices, these condi-
tions test whether all frame vertices p ∈ fr(f) with a distance n · p = k > b are positive.
This implies that especially all the frame vertices with the largest existing distance k1 > b

out of which Lk1 is composed of must be positive as well. The following formula directly
encodes these conditions and can be handed over to a LRA solver for a consistency check:

ΦStr
Constr(s,n, b | f > 0) := ∧

p∈fr(f)
ΦPosFrm(s | f ,p) ∨ n · p ≤ b

 ∧
 ∨

q∈fr(f)
ΦPosFrm(s | f ,q) ∧ n · q > b

 .
Note that we face a linear real arithmetic problem, since we do not insist n = (n1, . . . , nd)
to be a vector of integral variables. A given solution for a linear formula stays valid even
if all variable values are scaled by a common factor. If this linearization is satisfiable, we
simply scale the resulting normal vector assignment to get back an integral solution.

Example 2.5 For our running Example 2.4, we have marked a possible choice for a
threshold b in Subfigure 2.1b. It separates the projected positive frame vertex p = (1, 3)
from all negative frame vertex projections and hence proves that the coefficient Lk1 with
k1 > b must be composed of positive frame vertices only.

2.3.2. Weakly separable frame vertices

As already mentioned, the coefficient Lk1 = ∑
n·p=k1 spfp does not need to consist of

variant positive frame vertices only to have a positive overall value:

Example 2.6 Consider the bivariate polynomial

f(x, y) := −x3y + 3x2y2 − xy3 − 1 ∈ R[x, y]



12 Chapter 2. Subtropical Satisfiability

1 2 3

1

2

3

b

n

3

1

1

1

px

py fr+(f , s)
fr−(f , s)

(a) Weakly separable frame vertices of the poly-
nomial f(x, y) := −x3y + 3x2y2 − xy3 − 1.

1 2 3 4

1

2

3

4

b1

b2

b3

n

1

1

2

1

1

1
px

py fr+(f , s)
fr−(f , s)

(b) Linearly inseparable frame of the polynomial
f(x, y) := −x4 + 2x2y2− y4 + xy2 + x2y− 1.

Figure 2.2.: Projections onto the plane given by n = (1, 1) with sign variant s = (1, 1)

whose frame is visualized in Subfigure 2.2a for a fixed sign variant s = (1, 1). There is no
choice for a normal vector n such that Lk1 consists of variant positive frame vertices only.
However, if we choose the normal vector n = (1, 1), then we get

Lk1 = f(3,1) + f(2,2) + f(1,3) = −1 + 3− 1 = 1 > 0

which is still positive although we have negative frame vertex contributions.

The idea for a more sophisticated linearization lies in a better analysis of the frame vertices
projected onto the threshold border b ∈ R in the last subsection. We similarly claim that
(i’) for all negative frame vertices p ∈ fr−(f , s) it holds that n · p ≤ b, and

(ii’) there exists at least one positive frame vertex q ∈ fr+(f , s) with n · q ≥ b.
Notice the decisive difference in (ii’) compared to the original condition (ii), where we
now allow the projected frame vertex to lie on the threshold border through the use of a
weak relation. The situation on the threshold border needs additional attention:
(a) If there exists a positive frame vertex q ∈ fr+(f , s) with n · q > b, then the strict

separability conditions (i) and (ii) of Subsection 2.3.1 are satisfied and Lk1 is positive.

(b) Otherwise we also have n · q ≤ b for all variant positive frame vertices q ∈ fr+(f , s)
and by condition (ii’) there is at least one such vertex with n ·q = b. It follows that
k1 = b and we therefore claim the coefficient Lb = ∑

n·p=b fp to be positive.
Both of these cases can be handled simultaneously by the following reformulated condition
that furthermore allows a very elegant encoding into a linear real arithmetic formula:



2.3. Exploiting the linear separabilty of frame vertices 13

(iii’) The total rating of f(x) at the threshold border b is defined by

r(f | s,n, b) :=
∑

p∈fr(f)
rp with rp :=


+∞ , if n · p > b,

spfp , if n · p = b,

0 , if n · p < b.

Suppose that the weak separability conditions (i’) and (ii’) above are given. Then
the two cases (a) and (b) are equivalent to the inequality r(f | s,n, b) > 0.

Treating the rp as additional indeterminates, an encoding of condition (iii’) is given by

ΦRtg(s,n, b, r | f) :=
∑

p∈fr(f)
rp > 0 ∧

 ∧
p∈fr(f)

n · p < b→ rp = 0
∧

 ∧
p∈fr(f)

n · p = b→ (ΦSgn(s | p) ∧ rp = −fp) ∨ (¬ΦSgn(s | p) ∧ rp = fp)
 ,

Note that the remaining case n · p > b → rp = +∞ is superfluous and deliberately not
encoded to reduce the size of the linearization. If the premise n · p > b is satisfied, then
the variable rp is not fixed by the above formula. The LRA solver is able to assign an
arbitrarily large value to rp in order to fulfill the total rating constraint ∑

p∈fr(f) rp > 0,
which would also be the desired effect of the conclusion rp = +∞. The full linearization
taking also the weak separability conditions (i’) and (ii’) into account is now given by

ΦWk
Constr(s,n, b, r | f > 0) := ΦRtg(s,n, b, r | f) ∧ ∧

p∈fr(f)
ΦPosFrm(s | f ,p) ∨ n · p ≤ b

 ∧
 ∨

q∈fr(f)
ΦPosFrm(s | f ,q) ∧ n · q ≥ b

 .
A brief inspection of this formula shows that condition (ii’) is already included in condition
(iii’): If there is no positive frame vertex q ∈ fr+(f , s) with n · q ≥ b, then the total
rating of f(x) cannot be positive. Eliminating this redundancy from the linearization
however lead to an extraordinary increase of the runtime for its consistency check in all
our experiments. In case of a conflict the total rating formula ΦRtg(s,n, b, r | f) provides
very few information for its resolution. The redundant encoding of condition (ii’) excludes
obviously unsatisfiable choices for the indeterminates s, n and b before the total rating
formula gets evaluated.

Example 2.7 Reconsider the Example 2.6 and its visualization in Subfigure 2.2a. There
is no threshold b that strictly separates at least one positive frame vertex from all negative
frame vertices. But if we choose the threshold b = 4, then we get the vertex ratings



14 Chapter 2. Subtropical Satisfiability

r(1,3) = −1, r(2,2) = 3, r(3,1) = −1, and r(0,0) = 0. The total rating of f(x) is therefore
given by r(f | s,n, b) = Lk1 = 1 which fulfills the total rating condition (iii’).

2.3.3. Linearly inseparable frame vertices

As already mentioned, the coefficient Lk1 corresponding to the largest projection length k1

does not necessarily represent the leading coefficient of L(t | f , s,n), since it may vanish.

Example 2.8 Consider the visualization of the bivariate polynomial

f(x, y) := −x4 + 2x2y2 − y4 + xy2 + x2y − 1 ∈ R[x, y]

in Subfigure 2.2b. If we choose n = (1, 1) and s = (1, 1), then we get

• L4 = f(4,0) + f(2,2) + f(0,4) = −1 + 2− 1 = 0,

• L3 = f(1,2) + f(2,1) = 1 + 1 = 1,

• L0 = f(0,0) = −1,

and the full Laurent polynomial is given by L(t | f , s,n) = t3 − 1. The true leading coef-
ficient L3 is positive, but the coefficient L4 with the largest projective distance vanishes.
Choosing another sign variant s is not an option, since the variant negative frame fr−(f , s)
consists of vertices with even parity and hence is invariant to sign changes.

This problem can get even worse if not only Lk1 is zero, but a whole sequence of coefficients
Lki

for i = 1, 2, . . . up to the point where the whole Laurent polynomial vanishes. To
overcome this issue, we were able to find a linearization that starting with i = 1, 2, . . .
(i) tests whether Lki

> 0 with a threshold border bi using the weak separability method,

(ii) in case Lki
= 0 uses the threshold bi to discard all frame vertices p ∈ fr(f) with

n · p ≥ b for the next iteration of the weak separability method.
The consistency check of the resulting linearization was infeasible in a reasonable amount
of time even on hand-crafted toy examples with only three variables. This generalization
was therefore discarded from our final STropModule code base.

2.4. Application to the SMT problem
The so far presented approaches identify real-valued assignments, where only a single
multivariate polynomial becomes positive. We will use the derived linearizations in the
strict and weak encoding variants ΦStr

Constr(s,n, b | f > 0) and ΦWk
Constr(s,n, b, r | f > 0),



2.4. Application to the SMT problem 15

respectively, as interchangeable building blocks to solve the DPLL based SMT Problem.
Let us denote any of these two formulas by ΦConstr(s,n, b[, r] | f > 0) for convenience.

2.4.1. Single constraint with an arbitrary relation

A single constraint f(x) ∼ 0 with an arbitrary relation symbol ∼ ∈ {<,≤,=, 6=,≥, >}
can be reduced to the already known case by applying the following rewriting rules:

ΦConstr(s,n, b[, r] | f ∼ 0) :=



ΦConstr(s,n, b[, r] | −f > 0) , if ∼ ∈ {<,≤}
ΦConstr(s,n, b[, r] | −f > 0)

∨ ΦConstr(s,n, b[, r] | f > 0)
, if ∼ ∈ {6=}

ΦConstr(s,n, b[, r] | f > 0) , if ∼ ∈ {≥, >}

It is worth mentioning that the relation symbols {<,≤} and {≥, >} define classes with the
same limiting behaviour and hence are mapped to the same linearization. Furthermore,
the lack of a rewriting rule for the case of an equality relation = is no mistake: As seen
in Section 2.3 our linearization method is based on the linear separability of positive and
negative frame vertices. But rewriting f(x) = 0 as the conjunction −f(x) ≥ 0 ∧ f(x) ≥ 0
and encoding both clauses independently from each other will lead to a linearization

ΦConstr(s,n, b[, r] | −f > 0) ∧ ΦConstr(s,n, b[, r] | f > 0)

that is always inconsistent: By the coincidence fr+(f , s) = fr−(−f , s) there is no normal
vector n such that the linear separability conditions in Subsections 2.3.1 and 2.3.2 are
fulfilled. But from the unsatisfiability of this linearization we are unable to draw any con-
clusions about the consistency of the original constraint f(x) = 0 without the aid of back-
end solvers, since the limiting behaviour analysis is insufficient to exclude solutions within
a bounded support. Hence, the presence of equality constraints leads to an immediate
abort of our subtropical method with an Unknown result. In every other case, provided the
consistency check verifies the satisfiability of the linearization ΦConstr(s,n, b[, r] | f ∼ 0),
a solution for the original constraint f(x) ∼ 0 can be reconstructed as the image of the
momentum curve m(t | s,n) for a large enaugh t ∈ R+, where L(t | f , s,n) ∼ 0 is fulfilled.

2.4.2. Common solution of multiple constraints

Let a constraint conjunction C = ∧m
i=1 fi(x) ∼i 0 with polynomials fi(x) ∈ R[x1, . . . , xd]

and relations ∼i ∈ {<,≤,=, 6=,≥, >} be given. If the independently linearized formulas
ΦConstr(s,n, bi[, ri] | fi ∼i 0) share their sign variant s ∈ {±1}d and their normal vector



16 Chapter 2. Subtropical Satisfiability

n ∈ Rd, then in case of satisfiability a common solution for all constraints will be given
by m(t | s,n) for a large enaugh t ∈ R+, where L(t | fi, s,n) ∼i 0 for all i = 1, . . . ,m is
fulfilled. We hence linearize C by

ΦSMT(s,n, b1, . . . , bm[, r1, . . . , rm] |
m∧
i=1

fi ∼i 0) :=
m∧
i=1

ΦConstr(s,n, bi[, ri] | fi ∼i 0).

In addition to the already described short-circuiting for equality constraints in Subsection
2.4.2, the combination of multiple constraints can help avoiding a consistency check in
many more cases. For this purpose we normalize the left hand side of every constraint
fi(x) ∼i 0 by enforcing a unit leading coefficient and turning the relation symbol accord-
ingly. Constraints with the same left hand side f(x) but different relations are

unsatisfiable if the relations contradict each other in the cases {<,=}, {<,>}, {<,≥},
{≤, >} and {=, >}. From contradicting relations {∼1,∼2} an unsatisfiable core
f(x) ∼1 0 ∧ f(x) ∼2 0 can be generated before terminating with an Unsat result.

undecidable if the relations resemble an equality in the cases {=} and {≤,≥}. We
therefore skip the application of the subtropical method and directly call the backend
solvers of the defined strategy tree on the given constraint conjunction C.

Interestingly, when these two sources for a fast skip of the subtropical method are ex-
cluded, only a single relation for the same left hand side f(x) can be active. Take as an
example the relations {6=,≥, >}, where we only need to use the strictest relation > for a
linearization. These simple optimizations accelerated the consistency check on the bench-
marks presented in Section 3.5 by more than ten times. We discovered that a large number
of the constraint conjunctions given to our STropModule can be decided or skipped by
these simple pre-tests without an invocation of the LRA solver on the linearizations.

2.4.3. Extension to mixed-integer problems

The so far presented subtropical method is defined as a lightweight decision procedure for
real arithmetic problems only. We propose the following extension to the original algo-
rithm that works pretty well on mixed-integer problems with a small number of integer-
valued coordinates. Remember that in case of satisfiability of the constructed linearization
ΦSMT(s,n, {bi[, ri]}mi=1 | {fi ∼i 0}mi=1) a corresponding variable assignment for the original
constraint conjunction C = ∧m

i=1 fi(x) ∼i 0 is given by the image of the momentum curve

a := m(t | s,n) = (s1t
n1 , . . . , sdt

nd) for t� 1.



2.5. Benchmarking results and conclusion 17

A coordinate xi will receive an integral solution ai if and only if we can ensure the integrity
of the expression sitni . As a sufficient condition, we enforce the normal vector component
ni and the sample point t to take non-negative integral values. We therefore assert

ΦInt(n | x) :=
∧

i=1,...,d,
xi integral

ni ≥ 0

and only use test points t ∈ N for the later variable assignment reconstruction. Restricting
a single normal vector value ni to the positive axis effectively halves the solution search
space for the linearization. We hence note that with a growing number of integer-valued
coordinates xi our STropModule is less likely to give a satisfiable answer.

2.5. Benchmarking results and conclusion
We tested our STropModule implementation on the QF_NRA division of the SMT-LIB
benchmarking library [BFT16] stemming from the industrial and academic world. Every
benchmark consists of an input formula and the expected answer of its consistency check,
if the status is already defined. They are grouped into families of similar problems like
termination proofs or elementary function approximations and have a variable complexity
regarding the formula sizes and the number of variables. We performed the experiments
in Table 2.1 on a 2.7 GHz Intel Core i7-4800MQ CPU with a timeout of 60 seconds and 4
GB memory per benchmark. If any of these resource limits is exceeded, the corresponding
run gets terminated with a Resout answer by our benchmarking scheduler. Otherwise, we
report the number of benchmarks (Num) and the avarage runtime (Avg) in milliseconds
for each possible answer Sat, Unsat or Unknown and for each of the following strategies:

STrop only: SATModule→STropModule

Backends only: SATModule→ICPModule→VSModule→CADModule

STrop + Backends: SATModule→STropModule→ICPModule→VSModule→CADModule

The strict and weak variants denote the two linearization methods from Section 2.3.
The strategy that combines the strict variant of our STropModule with the standard

backends consistently outperforms the pure backends on almost every benchmark family.
Even for those benchmarks, where the number of answers of one class are kept stable, we
observe a considerable decrease of the average runtime. As an example for this behaviour,
compare the Sat answers for the kissing family or the Unsat answers for the Sturm
MBO/MGC family. The later shows another interesting property of DPLL based theory



18 Chapter 2. Subtropical Satisfiability

solvers in general: Although the subtropical method only focuses on proving satisfiability,
it is able to accelerate also unsatisfiable answer deductions. It happens that many of
the partial CNF formulas passed to the theory solver are satisfiable, even if the complete
formula that gets checked is unsatisfiable. On the remaining instances, our STropModule
fails quickly with an Unknown result and thus generates a very small overhead. To see
this, consider the pure subtropical method on the Heizmann Ultimate Invariant Synthesis
and Ultimate Automizer families. It is able to generate Unknown answers, where the full
strategies timeout, proving its efficiency. For the final question which linearization variant
to use, consider the meti-tarski and zankl families: As a theory solver on its own, the
additional completeness of the weak variant comes with a 25 fold and a 84 fold increase of
the average runtime, respectively. If it is used upfront to more sophisticated theory solvers
for the nonlinear real arithmetic, its linearization complexity degrades the performance of
the full strategy compared to the strict variant. In an environment like SMT-RAT, where
already more complete decision procedures exist, we therefore highly recommend the strict
variant as a lightweight heuristic to decide simpler input instances.



2.5. Benchmarking results and conclusion 19



20
C
hapter

2.
SubtropicalSatisfiability

QF_NRA Benchmarks STrop strict
only

STrop weak
only

STrop strict
+ Backends

STrop weak
+ Backends

Backends
only

Benchmark Family Answer Num Avg Num Avg Num Avg Num Avg Num Avg

Sturm MBO/MGC
(414)

Sat (107) 0 0 0 0 0 0 0 0 0 0
Unsat (292) 2 9 2 9 122 5556 122 5748 122 6035
Unknown (15) 412 7475 412 7722 0 0 0 0 0 0

Resout 0 0 0 0 292 60049 292 60078 292 60042

Heizmann Ultimate
Invariant Synthesis

(69)

Sat (0) 0 0 0 0 0 0 0 0 0 0
Unsat (0) 0 0 0 0 0 0 0 0 0 0

Unknown (69) 51 4255 51 4466 0 0 0 0 0 0
Resout 18 60156 18 60032 69 59987 69 59994 69 59975

hong
(20)

Sat (0) 0 0 0 0 0 0 0 0 0 0
Unsat (20) 0 0 0 0 20 221 20 273 20 15
Unknown (0) 20 206 20 239 0 0 0 0 0 0

Resout 0 0 0 0 0 0 0 0 0 0

hycomp
(2752)

Sat (191) 0 0 0 0 24 14801 23 13280 26 14565
Unsat (2191) 1898 1419 1898 1507 1804 3196 1798 3116 1783 3033
Unknown (370) 19 5220 19 5505 0 0 0 0 0 0

Resout 835 57952 835 58011 924 57992 931 58069 943 58038

kissing
(45)

Sat (42) 0 0 0 0 10 127 10 134 10 147
Unsat (3) 0 0 0 0 0 0 0 0 0 0

Unknown (0) 45 41 45 41 0 0 0 0 0 0
Resout 0 0 0 0 35 59989 35 59991 35 59975



2.5.
B
enchm

arking
results

and
conclusion

21

LassoRanker
(821)

Sat (121) 0 0 0 0 0 0 0 0 0 0
Unsat (133) 0 0 0 0 0 0 0 0 0 0

Unknown (567) 0 0 0 0 0 0 0 0 0 0
Resout 821 60020 821 60012 821 59995 821 60005 821 60005

meti-tarski
(7006)

Sat (4391) 1277 11 1346 281 4179 184 4176 366 4169 228
Unsat (2615) 703 9 703 8 2340 274 2343 283 2339 257
Unknown (0) 5026 10 4955 123 0 0 0 0 0 0

Resout 0 0 2 60006 487 58552 487 58600 498 58624

Ultimate
Automizer

(61)

Sat (48) 0 0 0 0 0 0 0 0 0 0
Unsat (13) 0 0 0 0 0 0 0 0 0 0
Unknown (0) 44 2989 44 3058 0 0 0 0 0 0

Resout 17 60036 17 60027 61 59992 61 59998 61 59982

zankl
(166)

Sat (63) 31 84 28 7082 46 1650 40 4057 22 4955
Unsat (29) 2 15 2 8 16 321 16 666 16 605

Unknown (74) 94 2024 76 1913 0 0 0 0 0 0
Resout 39 60023 60 60018 104 59458 110 59185 128 59493

Total
(11354)

Sat (4963) 1308 12 1374 419 4259 283 4249 470 4227 340
Unsat (5296) 2605 1036 2605 1100 4302 1649 4299 1624 4280 1578

Unknown (1095) 5711 661 5622 784 0 0 0 0 0 0
Resout 1730 59024 1753 59060 2793 59066 2806 59094 2843 59174

Table 2.1.: Benchmarking results of the STropModule on the QF_NRA division of the SMT-LIB.





23

Chapter 3.

The Case-Splitting Method

In this chapter we illustrate the implemented functionality behind our case-splitting mod-
ule (CSplitModule) that is presented in Appendix B. In their first publication [Bor+09]
Borralleras et al. proposed a reduction method for nonlinear to linear integer arithmetic
formulas generalizing the idea previously known from bit-blasting to a higher-order target
logic. It is based on the linearization of nonlinear monomials by a repeated application of
a case analysis on the possible values that some of the variables in the monomial can take.
To ensure completeness, this method requires the domains of variables used for case-splits
to be finite. In reality, this basic idea quickly loses its termination power for bounded, but
large variable domains. In the follow-up paper [Bor+12] this issue is addressed by replac-
ing the unary encoding of large domains through an improved encoding in a positional
numeral system. Additionally, the authors present a novel method to handle entirely un-
bounded domains via an incremental approach to introduce and expand artificial bounds
in a clever way. This allows us to give unsatisfiability answers for certain input formulas
even in the later case and therefore improves the completeness of the original method.

3.1. Case-splits for monomial equalities
The main idea of the case-splitting method is the linearization of nonlinear monomials by
a repeated application of a case analysis on the possible values that some of the variables
in the monomial can take. Consider for example the nonlinear integer arithmetic formula

x = abc ∧ 5 ≤ x ≤ 10 ∧ 2 ≤ a, b, c ≤ 3.

Since the variable a is integral, it can only take the values a = 2 or a = 3, and we get an
equisatisfiable formula by replacing the constraint x = abc by a simple case distinction as

y = bc ∧ a = 2→ x = 2y

∧ a = 3→ x = 3y

∧ 5 ≤ x ≤ 10

∧ 2 ≤ a, b, c ≤ 3.



24 Chapter 3. The Case-Splitting Method

Note the additional substitution of the nonlinear expression bc by a fresh intermediate
variable y. This produces a new nonlinear equality y = bc with a smaller total degree,
and appart from that linear constraints only. Another case-split on the variable b gives

b = 2→ y = 2c

∧ b = 3→ y = 3c

∧ a = 2→ x = 2y

∧ a = 3→ x = 3y

∧ 5 ≤ x ≤ 10

∧ 2 ≤ a, b, c ≤ 3,

which can be checked by a linear integer arithmetic solver such as the Branch-and-Bound
method for satisfiability. The resulting model {a = 2, b = 2, c = 2, y = 4, x = 8} also
satisfies the original formula, where the additional assignment y = 4 for the intermediate
variable can be dropped. This trivial example points to the main challenges of the method:

• In the foregoing example, there were only two possible values for the variables a
and b used for case distinctions. In the following sections, we will develop improved
linearization techniques for case variables with large but bounded domains.

• If the domains of variables used for case distinctions are even unbounded, we need
to introduce new bounds and hence we lose completeness. A proper analysis of the
unsatisfiable core of the background linear arithmetic solver however will allow us
to prove unsatisfiability even in this case. Furthermore, it will yield an efficient
incremental method to choose the variable bounds that need to be enlarged in order
to continue the search for a satisfying assignment for the original set of constraints.

In Section 3.2 we first describe some lightweight preprocessing steps to extract mono-
mial equalities from a given conjunction of constraints. The remaining sections are then
devoted to the linearization of those nonlinear monomial equalities.

3.2. Purification of nonlinear constraints
Let C := ∧m

i=0 fi(x) ∼i 0 be a conjunction of constraints with multivariate polynomials
fi(x) ∈ R[x1, . . . , xd] and relations ∼i ∈ {<,≤,=, 6=≥, >}. Consider the mixed-integer
problem of finding a satisfying assignment a ∈ Rk × Zd−k.

3.2.1. Discretization of real-valued variables

Since the main case-splitting method is designed to solve integer arithmetic problems
only, we first need to get rid of the real-valued variables x1, . . . , xk. In [Bor+12] several
discretization techniques are considered:

Constant Denominator Fix a common denominator D ∈ Z, D 6= 0. For i = 1, . . . , k



3.2. Purification of nonlinear constraints 25

choose fresh integer-valued variables ni and perform the substitution xi := ni

D
.

Whenever this method is applied, we definitely lose completeness by excluding point
solutions that cannot be written as a quotient with denominator D.

Full Quotient For i = 1, . . . , k choose fresh integer-valued variables ni and di. Perform
the substitution xi := ni

di
and eliminate the denominators in C by multiplying the

constraints with a power of di to get back an integer arithmetic formula.

Although the full quotient method is more expressive, the explosion of the monomial
degrees turned out to be computationally infeasible in all our experiments. The number of
intermediate variables needed to linearize the formula results in a very poor performance
of the linear arithmetic solver. This confirms the concerns in [Bor+12] regarding this
approach. For our CSplitModule the constant denominator approach was therefore finally
chosen. From now on, let C denote an already discretized integer arithmetic problem.

3.2.2. Extraction of nonlinear monomial equations

For each constraint f(x) ∼ 0 in C we perform the following preprocessing steps: Replace
every nonlinear monomial xp in f(x) with dp := ‖p‖1 > 1 by a fresh integer-valued
variable yp to get the linear part of the original constraint by

L(f(x) ∼ 0) :=
∑

p∈fr(f)
dp≤1

fpxp +
∑

p∈fr(f)
dp>1

fpyp ∼ 0.

We want the remaining monomial equations of the form yp = xp to have a total degree of
two. For this purpose, choose an index bp ∈ {1, . . . , d} with pbp > 0 and perform the split
into a binary equation yp = xbp · zp and zp = xp−ebp for a fresh intermediate variable zp.
Repeat this binarization process with zp = xp−ebp until all resulting monomial equations
have a total degree of two. The depicted iteration constructs a so-called reduction sequence
bp = (bp,1, . . . , bp,dp) of indices bp,j ∈ {1, . . . , d} that decomposes the exponent into
p = ∑dp

j=1 ebp,j
. The nonlinear part of the constraint f(x) ∼ 0 is then given by

N(f(x) ∼ 0) :=
∧

p∈fr(f)
dp>1

dp−2∧
j=1

yp,j = xbp,j
· yp,j+1

 ∧ yp,dp−1 = xbp,dp−1 · xbp,dp

for a sequences of intermediate variables yp = (yp,1, . . . , yp,dp−1). The complexity of the
final linearization is highly dependent on the right choice of these reduction sequences and
we therefore devote Subsection 3.4.2 to this problem. The purification of the constraints



26 Chapter 3. The Case-Splitting Method

conjunction C is now given by the decomposition

L :=
m∧
i=1

L(fi(x) ∼i 0) and N :=
m∧
i=1

N(fi(x) ∼i 0)

Note that C′ := L ∧ N is still a conjunction of constraints and equisatisfiable to C.
From now on, let C = C′ denote an already purified input formula in which the only
nonlinearities arise as binary monomial equations of the form x = v · w in N.

3.3. Case-splitting for variables with bounded domains
Suppose that for every variable v in C we have a maximal domain Dv := [Lv,Uv] ⊆ Z
that restricts its solution search space. In our CSplitModule, these domains are extracted
directly from the input C exploiting linear bounding constraints of the form v ∼ 0 in L
with ∼ ∈ {<,≤,=,≥, >}. For future development an enhanced bounds extraction routine
should be implemented that is able to take also nonlinear constraints like v2 ≤ 10 into
account. We fix a constant number T ∈ N, T ≥ 2, and subdivide all variable domains into
the following classes: We denote Dv as small if |Dv| ≤ T , large if T < |Dv| < +∞, and
unbounded otherwise. In this section, we present linearization techniques for the binary
monomial equations x = v · w in N with bounded domains Dv.

3.3.1. Handling small domains

Suppose for the moment that the variable v used for case-splits has a small domain Dv.
The simple linearization rule seen in the introductory Section 3.1 can be restated as

ΦSmall
Monomial(x, v, w) :=

Uv∧
α=Lv

(v = α→ x = α · w)

For a single monomial equation x = v · w it produces |Dv| ∈ O(T ) binary linear clauses
and is therefore inappropriate for the linearization of large domains for T � 1. If the
variable v is restricted to the domain Dv, then the monomial equation is equisatisfiable
to its linearization. Remember, that this premise is fulfilled within the formula C, since
the variable domain Dv was extracted from the bounding constraints contained in it.

3.3.2. Handling large domains

The problem with the presented linearization rule for small domains lies in the unary
encoding of the variable domain Dv = [Lv,Uv], where every binary clause represents a



3.3. Case-splitting for variables with bounded domains 27

single value that the case variable v can take. To overcome this issue, we fix another integer
B ∈ N, 2 ≤ B ≤ T , and subsequently encode the variable domain Dv in a positional
numeral system to the base B. To this end, we take fresh integer-valued variables q and
r and perform a symbolic division of v modulo B by introducing the linear formula

ΦDigit(v, q, r) := v = B · q + r ∧ bLv

B
c ≤ q ≤ bUv

B
c ∧ 0 ≤ r ≤ B − 1.

The added variable domains Dq = [bLv

B
c, bUv

B
c] and Dr = [0, B − 1] constitute a smallest

possible over-approximation of Dv in the usual sense of interval analysis: Every value
v̂ ∈ Dv can be written as a linear combination v̂ = B · q̂ + r̂ for suitable choices of
q̂ ∈ Dq and r̂ ∈ Dr, and the two domains Dq and Dr are minimal with respect to this
condition. Hence, substituting the expression B · q + r for v in the original monomial
equation x = v · w does not exclude any solutions and we obtain

x = v · w = (B · q + r) · w = B · q · w + r · w.

In order to get rid of the remaining nonlinear monomials on the right hand side, we

• replace q · w by a fresh integer-valued variable y and get a new monomial equation
y = q ·w that still needs to be linearized. But the qualitative difference between the
later and the original constraint x = v ·w is the domain size reduction |Dq| ≤ d |Dv |

B
e.

• perform an unary case-split on the monomial r ·w using r as the case variable like in
Subsection 3.3.1. Note that the variable domain Dr is small since |Dr| = B−1 ≤ T .

In summary, we replace the monomial equation x = v · w with the linearization

ΦExpansion(x, y, v, q, r, w) :=
B−1∧
α=0

(r = α→ x = B · y + α · w) ∧ ΦDigit(v, q, r)

and repeat this linearization process on the remaining constraint y = q · w. In each
iteration, the domain size of Dq is reduced by a factor of B. After at most k := dlogB|Dv|e
iterations, the variable domain Dq is small and we encode the constraint y = q ·w as seen
in Subsection 3.3.1. To formalize this described iteration process, choose sequences of
integer-valued variables x = (x0, . . . , xk), q = (q0, . . . , qk) and r = (r1, . . . , rk). With the
identification x0 := x and q0 := v, the full linearization of x = v · w is given by

ΦLarge
Monomial(x,q, r, w) :=

k∧
i=1

ΦExpansion(xi−1, xi, qi−1, qi, ri, w) ∧ ΦSmall
Monomial(xk, qk, w)

For a single monomial equation x = v · w with bounded domain Dv this linearization



28 Chapter 3. The Case-Splitting Method

rule produces O(B logB|Dv| + T ) at most binary linear clauses. Suppose that the pure
nonlinear formula C is transformed into C′ by one application of this linearization rule.
Since the variable domain Dv was derived from C, both formulas are equisatisfiable.

3.4. Unsatisfiability and learning for unbounded domains
As one source of incompleteness of the case-splitting method we have already identified
the discretization of real-valued variables. If a case variable used for linearization lacks
a finite upper or lower bound, then we have to introduce artificial bounds and again we
lose completeness at first glance. In this section, we will therefore address the problem of
the right choice of case variables and present a method based on the analysis of unsat-
isfiable cores to guide this bounding process in a clever way. This will allow us to prove
unsatisfiability in many cases and attenuate the incompleteness issue of the second kind.

3.4.1. Unsatisfiability and learning

Let C = L ∧ N be a pure conjunction of constraints. Such a constraints conjunction
is always a special case of a CNF formula with a single literal per clause. The CNF
property is invariant under any application of the presented linearization rules in Section
3.3. If the domains of all case variables in C are bounded, such that its nonlinear part
N can be completely linearized to produce the formula LN, we will therefore get an
equisatisfiable CNF formula D := L ∧ LN in linear integer arithmetic. Recall the set
theoretic notations for arbitrary CNF formulas from Subsection 1.1. The next Theorem
relates the unsatisfiable cores of the linearization D to those of the original formula C.

Theorem 3.1 Let the input C and hence its linearization D be unsatisfiable. If UD is
an unsatisfiable core for D, then UC := (UD ∩ L) ∧N is an unsatisfiable core for C.

Proof. By the definition of an unsatisfiable core, we have UD ⊆ D, which gives

UD = UD ∩D = UD ∩ (L ∧ LN) = (UD ∩ L) ∧ (UD ∩ LN) ⊆ (UD ∩ L) ∧ LN.

The rightmost CNF formula is equisatisfiable to (UD ∩ L) ∧N = UC. Altogether, this
proves that UC must contain a subformula that is equisatisfiable to the unsatisfiable core
UD. Since further UC ⊆ C holds, it follows that UC is an unsatisfiable core of C. �

For many input formulas C, the so far claimed boundedness for all variable domains that
are used for case distinctions during the linearization process is not fulfilled. In this case,
we need to introduce a conjunction of additional bounding constraints B and consider



3.4. Unsatisfiability and learning for unbounded domains 29

the input CNF formula C′ := B ∧C instead. This makes our method incomplete, since
only Sat answers for C′ imply the satisfiability of the original input C. A first strategy
to choose the newly added bounds in B as large as possible is foredoomed, as it easily
produces a too hard problem for the internal linear arithmetic solver even if the logarithmic
encoding of variable domains from Subsection 3.3.2 is used. An alternative idea is to start
with bounds that make the domains small and enlarge them incrementally if necessary.
Instead of enlarging all added bounds, we can further analyze the unsatisfiable core of the
linearization to identify the bounds that need to be adapted. The core of this approach
is the following refinement of Theorem 3.1 in the presence of bounding constraints.

Corollary 3.2 Let B be a conjunction of bounding constraints such that C′ := B ∧ C
can be linearized into the CNF formula D′. If UD′ is an unsatisfiable core for D′ with
UD′ ∩B = ∅, then UC := (UD′ ∩L)∧N is an unsatisfiable core for the original input C.

Proof. The purification of C is given by the decomposition C = L∧N into its linear and
nonlinear parts L and N, respectively. Since the bounding constraints in B are linear by
definition, the corresponding purification of C′ is given by C′ = L′ ∧N′ with

L′ := B ∧ L and N′ := N.

If we apply Theorem 3.1 on C′ instead of C and insert the given premise UD′ ∩ B = ∅,
we obtain the unsatisfiable core for C′ given by

UC′ := (UD′ ∩ L′) ∧N′ = (UD′ ∩ (B ∧ L)) ∧N = (UD′ ∩ L) ∧N.

From the rightmost representation of UC′ we can easily see the relation UC′ ⊆ L∧N = C.
Hence, UC := UC′ is also an unsatisfiable core of C. �

The benefit of Corollary 3.2 for our CSplitModule is twofold:
(i) If the unsatisifable core UD′ of the linearization D′ does not contain any of the

auxiliary bounds in B, we can deduce the unsatisfiability of the original formula
C = L ∧N and generate a corresponding unsatisfiable core UC := (UD′ ∩ L) ∧N.

(ii) If, on the other hand, the unsatisfiable core UD′ has a non-empty intersection with
the auxiliary bounds in B, then the constraints in UD′ ∩B are the candidate bounds
that need to be enlarged before the next invocation of the linear arithmetic solver.

Unfortunately, the incremental enlargement of bounds in (ii) does not terminate for many
input formulas after a finite number of iterations by reaching case (i). Our experiments
showed that the initial choice of reduction sequences has the greatest impact on the



30 Chapter 3. The Case-Splitting Method

termination of the algorithm in case of unsatisfiable input formulas. We will therefore
look into this problem in more detail in the next Subsection 3.4.2. Here, we give a brief
summary of additional implementation details of our CSplitModule that lead to a slight
performance increase for both, satisfiability and unsatisfiability answers:

• As a first obvious strategy to ensure termination, we limit the maximal number of
bounds refinement iterations, before the consistency check gets finally aborted with
an Unknown result. In a single iteration, a subset of candidate bounds in UD′ ∩ B
gets bloated and the linear arithmetic solver is called on the adapted linearization.
This step is very time critical and needs to be implemented efficiently. Let v be a
variable whose domain is changed from Dold

v to Dnew
v . An inspection of the ΦMonomial

formulas from Section 3.3 in which v is involved as the case variable shows that for

– small domains we only need to add the case distinction clauses for the values
in Dnew

v \Dold
v and modify the bounding constraints accordingly.

– for large domains the majority of ΦExpansion subformulas stay completely un-
touched and only the bounds in the ΦDigit subformulas need to be adapted.

We implemented a recursive algorithm that simultaneously calculates the expansions
in a positional numeral system to the baseB forDold

v andDnew
v and modifies precisely

the changed clauses to transform the resulting linearization into a consistent state.

• For some linearizations, the internal linear arithmetic solver terminates quickly even
for variable domain sizes in the order of millions, for others, variable domain sizes
of five or less are already time critical. We therefore start for all variables v with an
initial interval Dv = [0, 1] and bloat the candidate domains in two phases:

(i) In the first phase, the domains are enlarged linearly in both directions with a
step size of one until a certain threshold is reached.

(ii) If all candidates have exceeded the threshold size, we start an exponential
bloating of the domains that are used for case-splits and activate the maximal
domain for variables that are not involved in the case analysis.

Furthermore, we limit the maximal number of candidates that are bloated in a single
iteration, since we observed input formulas with 400 variables and more. From all
potential bloating candidates in UD′∩B, we prefer those with the smallest domains.

All of the mentioned parameters that control the behaviour of our CSplitModule are not
hard-coded into it but can be set centrally in its corresponding settings file. We will report
the best configuration that we found with the help of a sparse grid search in Section 3.5.



3.4. Unsatisfiability and learning for unbounded domains 31

3.4.2. Optimal choice of reduction sequences

So far we have only considered the final linearization step for binary monomial equations of
the form x = v ·w for bounded and unbounded domains Dv. These binary monomial equa-
tions were produced in Subsection 3.2.2 from monomial equations yp = xp of arbitrary
total degree dp = ‖p‖1 > 2 by the choice of reduction sequences bp = (bp,1, . . . , bp,dp).
These sequences define the order in which the variables are removed from the nonlinear
monomial xp. When multiple monomial equations yp1 = xp1 , . . . , ypk

= xpk are involved,
the choice of reduction sequences cannot be considered in isolation anymore. The inter-
dependency of the reduction sequences bp1 , . . . ,bpk

has a vast impact on the number of
intermediate variables and thus the number of clauses in the final linearization.

Example 3.3 Consider the system of monomial equations ypi
= xpi for i = 1, . . . , 3 with

p1 = (1, 2, 2, 0), p2 = (2, 0, 2, 1), p3 = (1, 0, 2, 2).

Figure 3.1 shows the reduction trees for two different sets of reduction sequences that lead
to a different number of intermediate nonlinear monomial equations:
(a) bp1 = (1, 2, 2, 3, 3), bp2 = (1, 1, 3, 4, 4), bp3 = (1, 3, 3, 4, 4) with 12 equations.

(b) bp1 = (1, 2, 2, 3, 3), bp2 = (1, 1, 4, 3, 3), bp3 = (4, 1, 4, 3, 3) with 8 equations.

The most desirable set of reduction sequences is the one that minimizes the number
of intermediate nonlinear monomials in the reduction tree. It is easy to see that this
minimization problem is NP-complete and thus too expensive as a subproblem of our
linearization algorithm. In [Bor+12] this problem discussion closes with a reference to a
"greedy approximation algorithm" without any information on the implementation details.
After numerous experiments, we chose the following method as a tradeoff between the
desired minimal cardinality of intermediate monomials and the avoidance of case variables
with unbounded domains, since the later are the reason for a lack of termination. Let the
set of exponents E0 := {p1, . . . ,pk} be sorted ascendingly in degree lexicographic order.
Perform the following steps for i = 1, . . . , k:
(i) In the monomial xpi we have exactly one free choice of a variable that will not be

used for case-splits during the linearization. We therefore select the last index bdpi
of

the reduction sequence corresponding to the variable xbdpi
with the largest domain.

(ii) Among all exponents p ∈ Ei−1, choose the one with maximal degree dp such that it

• is componentwise smaller than pi and hence xpi is reducible to xp.

• contains the variable xbdpi
. By induction, it follows that bdp = bdpi

and during
the reduction process of xp the variable xbdpi

was successfully avoided.



32 Chapter 3. The Case-Splitting Method

x1x
2
2x

2
3 x2

1x
2
3x4 x1x

2
3x

2
4

x2
2x

2
3 x1x

2
3x4 x2

3x
2
4

x2x
2
3 x2

3x4 x3x
2
4

x2
3 x3x4 x2

4

x3 x4

1 11

2 31

2 33

3
4

4

(a)

x1x
2
2x

2
3 x2

1x
2
3x4 x1x

2
3x

2
4

x2
2x

2
3 x1x

2
3x4

x2x
2
3 x2

3x4

x2
3

x3

1 1
4

2 1

2
4

3

(b)

Figure 3.1.: Reduction trees for two sets of reduction sequences bp1 ,bp2 ,bp3 .

(iii) Construct the reduction sequence bpi
that reduces pi to p and then follows the

reduction sequence bp. Add all used intermediate exponents to Ei−1 to get Ei.

3.5. Benchmarking results and conclusion
We tested our CSplitModule on the QF_NIA division of the SMT-LIB benchmarking
library [BFT16] and report our results in Table 3.1. The experiments were performed on
a 2.7 GHz Intel Core i7-4800MQ CPU with a timeout of 60 seconds and 4 GB memory per
benchmark. In [Bor+12], only the families AProVE, calypto and leipzig are considered
with a timeout limit of 1200 seconds to conclude the supremacy of the case-splitting
method. But our results clearly indicate that these three families were cherry-picked as
they are the only with a reasonable performance. The strategies that we tested are:

CSplit only: SATModule→CSplitModule

Backends only: SATModule→LRAModule→VSModule→CADModule

CSplit + Backends: SATModule→CSplitModule→LRAModule→VSModule→CADModule

To find the best parameter combination, we performed a grid search on a validation subset
of 500 benchmarks and finally picked the following setting:

• We choose T = 32 as the threshold between small and large domain sizes and also
B = 32 as the base for the logarithmic encoding of large domains.

• The maximum number of bounds refinements is limited to 50 iterations. In every it-
eration, we choose at most three candidates whose bounds get enlarged. Candidates
with a domain size of 300 or more get discarded and not considered for bloating.



3.5. Benchmarking results and conclusion 33

• All variable domains are initially restricted to an interval of size one near to the
zero point as many input formulas seem to have solutions near to the origin. They
are bloated linearly with a step size of one until the threshold of three is reached.
Afterwards, the exponential bloating routine starts.

It is worth mentioning that we were able to find parameter sets that gave better results
when we restricted ourselves to one of the three above mentioned benchmark families.
In calypto, the linear arithmetic solver terminates quickly independent from the domain
sizes. Hence, it is advisible to select a much higher number of iterations and entirely
remove the limit size of 300 for candidate domains. This behaviour is perpendicular to
the leipzig family, where a fast rejection with an Unknown answer gives better results in
later consistency checks of the outer DPLL loop.



34
C
hapter

3.
T
he

C
ase-Splitting

M
ethod

QF_NIA Benchmarks CSplit
only

CSplit
+ Backends

Backends
only

Benchmark Family Answer Num Avg Num Avg Num Avg

AProVE
(2409)

Sat (1663) 894 1451 890 1392 627 893
Unsat (320) 2 14 4 5960 49 647

Unknown (426) 5 12898 0 0 0 0
Resout 1508 59995 1515 59993 1503 59999

calypto
(177)

Sat (80) 44 5036 45 4797 24 810
Unsat (97) 6 28 9 1147 13 18
Unknown (0) 21 21859 17 11798 124 167

Resout 106 59986 106 60004 16 59989

CInteger
(1818)

Sat (858) 10 27391 10 24151 0 0
Unsat (150) 0 0 0 0 5 7294

Unknown (810) 0 0 0 0 0 0
Resout 1808 59991 1808 59993 1813 59966

ITS
(17046)

Sat (9473) 32 17754 33 19957 8 5062
Unsat (2360) 0 0 5 12160 46 2116

Unknown (5213) 0 0 0 0 0 0
Resout 17014 59997 17008 59989 16992 59991

LassoRanker
(106)

Sat (4) 4 4568 3 50 3 165
Unsat (100) 0 0 15 244 15 27
Unknown (2) 59 3646 0 0 0 0

Resout 43 59992 88 60002 88 59984



3.5.
B
enchm

arking
results

and
conclusion

35

leipzig
(167)

Sat (162) 73 5902 74 5889 15 7693
Unsat (5) 0 0 0 0 0 0

Unknown (0) 0 0 0 0 0 0
Resout 94 59990 93 59986 152 59991

mcm
(186)

Sat (25) 0 0 0 0 1 43761
Unsat (0) 0 0 0 0 0 0

Unknown (161) 0 0 0 0 0 0
Resout 186 59983 186 59992 185 59989

SAT14
(1926)

Sat (1853) 11 6068 10 3180 11 3929
Unsat (63) 0 0 0 0 11 16337

Unknown (10) 0 0 0 0 0 0
Resout 1915 59995 1916 59997 1904 60001

Ultimate
Automizer/
LassoRanker

(39)

Sat (6) 5 589 6 944 6 209
Unsat (33) 7 8214 25 10891 27 7762
Unknown (0) 1 2828 0 0 0 0

Resout 26 59991 8 59937 6 59918

Total
(23874)

Sat (14124) 1073 2684 1071 2641 778 1071
Unsat (3128) 15 3846 58 6395 172 3232

Unknown (6622) 86 8622 17 11798 124 167
Resout 22700 59996 22728 59991 22800 59991

Table 3.1.: Benchmarking results of the CSplitModule on the QF_NIA division of the SMT-LIB.





37

Appendix A.

STropModule source code

Listing A.1: STropSettings.h
1 /**
2 * @file STropSettings .h
3 * @author Ömer Sali <oemer.sali@rwth - aachen .de >
4 *
5 * @version 2018 -04 -04
6 * Created on 2017 -09 -13.
7 */
8
9 # pragma once

10
11 # include " ../../ solver / ModuleSettings .h"
12 # include " ../../ solver / Manager .h"
13 # include "../ SATModule / SATModule .h"
14 # include "../ LRAModule / LRAModule .h"
15
16 namespace smtrat
17 {
18 enum class SeparatorType { STRICT = 0, WEAK = 1};
19
20 struct STropSettings1
21 {
22 /// Name of the Module
23 static constexpr auto moduleName = " STropModule < STropSettings1 >";
24 /// Type of linear separating hyperplane to search for
25 static constexpr SeparatorType separatorType = SeparatorType :: STRICT ;
26 /// Linear real arithmetic solver to call for the linearized formula
27 struct LRASolver : public Manager
28 {
29 LRASolver () : Manager ()
30 {
31 setStrategy ({
32 addBackend <SATModule < SATSettings1 >>({
33 addBackend <LRAModule < LRASettings1 >>()
34 })
35 });
36 }
37 };
38 };
39 }

Listing A.2: STropModule.h
1 /**
2 * @file STropModule .h
3 * @author Ömer Sali <oemer.sali@rwth - aachen .de >
4 *
5 * @version 2018 -04 -04
6 * Created on 2017 -09 -13.



38 Appendix A. STropModule source code

7 */
8
9 # pragma once

10
11 # include " ../../ solver / Module .h"
12 # include " STropStatistics .h"
13 # include " STropSettings .h"
14
15 namespace smtrat
16 {
17 template < typename Settings >
18 class STropModule : public Module
19 {
20 private :
21 #ifdef SMTRAT_DEVOPTION_Statistics
22 STropStatistics mStatistics ;
23 #endif
24 /**
25 * Represents the normal vector component and the sign variable
26 * assigned to a variable in an original constraint .
27 */
28 struct Moment
29 {
30 /// Normal vector component of the separating hyperplane
31 const carl :: Variable mNormalVector ;
32 /// Boolean variable representing the sign variant
33 const carl :: Variable mSignVariant ;
34 /// Flag that indicates whether this moment is used for

linearization
35 bool mUsed;
36
37 Moment ()
38 : mNormalVector (carl :: freshRealVariable ())
39 , mSignVariant (carl :: freshBooleanVariable ())
40 , mUsed(false)
41 {}
42 };
43
44 /// Maps a variable to the components of the moment function
45 std :: unordered_map <carl :: Variable , Moment > mMoments ;
46
47 /**
48 * Represents a term of an original constraint and assigns
49 * him a rating variable if a weak separator is searched .
50 */
51 struct Vertex
52 {
53 /// Coefficient of the assigned term
54 const Rational mCoefficient ;
55 /// Monomial of the assigned term
56 const carl :: Monomial :: Arg mMonomial ;
57 /// Rating variable of the term for a weak separator
58 const carl :: Variable mRating ;
59
60 Vertex (const TermT& term)
61 : mCoefficient (term.coeff ())
62 , mMonomial (term. monomial ())
63 , mRating (
64 Settings :: separatorType == SeparatorType :: WEAK ?
65 carl :: freshRealVariable () : carl :: Variable :: NO_VARIABLE )
66 {}
67 };
68
69 /// Subdivides the relations into classes with the same linearization

result
70 enum class Direction {NONE = 0, BOTH = 0, NEGATIVE = 1, POSITIVE =

2};
71



39

72 /**
73 * Represents the class of all original constraints with the same
74 * left hand side after a normalization . Here , the set of all

received
75 * relations of constraints with the same left hand side is stored .

At any
76 * one time only one relation can be active and used for

linearization .
77 */
78 struct Separator
79 {
80 /// Bias variable of the separating hyperplane
81 const carl :: Variable mBias;
82 /// Vertices for all terms of the normalized left hand side
83 const std :: vector <Vertex > mVertices ;
84 /// Relations of constraints with the same left hand side
85 std ::set <carl :: Relation > mRelations ;
86 /// Direction currently used for linearization
87 Direction mActiveDirection ;
88
89 Separator (const Poly& normalization )
90 : mBias(carl :: freshRealVariable ())
91 , mVertices ( normalization .begin (), normalization .end ())
92 , mRelations ()
93 , mActiveDirection ( Direction :: NONE)
94 {}
95 };
96
97 /// Maps a normalized left hand side of a constraint to its separator
98 std :: unordered_map <Poly , Separator > mSeparators ;
99 /// Stores the Separators that were updated since the last check call

100 std :: unordered_set < Separator *> mChangedSeparators ;
101 /// Counts the number of relation pairs that prohibit an application

of this method
102 size_t mRelationalConflicts ;
103 /// Stores the sets of separators that were found to be undecidable

by the LRA solver
104 typedef std :: vector <std ::pair <const Separator *, const Direction >>

Conflict ;
105 std :: vector <Conflict > mLinearizationConflicts ;
106 /// Stores whether the last consistency check was done by the

backends
107 bool mCheckedWithBackends ;
108 /// Handle to the linear real arithmetic solver
109 typename Settings :: LRASolver mLRASolver ;
110
111 public :
112 typedef Settings SettingsType ;
113
114 std :: string moduleName () const
115 {
116 return SettingsType :: moduleName ;
117 }
118
119 STropModule (const ModuleInput * _formula , RuntimeSettings * _settings ,

Conditionals & _conditionals , Manager * _manager = nullptr );
120
121 /**
122 * The module has to take the given sub - formula of the received

formula into account .
123 * @param _subformula The sub - formula to take additionally into

account .
124 * @return False , if it can be easily decided that this sub - formula

causes a conflict with
125 * the already considered sub - formulas ;
126 * True , otherwise .
127 */
128 bool addCore ( ModuleInput :: const_iterator _subformula );



40 Appendix A. STropModule source code

129
130 /**
131 * Removes the subformula of the received formula at the given

position to the considered ones of this module .
132 * Note that this includes every stored calculation which depended on

this subformula , but should keep the other
133 * stored calculation , if possible , untouched .
134 * @param _subformula The position of the subformula to remove .
135 */
136 void removeCore ( ModuleInput :: const_iterator _subformula );
137
138 /**
139 * Updates the current assignment into the model.
140 * Note , that this is a unique but possibly symbolic assignment maybe

containing newly introduced variables .
141 */
142 void updateModel () const;
143
144 /**
145 * Checks the received formula for consistency .
146 * @return SAT , if the received formula is satisfiable ;
147 * UNSAT , if the received formula is not satisfiable ;
148 * UNKNOWN , otherwise .
149 */
150 Answer checkCore ();
151
152 private :
153 /**
154 * Creates the linearization for the given separator with the active

relation .
155 * @param separator The separator object that stores the construction

information .
156 * @return Formula that is satisfiable iff such a separating

hyperplane exists .
157 */
158 inline FormulaT createLinearization (const Separator & separator );
159
160 /**
161 * Creates the formula for the hyperplane that linearly separates at

least one
162 * variant positive frame vertex from all variant negative frame

vertices . If a
163 * weak separator is searched , the corresponding rating is included .
164 * @param separator The separator object that stores the construction

information .
165 * @param negated True , if the formula for the negated polynomial

shall be constructed .
166 * False , if the formula for the original polynomial shall be

constructed .
167 * @return Formula that is satisfiable iff such a separating

hyperplane exists .
168 */
169 FormulaT createSeparator (const Separator & separator , bool negated );
170
171 /**
172 * Asserts / Removes the given formula to/from the LRA solver .
173 * @param formula The formula to assert / remove to the LRA solver .
174 * @param assert True , if formula shall be asserted ;
175 * False , if formula shall be removed .
176 */
177 inline void propagateFormula (const FormulaT & formula , bool assert );
178 };
179 }

Listing A.3: STropModule.cpp
1 /**



41

2 * @file STropModule .cpp
3 * @author Ömer Sali <oemer.sali@rwth - aachen .de >
4 *
5 * @version 2018 -04 -04
6 * Created on 2017 -09 -13.
7 */
8
9 # include " STropModule .h"

10
11 namespace smtrat
12 {
13 template <class Settings >
14 STropModule <Settings >:: STropModule (const ModuleInput * _formula ,

RuntimeSettings *, Conditionals & _conditionals , Manager * _manager )
15 : Module (_formula , _conditionals , _manager )
16 , mMoments ()
17 , mSeparators ()
18 , mChangedSeparators ()
19 , mRelationalConflicts (0)
20 , mLinearizationConflicts ()
21 , mCheckedWithBackends (false)
22 #ifdef SMTRAT_DEVOPTION_Statistics
23 , mStatistics ( Settings :: moduleName )
24 #endif
25 {}
26
27 template <class Settings >
28 bool STropModule <Settings >:: addCore ( ModuleInput :: const_iterator

_subformula )
29 {
30 addReceivedSubformulaToPassedFormula ( _subformula );
31 const FormulaT & formula { _subformula -> formula ()};
32 if ( formula . getType () == carl :: FormulaType :: FALSE)
33 mInfeasibleSubsets . push_back ({ formula });
34 else if ( formula . getType () == carl :: FormulaType :: CONSTRAINT )
35 {
36 /// Normalize the left hand side of the constraint and turn the

relation accordingly
37 const ConstraintT & constraint { formula . constraint ()};
38 const Poly normalization { constraint .lhs (). normalize ()};
39 carl :: Relation relation { constraint . relation ()};
40 if (carl :: isNegative ( constraint .lhs (). lcoeff ()))
41 relation = carl :: turnAroundRelation ( relation );
42
43 /// Store the normalized constraint and mark the separator object as

changed
44 Separator & separator { mSeparators . emplace ( normalization , normalization

).first -> second };
45 separator . mRelations . insert ( relation );
46 mChangedSeparators . insert (& separator );
47
48 /// Check if the asserted constraint prohibits the application of

this method
49 if ( relation == carl :: Relation ::EQ
50 || ( relation == carl :: Relation :: LEQ
51 && separator . mRelations .count(carl :: Relation :: GEQ))
52 || ( relation == carl :: Relation :: GEQ
53 && separator . mRelations .count(carl :: Relation :: LEQ)))
54 ++ mRelationalConflicts ;
55
56 /// Check if the asserted relation trivially conflicts with other

asserted relations
57 switch ( relation )
58 {
59 case carl :: Relation ::EQ:
60 if ( separator . mRelations .count(carl :: Relation :: NEQ))
61 mInfeasibleSubsets . push_back ({
62 FormulaT ( normalization , carl :: Relation ::EQ),



42 Appendix A. STropModule source code

63 FormulaT ( normalization , carl :: Relation :: NEQ)
64 });
65 if ( separator . mRelations .count(carl :: Relation :: LESS))
66 mInfeasibleSubsets . push_back ({
67 FormulaT ( normalization , carl :: Relation ::EQ),
68 FormulaT ( normalization , carl :: Relation :: LESS)
69 });
70 if ( separator . mRelations .count(carl :: Relation :: GREATER ))
71 mInfeasibleSubsets . push_back ({
72 FormulaT ( normalization , carl :: Relation ::EQ),
73 FormulaT ( normalization , carl :: Relation :: GREATER )
74 });
75 break;
76 case carl :: Relation :: NEQ:
77 if ( separator . mRelations .count(carl :: Relation ::EQ))
78 mInfeasibleSubsets . push_back ({
79 FormulaT ( normalization , carl :: Relation :: NEQ),
80 FormulaT ( normalization , carl :: Relation ::EQ)
81 });
82 break;
83 case carl :: Relation :: LESS:
84 if ( separator . mRelations .count(carl :: Relation ::EQ))
85 mInfeasibleSubsets . push_back ({
86 FormulaT ( normalization , carl :: Relation :: LESS),
87 FormulaT ( normalization , carl :: Relation ::EQ)
88 });
89 if ( separator . mRelations .count(carl :: Relation :: GEQ))
90 mInfeasibleSubsets . push_back ({
91 FormulaT ( normalization , carl :: Relation :: LESS),
92 FormulaT ( normalization , carl :: Relation :: GEQ)
93 });
94 case carl :: Relation :: LEQ:
95 if ( separator . mRelations .count(carl :: Relation :: GREATER ))
96 mInfeasibleSubsets . push_back ({
97 FormulaT ( normalization , relation ),
98 FormulaT ( normalization , carl :: Relation :: GREATER )
99 });

100 break;
101 case carl :: Relation :: GREATER :
102 if ( separator . mRelations .count(carl :: Relation ::EQ))
103 mInfeasibleSubsets . push_back ({
104 FormulaT ( normalization , carl :: Relation :: GREATER ),
105 FormulaT ( normalization , carl :: Relation ::EQ)
106 });
107 if ( separator . mRelations .count(carl :: Relation :: LEQ))
108 mInfeasibleSubsets . push_back ({
109 FormulaT ( normalization , carl :: Relation :: GREATER ),
110 FormulaT ( normalization , carl :: Relation :: LEQ)
111 });
112 case carl :: Relation :: GEQ:
113 if ( separator . mRelations .count(carl :: Relation :: LESS))
114 mInfeasibleSubsets . push_back ({
115 FormulaT ( normalization , relation ),
116 FormulaT ( normalization , carl :: Relation :: LESS)
117 });
118 break;
119 default :
120 assert (false);
121 }
122 }
123 return mInfeasibleSubsets .empty ();
124 }
125
126 template <class Settings >
127 void STropModule <Settings >:: removeCore ( ModuleInput :: const_iterator

_subformula )
128 {



43

129 const FormulaT & formula { _subformula -> formula ()};
130 if ( formula . getType () == carl :: FormulaType :: CONSTRAINT )
131 {
132 /// Normalize the left hand side of the constraint and turn the

relation accordingly
133 const ConstraintT & constraint { formula . constraint ()};
134 const Poly normalization { constraint .lhs (). normalize ()};
135 carl :: Relation relation { constraint . relation ()};
136 if (carl :: isNegative ( constraint .lhs (). lcoeff ()))
137 relation = carl :: turnAroundRelation ( relation );
138
139 /// Retrieve the normalized constraint and mark the separator object

as changed
140 Separator & separator { mSeparators .at( normalization )};
141 separator . mRelations .erase( relation );
142 mChangedSeparators . insert (& separator );
143
144 /// Check if the removed constraint prohibited the application of

this method
145 if ( relation == carl :: Relation ::EQ
146 || ( relation == carl :: Relation :: LEQ
147 && separator . mRelations .count(carl :: Relation :: GEQ))
148 || ( relation == carl :: Relation :: GEQ
149 && separator . mRelations .count(carl :: Relation :: LEQ)))
150 -- mRelationalConflicts ;
151 }
152 }
153
154 template <class Settings >
155 void STropModule <Settings >:: updateModel () const
156 {
157 if (! mModelComputed )
158 {
159 if ( mCheckedWithBackends )
160 {
161 clearModel ();
162 getBackendsModel ();
163 excludeNotReceivedVariablesFromModel ();
164 }
165 else
166 {
167 /// Stores all informations retrieved from the LRA solver to

construct the model
168 struct Weight
169 {
170 const carl :: Variable & mVariable ;
171 Rational mExponent ;
172 const bool mSign;
173
174 Weight (const carl :: Variable & variable , const Rational & exponent ,

const bool sign)
175 : mVariable ( variable )
176 , mExponent ( exponent )
177 , mSign(sign)
178 {}
179 };
180 std :: vector <Weight > weights ;
181
182 /// Retrieve the sign and exponent for every active variable
183 const Model& LRAModel { mLRASolver .model ()};
184 Rational gcd (0);
185 for (const auto& momentsEntry : mMoments )
186 {
187 const carl :: Variable & variable { momentsEntry .first };
188 const Moment & moment { momentsEntry . second };
189 if ( moment .mUsed)
190 {
191 auto signIter { LRAModel .find( moment . mSignVariant )};



44 Appendix A. STropModule source code

192 weights . emplace_back (
193 variable ,
194 LRAModel .at( moment . mNormalVector ). asRational (),
195 signIter != LRAModel .end () && signIter -> second . asBool ()
196 );
197 carl :: gcd_assign (gcd , weights .back (). mExponent );
198 }
199 }
200
201 /// Calculate smallest possible integer valued exponents
202 if (gcd != ZERO_RATIONAL && gcd != ONE_RATIONAL )
203 for ( Weight & weight : weights )
204 weight . mExponent /= gcd;
205
206 /// Find model by increasingly testing the sample base
207 Rational base{ ZERO_RATIONAL };
208 do
209 {
210 ++ base;
211 clearModel ();
212 for (const Weight & weight : weights )
213 {
214 Rational value{carl :: isNegative ( weight . mExponent ) ? carl ::

reciprocal (base) : base };
215 carl :: pow_assign (value , carl :: toInt <carl ::uint >( carl :: abs( weight .

mExponent )));
216 if ( weight .mSign)
217 value *= MINUS_ONE_RATIONAL ;
218 mModel . emplace ( weight .mVariable , value);
219 }
220 }
221 while (! rReceivedFormula (). satisfiedBy ( mModel ));
222 }
223 mModelComputed = true;
224 }
225 }
226
227 template <class Settings >
228 Answer STropModule <Settings >:: checkCore ()
229 {
230 /// Report unsatisfiability if the already found conflicts are still

unresolved
231 if (! mInfeasibleSubsets .empty ())
232 return Answer :: UNSAT;
233
234 /// Predicate that decides if the given conflict is a subset of the

asserted constraints
235 const auto hasConflict = [&]( const Conflict & conflict ) {
236 return std :: all_of (
237 conflict .begin (),
238 conflict .end (),
239 [&]( const auto& conflictEntry ) {
240 return (( conflictEntry . second == Direction :: NEGATIVE
241 || conflictEntry . second == Direction :: BOTH)
242 && ( conflictEntry .first -> mRelations .count(carl :: Relation :: LESS)
243 || conflictEntry .first -> mRelations .count(carl :: Relation :: LEQ)))
244 || (( conflictEntry . second == Direction :: POSITIVE
245 || conflictEntry . second == Direction :: BOTH)
246 && ( conflictEntry .first -> mRelations .count(carl :: Relation ::

GREATER )
247 || conflictEntry .first -> mRelations .count(carl :: Relation :: GEQ)))
248 || ( conflictEntry . second == Direction :: BOTH
249 && conflictEntry .first -> mRelations .count(carl :: Relation :: NEQ));
250 }
251 );
252 };
253



45

254 /// Apply the method only if the asserted formula is not trivially
undecidable

255 if (! mRelationalConflicts
256 && rReceivedFormula (). isConstraintConjunction ()
257 && std :: none_of ( mLinearizationConflicts .begin (),

mLinearizationConflicts .end (), hasConflict ))
258 {
259 /// Update the linearization of all changed separators
260 for ( Separator * separatorPtr : mChangedSeparators )
261 {
262 Separator & separator {* separatorPtr };
263
264 /// Determine the direction that shall be active
265 Direction direction ;
266 if ( separator . mRelations .empty ())
267 direction = Direction :: NONE;
268 else if (( separator . mActiveDirection == Direction :: NEGATIVE
269 && (( separator . mRelations .count(carl :: Relation :: LESS)
270 || separator . mRelations .count(carl :: Relation :: LEQ))))
271 || ( separator . mActiveDirection == Direction :: POSITIVE
272 && (( separator . mRelations .count(carl :: Relation :: GREATER )
273 || separator . mRelations .count(carl :: Relation :: GEQ)))))
274 direction = separator . mActiveDirection ;
275 else
276 switch (* separator . mRelations . rbegin ())
277 {
278 case carl :: Relation :: NEQ:
279 direction = Direction :: BOTH;
280 break;
281 case carl :: Relation :: LESS:
282 case carl :: Relation :: LEQ:
283 direction = Direction :: NEGATIVE ;
284 break;
285 case carl :: Relation :: GREATER :
286 case carl :: Relation :: GEQ:
287 direction = Direction :: POSITIVE ;
288 break;
289 default :
290 assert (false);
291 }
292
293 /// Update the linearization if the direction has changed
294 if ( separator . mActiveDirection != direction )
295 {
296 if ( separator . mActiveDirection != Direction :: NONE)
297 propagateFormula ( createLinearization ( separator ), false);
298 separator . mActiveDirection = direction ;
299 if ( separator . mActiveDirection != Direction :: NONE)
300 propagateFormula ( createLinearization ( separator ), true);
301 }
302 }
303 mChangedSeparators .clear ();
304
305 /// Restrict the normal vector component of integral variables to

positive values
306 for (auto& momentsEntry : mMoments )
307 {
308 const carl :: Variable & variable { momentsEntry .first };
309 Moment & moment { momentsEntry . second };
310 if ( variable .type () == carl :: VariableType :: VT_INT
311 && moment .mUsed != receivedVariable ( variable ))
312 {
313 moment .mUsed = ! moment .mUsed;
314 propagateFormula ( FormulaT (Poly( moment . mNormalVector ), carl ::

Relation :: GEQ), moment .mUsed);
315 }
316 }
317



46 Appendix A. STropModule source code

318 /// Check the constructed linearization with the LRA solver
319 switch ( mLRASolver .check(true))
320 {
321 case Answer :: SAT:
322 mCheckedWithBackends = false;
323 return Answer :: SAT;
324 case Answer :: UNSAT:
325 /// Learn the conflicting set of separators to avoid its recheck in

the future
326 const std :: vector < FormulaSetT > LRAConflicts { mLRASolver .

infeasibleSubsets ()};
327 for (const FormulaSetT & LRAConflict : LRAConflicts )
328 {
329 carl :: Variables variables ;
330 for (const FormulaT & formula : LRAConflict )
331 formula . allVars ( variables );
332 Conflict conflict ;
333 for (const auto& separatorsEntry : mSeparators )
334 {
335 const Separator & separator { separatorsEntry . second };
336 if ( separator . mActiveDirection != Direction :: NONE
337 && variables .count( separator .mBias))
338 conflict . emplace_back (& separator , separator . mActiveDirection );
339 }
340 mLinearizationConflicts . emplace_back (std :: move( conflict ));
341 }
342 }
343 }
344
345 /// Check the asserted formula with the backends
346 mCheckedWithBackends = true;
347 Answer answer { runBackends ()};
348 if ( answer == Answer :: UNSAT)
349 getInfeasibleSubsets ();
350 return answer ;
351 }
352
353 template <class Settings >
354 inline FormulaT STropModule <Settings >:: createLinearization (const

Separator & separator )
355 {
356 switch ( separator . mActiveDirection )
357 {
358 case Direction :: POSITIVE :
359 return createSeparator (separator , false);
360 case Direction :: NEGATIVE :
361 return createSeparator (separator , true);
362 case Direction :: BOTH:
363 return FormulaT (
364 carl :: FormulaType ::XOR ,
365 createSeparator (separator , false),
366 createSeparator (separator , true)
367 );
368 default :
369 assert (false);
370 }
371 }
372
373 template <class Settings >
374 FormulaT STropModule <Settings >:: createSeparator (const Separator &

separator , bool negated )
375 {
376 Poly totalRating ;
377 FormulasT disjunctions , conjunctions ;
378 for (const Vertex & vertex : separator . mVertices )
379 {
380 /// Create the hyperplane and sign change formula
381 Poly hyperplane { separator .mBias };



47

382 FormulaT signChangeFormula ;
383 if ( vertex . mMonomial )
384 {
385 FormulasT signChangeSubformulas ;
386 for (const auto& exponent : vertex .mMonomial -> exponents ())
387 {
388 const auto& moment { mMoments [ exponent .first ]};
389 hyperplane += Rational ( exponent . second )* moment . mNormalVector ;
390 if ( exponent . second %2)
391 signChangeSubformulas . emplace_back ( moment . mSignVariant );
392 }
393 signChangeFormula = FormulaT (carl :: FormulaType ::XOR , move(

signChangeSubformulas ));
394 }
395
396 /// Create the rating case distinction formula
397 if ( Settings :: separatorType == SeparatorType :: WEAK)
398 {
399 totalRating += vertex . mRating ;
400 conjunctions . emplace_back (
401 carl :: FormulaType :: IMPLIES ,
402 FormulaT (hyperplane , carl :: Relation :: LESS),
403 FormulaT (Poly( vertex . mRating ), carl :: Relation ::EQ)
404 );
405 const Rational coefficient { negated ? -vertex . mCoefficient : vertex .

mCoefficient };
406 conjunctions . emplace_back (
407 carl :: FormulaType :: IMPLIES ,
408 FormulaT (hyperplane , carl :: Relation ::EQ),
409 FormulaT (
410 carl :: FormulaType ::AND ,
411 FormulaT (
412 carl :: FormulaType :: IMPLIES ,
413 signChangeFormula ,
414 FormulaT ( vertex . mRating + coefficient , carl :: Relation ::EQ)
415 ),
416 FormulaT (
417 carl :: FormulaType :: IMPLIES ,
418 signChangeFormula . negated (),
419 FormulaT ( vertex .mRating - coefficient , carl :: Relation ::EQ)
420 )
421 )
422 );
423 }
424
425 /// Create the strict /weak linear saparating hyperplane
426 bool positive {carl :: isPositive ( vertex . mCoefficient ) != negated };
427 disjunctions . emplace_back (
428 FormulaT (
429 carl :: FormulaType :: IMPLIES ,
430 positive ? signChangeFormula . negated () : signChangeFormula ,
431 FormulaT (hyperplane , Settings :: separatorType == SeparatorType ::

STRICT ? carl :: Relation :: LEQ : carl :: Relation :: LESS)
432 ). negated ()
433 );
434 conjunctions . emplace_back (
435 carl :: FormulaType :: IMPLIES ,
436 positive ? move( signChangeFormula ) : move( signChangeFormula . negated

()),
437 FormulaT (move( hyperplane ), carl :: Relation :: LEQ)
438 );
439 }
440 if ( Settings :: separatorType == SeparatorType :: WEAK)
441 conjunctions . emplace_back ( totalRating , carl :: Relation :: GREATER );
442 return FormulaT (
443 carl :: FormulaType ::AND ,
444 FormulaT (carl :: FormulaType ::OR , move( disjunctions )),



48 Appendix A. STropModule source code

445 FormulaT (carl :: FormulaType ::AND , move( conjunctions ))
446 );
447 }
448
449 template <class Settings >
450 inline void STropModule <Settings >:: propagateFormula (const FormulaT &

formula , bool assert )
451 {
452 if ( assert )
453 mLRASolver .add( formula );
454 else if ( formula . getType () == carl :: FormulaType :: AND)
455 {
456 auto iter{ mLRASolver . formulaBegin ()};
457 for (const auto& subformula : formula . subformulas ())
458 iter = mLRASolver . remove (std :: find(iter , mLRASolver . formulaEnd (),

subformula ));
459 }
460 else
461 mLRASolver . remove (std :: find( mLRASolver . formulaBegin (), mLRASolver .

formulaEnd (), formula ));
462 }
463 }
464
465 # include " Instantiation .h"



49

Appendix B.

CSplitModule source code

Listing B.1: Bimap.h
1 /**
2 * @file CSplitModule .h
3 * @author Ömer Sali <oemer.sali@rwth - aachen .de >
4 *
5 * @version 2018 -04 -04
6 * Created on 2017 -11 -01.
7 */
8
9 # pragma

10
11 # include <forward_list >
12 # include <set >
13
14 namespace smtrat
15 {
16 /**
17 * Container that stores expensive to construct objects and allows the
18 * fast lookup with respect to two independent keys within the objects .
19 */
20 template <class Class , typename KeyType , KeyType Class ::* FirstKey ,

KeyType Class ::* SecondKey >
21 class Bimap
22 {
23 public :
24 typedef std :: forward_list <Class > Data;
25 typedef typename Data :: iterator Iterator ;
26 typedef typename Data :: const_iterator ConstIterator ;
27
28 private :
29 /// Comparator that performs a heterogeneous lookup on the first key
30 struct FirstCompare
31 {
32 using is_transparent = void;
33
34 bool operator ()(const Iterator & lhs , const Iterator & rhs) const
35 {
36 return (* lhs).* FirstKey <(* rhs).* FirstKey ;
37 }
38
39 bool operator ()(const Iterator & lhs , const KeyType & rhs) const
40 {
41 return (* lhs).* FirstKey <rhs;
42 }
43
44 bool operator ()(const KeyType & lhs , const Iterator & rhs) const
45 {
46 return lhs <(* rhs).* FirstKey ;
47 }
48 };
49



50 Appendix B. CSplitModule source code

50 /// Comparator that performs a heterogeneous lookup on the second key
51 struct SecondCompare
52 {
53 using is_transparent = void;
54
55 bool operator ()(const Iterator & lhs , const Iterator & rhs) const
56 {
57 return (* lhs).* SecondKey <(* rhs).* SecondKey ;
58 }
59
60 bool operator ()(const Iterator & lhs , const KeyType & rhs) const
61 {
62 return (* lhs).* SecondKey <rhs;
63 }
64
65 bool operator ()(const KeyType & lhs , const Iterator & rhs) const
66 {
67 return lhs <(* rhs).* SecondKey ;
68 }
69 };
70
71 Data mData;
72 std ::set <Iterator , FirstCompare > mFirstMap ;
73 std ::set <Iterator , SecondCompare > mSecondMap ;
74
75 public :
76 Iterator begin () noexcept
77 {
78 return mData.begin ();
79 }
80
81 ConstIterator begin () const noexcept
82 {
83 return mData.begin ();
84 }
85
86 Iterator end () noexcept
87 {
88 return mData.end ();
89 }
90
91 ConstIterator end () const noexcept
92 {
93 return mData.end ();
94 }
95
96 Class& firstAt (const KeyType & firstKey )
97 {
98 return *(* mFirstMap .find( firstKey ));
99 }

100
101 Class& secondAt (const KeyType & secondKey )
102 {
103 return *(* mSecondMap .find( secondKey ));
104 }
105
106 Iterator firstFind (const KeyType & firstKey )
107 {
108 auto firstIter { mFirstMap .find( firstKey )};
109 if ( firstIter == mFirstMap .end ())
110 return mData.end ();
111 else
112 return * firstIter ;
113 }
114
115 Iterator secondFind (const KeyType & secondKey )
116 {
117 auto secondIter { mSecondMap .find( secondKey )};



51

118 if ( secondIter == mSecondMap .end ())
119 return mData.end ();
120 else
121 return * secondIter ;
122 }
123
124 template < typename ... Args >
125 Iterator emplace (Args &&... args)
126 {
127 mData. emplace_front (std :: move(args)...);
128 mFirstMap . emplace (mData.begin ());
129 mSecondMap . emplace (mData.begin ());
130 return mData.begin ();
131 }
132 };
133 }

Listing B.2: CSplitSettings.h
1 /**
2 * @file CSplitSettings .h
3 * @author Ömer Sali <oemer.sali@rwth - aachen .de >
4 *
5 * @version 2018 -04 -04
6 * Created on 2017 -11 -01.
7 */
8
9 # pragma

10
11 # include " ../../ solver / ModuleSettings .h"
12 # include " ../../ solver / Manager .h"
13 # include "../ SATModule / SATModule .h"
14 # include "../ LRAModule / LRAModule .h"
15
16 namespace smtrat
17 {
18 struct CSplitSettings1
19 {
20 /// Name of the Module
21 static constexpr auto moduleName = " CSplitModule < CSplitSettings1 >";
22 /// Limit size for the domain of variables that need to be expanded
23 static constexpr size_t maxDomainSize = 32;
24 /// Base number 2 <= expansionBase <= maxDomainSize for the expansion
25 static constexpr size_t expansionBase = 32;
26 /// Common denominator for the discretization of rational variables
27 static constexpr size_t discrDenom = 16;
28 /// Maximum number of iterations before returning unknown (0 =

infinite )
29 static constexpr size_t maxIter = 50;
30 /// Radius of initial variable domains
31 static constexpr size_t initialRadius = 1;
32 /// Threshold radius to
33 /// - start exponential bloating of variables used for case splits
34 /// - activate full domains of variables not used for case splits
35 static constexpr size_t thresholdRadius = 3;
36 /// Maximal radius of domain that still gets bloated (0 = infinite )
37 static constexpr size_t maximalRadius = 300;
38 /// Maximal number of bounds to bloat in one iteration (0 = infinite )
39 static constexpr size_t maxBloatedDomains = 3;
40 /// Linear integer arithmetic module to call for the linearized

formula
41 struct LIASolver : public Manager
42 {
43 LIASolver () : Manager ()
44 {
45 setStrategy ({
46 addBackend <SATModule < SATSettings1 >>({



52 Appendix B. CSplitModule source code

47 addBackend <LRAModule < LRASettings1 >>()
48 })
49 });
50 }
51 };
52 };
53 }

Listing B.3: CSplitModule.h
1 /**
2 * @file CSplitModule .h
3 * @author Ömer Sali <oemer.sali@rwth - aachen .de >
4 *
5 * @version 2018 -04 -04
6 * Created on 2017 -11 -01.
7 */
8
9 # pragma once

10
11 # include " ../../ datastructures / VariableBounds .h"
12 # include " ../../ solver / Module .h"
13 # include "Bimap.h"
14 # include " CSplitStatistics .h"
15 # include " CSplitSettings .h"
16
17 namespace smtrat
18 {
19 template < typename Settings >
20 class CSplitModule : public Module
21 {
22 private :
23 #ifdef SMTRAT_DEVOPTION_Statistics
24 CSplitStatistics mStatistics ;
25 #endif
26 /**
27 * Represents the substitution variables of a nonlinear monomial
28 * in a positional notation to the basis Settings :: expansionBase .
29 */
30 struct Purification
31 {
32 /// Variable sequence used for the virtual positional notation
33 std :: vector <carl :: Variable > mSubstitutions ;
34 /// Variable that is eliminated from the monomial during reduction
35 carl :: Variable mReduction ;
36 /// Number of active constraints in which the monomial is included
37 size_t mUsage ;
38 /// Flag that indicates whether this purification is used for

linearization
39 bool mActive ;
40
41 Purification ()
42 : mSubstitutions ()
43 , mReduction (carl :: Variable :: NO_VARIABLE )
44 , mUsage (0)
45 , mActive (false)
46 {
47 mSubstitutions . emplace_back (carl :: freshIntegerVariable ());
48 }
49 };
50
51 /// Maps a monomial to its purification information
52 std ::map <carl :: Monomial ::Arg , Purification > mPurifications ;
53
54 /// Subdivides the size of a variable domain into three classes :
55 /// - SMALL , if domain size <= Settings :: maxDomainSize
56 /// - LARGE , if Settings :: maxDomainSize < domain size < infinity



53

57 /// - UNBOUNDED , if domain size = infinity
58 enum class DomainSize {SMALL = 0, LARGE = 1, UNBOUNDED = 2};
59
60 /**
61 * Represents the quotients and remainders of a variable in
62 * a positional notation to the basis Settings :: expansionBase .
63 */
64 struct Expansion
65 {
66 /// Original variable to which this expansion is dedicated to and

its discrete substitute
67 const carl :: Variable mRationalization , mDiscretization ;
68 /// Center point of the domain where the search starts
69 Rational mNucleus ;
70 /// Size of the maximal domain
71 DomainSize mMaximalDomainSize ;
72 /// Maximal domain deduced from received constraints and the

currently active domain
73 RationalInterval mMaximalDomain , mActiveDomain ;
74 /// Sequences of quotients and remainders used for the virtual

positional notation
75 std :: vector <carl :: Variable > mQuotients , mRemainders ;
76 /// Active purifications of monomials that contain the

rationalization variable
77 std :: vector < Purification *> mPurifications ;
78 /// Flag that indicates whether the variable bounds changed since

last check call
79 bool mChangedBounds ;
80
81 Expansion (const carl :: Variable & rationalization )
82 : mRationalization ( rationalization )
83 , mDiscretization ( rationalization .type () == carl :: VariableType ::

VT_INT ? rationalization : carl :: freshIntegerVariable ())
84 , mNucleus ( ZERO_RATIONAL )
85 , mMaximalDomainSize ( DomainSize :: UNBOUNDED )
86 , mMaximalDomain ( RationalInterval :: unboundedInterval ())
87 , mActiveDomain ( RationalInterval :: emptyInterval ())
88 , mChangedBounds (false)
89 {
90 mQuotients . emplace_back ( mDiscretization );
91 }
92 };
93
94 Bimap <Expansion , const carl :: Variable , & Expansion :: mRationalization ,

& Expansion :: mDiscretization > mExpansions ;
95
96 /**
97 * Represents the class of all original constraints with the same
98 * left hand side after a normalization . Here , the set of all

received
99 * relations of constraints with the same left hand side is stored .

100 */
101 struct Linearization
102 {
103 /// Normalization of the original constraint to which this

linearization is dedicated to
104 const Poly mNormalization , mLinearization ;
105 /// Flag that indicates a sign change between the leading

coefficient of normalization and linearization
106 const bool mParity ;
107 /// Purifications of the original nonlinear monomials
108 const std :: vector < Purification *> mPurifications ;
109 /// Flag that indicates whether the original constraint contains

real variables
110 const bool mHasRealVariables ;
111 /// Relations of constraints with the same left hand side
112 std :: unordered_set <carl :: Relation > mRelations ;
113



54 Appendix B. CSplitModule source code

114 Linearization (const Poly& normalization , const Poly& linearization ,
std :: vector < Purification *>&& purifications , bool
hasRealVariables )

115 : mNormalization ( normalization )
116 , mLinearization ( linearization . normalize ())
117 , mParity (carl :: isNegative ( linearization . lcoeff ()))
118 , mPurifications (std :: move( purifications ))
119 , mHasRealVariables (std :: move( hasRealVariables ))
120 {}
121 };
122
123 Bimap < Linearization , const Poly , & Linearization :: mNormalization , &

Linearization :: mLinearization > mLinearizations ;
124
125 /// Helper class that extracts the variable domains
126 vb:: VariableBounds <FormulaT > mVariableBounds ;
127 /// Stores the last model for the linearization that was found by the

LIA solver
128 Model mLIAModel ;
129 /// Stores whether the last consistency check was done by the

backends
130 bool mCheckedWithBackends ;
131 /// Handle to the linear integer arithmetic module
132 typename Settings :: LIASolver mLIASolver ;
133
134 public :
135 typedef Settings SettingsType ;
136
137 std :: string moduleName () const
138 {
139 return SettingsType :: moduleName ;
140 }
141
142 CSplitModule (const ModuleInput * _formula , RuntimeSettings * _settings ,

Conditionals & _conditionals , Manager * _manager = nullptr );
143
144 /**
145 * The module has to take the given sub - formula of the received

formula into account .
146 * @param _subformula The sub - formula to take additionally into

account .
147 * @return False , if it can be easily decided that this sub - formula

causes a conflict with
148 * the already considered sub - formulas ;
149 * True , otherwise .
150 */
151 bool addCore ( ModuleInput :: const_iterator _subformula );
152
153 /**
154 * Removes the subformula of the received formula at the given

position to the considered ones of this module .
155 * Note that this includes every stored calculation which depended on

this subformula , but should keep the other
156 * stored calculation , if possible , untouched .
157 * @param _subformula The position of the subformula to remove .
158 */
159 void removeCore ( ModuleInput :: const_iterator _subformula );
160
161 /**
162 * Updates the current assignment into the model.
163 * Note , that this is a unique but possibly symbolic assignment maybe

containing newly introduced variables .
164 */
165 void updateModel () const;
166
167 /**
168 * Checks the received formula for consistency .
169 * @return SAT , if the received formula is satisfiable ;



55

170 * UNSAT , if the received formula is not satisfiable ;
171 * UNKNOWN , otherwise .
172 */
173 Answer checkCore ();
174
175 private :
176 /**
177 * Resets all expansions to the center points of the variable domains

and
178 * constructs a new tree of reductions for the currently active

monomials .
179 * @return True , if there exists a maximal domain with no integral

points ;
180 * False , otherwise .
181 */
182 bool resetExpansions ();
183
184 /**
185 * Bloats the active domains of a subset of variables that are part

of the LIA solvers
186 * infeasible subset , and indicates if no active domain could be

bloated , because the
187 * maximal domain of all variables were reached .
188 * @param LIAConflict Infeasible subset of the LIA solver
189 * @return True , if no active domain was bloated ;
190 * False , otherwise .
191 */
192 bool bloatDomains (const FormulaSetT & LIAConflict );
193
194 /**
195 * Analyzes the infeasible subset of the LIA solver and constructs an

infeasible
196 * subset of the received constraints . The unsatisfiability cannot be

deduced if
197 * the corresponding original constraints contain real valued

variables .
198 * @param LIAConflict Infeasible subset of the LIA solver
199 * @return UNSAT , if an infeasible subset of the received

constraints could be constructed ;
200 * UNKNOWN , otherwise .
201 */
202 Answer analyzeConflict (const FormulaSetT & LIAConflict );
203
204 /**
205 * Changes the active domain of a variable and adapts its positional

notation
206 * to the basis Settings :: expansionBase .
207 * @param expansion Expansion data structure thats keeps all needed

informations .
208 * @param domain The new domain that shall be active afterwards . Note

, that the new
209 * domain has to contain the currently active interval .
210 */
211 void changeActiveDomain ( Expansion & expansion , RationalInterval &&

domain );
212
213 /**
214 * Asserts / Removes the given formula to/from the LIA solver .
215 * @param formula The formula to assert / remove to the LIA solver .
216 * @param assert True , if formula shall be asserted ;
217 * False , if formula shall be removed .
218 */
219 inline void propagateFormula (const FormulaT & formula , bool assert );
220 };
221 }

Listing B.4: CSplitModule.cpp



56 Appendix B. CSplitModule source code

1 /**
2 * @file CSplitModule .cpp
3 * @author Ömer Sali <oemer.sali@rwth - aachen .de >
4 *
5 * @version 2018 -04 -04
6 * Created on 2017 -11 -01.
7 */
8
9 # include " CSplitModule .h"

10
11 namespace smtrat
12 {
13 template <class Settings >
14 CSplitModule <Settings >:: CSplitModule (const ModuleInput * _formula ,

RuntimeSettings *, Conditionals & _conditionals , Manager * _manager )
15 : Module ( _formula , _conditionals , _manager )
16 , mPurifications ()
17 , mExpansions ()
18 , mLinearizations ()
19 , mVariableBounds ()
20 , mLIAModel ()
21 , mCheckedWithBackends (false)
22 #ifdef SMTRAT_DEVOPTION_Statistics
23 , mStatistics ( Settings :: moduleName )
24 #endif
25 {}
26
27 template <class Settings >
28 bool CSplitModule <Settings >:: addCore ( ModuleInput :: const_iterator

_subformula )
29 {
30 addReceivedSubformulaToPassedFormula ( _subformula );
31 const FormulaT & formula { _subformula -> formula ()};
32 if ( formula . getType () == carl :: FormulaType :: FALSE)
33 mInfeasibleSubsets . push_back ({ formula });
34 else if ( formula . isBound ())
35 {
36 /// Update the variable domain with the asserted bound
37 mVariableBounds . addBound (formula , formula );
38 const carl :: Variable & variable {* formula . variables ().begin ()};
39 auto expansionIter { mExpansions . firstFind ( variable )};
40 if ( expansionIter == mExpansions .end ())
41 expansionIter = mExpansions . emplace ( variable );
42 expansionIter -> mChangedBounds = true;
43 if ( mVariableBounds . isConflicting ())
44 mInfeasibleSubsets . emplace_back ( mVariableBounds . getConflict ());
45 }
46 else if ( formula . getType () == carl :: FormulaType :: CONSTRAINT )
47 {
48 /// Normalize the left hand side of the constraint and turn the

relation accordingly
49 const ConstraintT & constraint { formula . constraint ()};
50 const Poly normalization { constraint .lhs (). normalize ()};
51 carl :: Relation relation { constraint . relation ()};
52 if (carl :: isNegative ( constraint .lhs (). lcoeff ()))
53 relation = carl :: turnAroundRelation ( relation );
54
55 /// Purifiy and discretize the normalized left hand side to construct

the linearization
56 auto linearizationIter { mLinearizations . firstFind ( normalization )};
57 if ( linearizationIter == mLinearizations .end ())
58 {
59 Poly discretization ;
60 std :: vector < Purification *> purifications ;
61 bool hasRealVariables {false };
62 for (TermT term : normalization )
63 {



57

64 if (! term. isConstant ())
65 {
66 size_t realVariables {0};
67 for (const auto& exponent : term. monomial () ->exponents ())
68 if ( exponent .first.type () == carl :: VariableType :: VT_REAL )
69 realVariables += exponent . second ;
70 if ( realVariables )
71 {
72 term.coeff () /= carl :: pow( Rational ( Settings :: discrDenom ),

realVariables );
73 hasRealVariables = true;
74 }
75
76 if (! term. isLinear ())
77 {
78 Purification & purification { mPurifications [term. monomial () ]};
79 purifications . emplace_back (& purification );
80 term = term.coeff ()* purification . mSubstitutions [0];
81 }
82 else if ( realVariables )
83 {
84 const carl :: Variable variable {term. getSingleVariable ()};
85 auto expansionIter { mExpansions . firstFind ( variable )};
86 if ( expansionIter == mExpansions .end ())
87 expansionIter = mExpansions . emplace ( variable );
88 term = term.coeff ()* expansionIter -> mQuotients [0];
89 }
90 }
91 discretization += term;
92 }
93 linearizationIter = mLinearizations . emplace ( normalization ,

discretization , std :: move( purifications ), hasRealVariables );
94 }
95 Linearization & linearization {* linearizationIter };
96 propagateFormula ( FormulaT ( linearization . mLinearization , linearization

. mParity ? carl :: turnAroundRelation ( relation ) : relation ), true);
97 if ( linearization . mRelations .empty ())
98 for ( Purification * purification : linearization . mPurifications )
99 ++ purification -> mUsage ;

100 linearization . mRelations . emplace ( relation );
101
102 /// Check if the asserted relation trivially conflicts with other

asserted relations
103 switch ( relation )
104 {
105 case carl :: Relation ::EQ:
106 if ( linearization . mRelations .count(carl :: Relation :: NEQ))
107 mInfeasibleSubsets . push_back ({
108 FormulaT ( normalization , carl :: Relation ::EQ),
109 FormulaT ( normalization , carl :: Relation :: NEQ)
110 });
111 if ( linearization . mRelations .count(carl :: Relation :: LESS))
112 mInfeasibleSubsets . push_back ({
113 FormulaT ( normalization , carl :: Relation ::EQ),
114 FormulaT ( normalization , carl :: Relation :: LESS)
115 });
116 if ( linearization . mRelations .count(carl :: Relation :: GREATER ))
117 mInfeasibleSubsets . push_back ({
118 FormulaT ( normalization , carl :: Relation ::EQ),
119 FormulaT ( normalization , carl :: Relation :: GREATER )
120 });
121 break;
122 case carl :: Relation :: NEQ:
123 if ( linearization . mRelations .count(carl :: Relation ::EQ))
124 mInfeasibleSubsets . push_back ({
125 FormulaT ( normalization , carl :: Relation :: NEQ),
126 FormulaT ( normalization , carl :: Relation ::EQ)



58 Appendix B. CSplitModule source code

127 });
128 break;
129 case carl :: Relation :: LESS:
130 if ( linearization . mRelations .count(carl :: Relation ::EQ))
131 mInfeasibleSubsets . push_back ({
132 FormulaT ( normalization , carl :: Relation :: LESS),
133 FormulaT ( normalization , carl :: Relation ::EQ)
134 });
135 if ( linearization . mRelations .count(carl :: Relation :: GEQ))
136 mInfeasibleSubsets . push_back ({
137 FormulaT ( normalization , carl :: Relation :: LESS),
138 FormulaT ( normalization , carl :: Relation :: GEQ)
139 });
140 case carl :: Relation :: LEQ:
141 if ( linearization . mRelations .count(carl :: Relation :: GREATER ))
142 mInfeasibleSubsets . push_back ({
143 FormulaT ( normalization , relation ),
144 FormulaT ( normalization , carl :: Relation :: GREATER )
145 });
146 break;
147 case carl :: Relation :: GREATER :
148 if ( linearization . mRelations .count(carl :: Relation ::EQ))
149 mInfeasibleSubsets . push_back ({
150 FormulaT ( normalization , carl :: Relation :: GREATER ),
151 FormulaT ( normalization , carl :: Relation ::EQ)
152 });
153 if ( linearization . mRelations .count(carl :: Relation :: LEQ))
154 mInfeasibleSubsets . push_back ({
155 FormulaT ( normalization , carl :: Relation :: GREATER ),
156 FormulaT ( normalization , carl :: Relation :: LEQ)
157 });
158 case carl :: Relation :: GEQ:
159 if ( linearization . mRelations .count(carl :: Relation :: LESS))
160 mInfeasibleSubsets . push_back ({
161 FormulaT ( normalization , relation ),
162 FormulaT ( normalization , carl :: Relation :: LESS)
163 });
164 break;
165 default :
166 assert (false);
167 }
168 }
169 return mInfeasibleSubsets .empty ();
170 }
171
172 template <class Settings >
173 void CSplitModule <Settings >:: removeCore ( ModuleInput :: const_iterator

_subformula )
174 {
175 const FormulaT & formula { _subformula -> formula ()};
176 if ( formula . isBound ())
177 {
178 /// Update the variable domain with the removed bound
179 mVariableBounds . removeBound (formula , formula );
180 mExpansions . firstAt (* formula . variables ().begin ()). mChangedBounds =

true;
181 }
182 else if ( formula . getType () == carl :: FormulaType :: CONSTRAINT )
183 {
184 /// Normalize the left hand side of the constraint and turn the

relation accordingly
185 const ConstraintT & constraint { formula . constraint ()};
186 const Poly normalization { constraint .lhs (). normalize ()};
187 carl :: Relation relation { constraint . relation ()};
188 if (carl :: isNegative ( constraint .lhs (). lcoeff ()))
189 relation = carl :: turnAroundRelation ( relation );
190



59

191 /// Retrieve the normalized constraint and mark the separator object
as changed

192 Linearization & linearization { mLinearizations . firstAt ( normalization )};
193 propagateFormula ( FormulaT ( linearization . mLinearization , linearization

. mParity ? carl :: turnAroundRelation ( relation ) : relation ), false);
194 linearization . mRelations .erase( relation );
195 if ( linearization . mRelations .empty ())
196 for ( Purification * purification : linearization . mPurifications )
197 ++ purification -> mUsage ;
198 }
199 }
200
201 template <class Settings >
202 void CSplitModule <Settings >:: updateModel () const
203 {
204 if(! mModelComputed )
205 {
206 clearModel ();
207 if ( mCheckedWithBackends )
208 {
209 getBackendsModel ();
210 excludeNotReceivedVariablesFromModel ();
211 }
212 else
213 {
214 for (const Expansion & expansion : mExpansions )
215 if ( receivedVariable ( expansion . mRationalization ))
216 {
217 Rational value{ mLIAModel .at( expansion . mDiscretization ). asRational

()};
218 if ( expansion . mRationalization .type () == carl :: VariableType ::

VT_REAL )
219 value /= Settings :: discrDenom ;
220 mModel . emplace ( expansion . mRationalization , value);
221 }
222 }
223 mModelComputed = true;
224 }
225 }
226
227 template <class Settings >
228 Answer CSplitModule <Settings >:: checkCore ()
229 {
230 /// Report unsatisfiability if the already found conflicts are still

unresolved
231 if (! mInfeasibleSubsets .empty ())
232 return Answer :: UNSAT;
233
234 /// Apply the method only if the asserted formula is not trivially

undecidable
235 if ( rReceivedFormula (). isConstraintConjunction ())
236 {
237 Answer answer { Answer :: UNKNOWN };
238
239 mLIASolver .push ();
240 if ( resetExpansions ())
241 {
242 Answer LIAAnswer { Answer :: UNSAT };
243 for ( size_t i = 1; LIAAnswer == Answer :: UNSAT && (! Settings :: maxIter

|| i <= Settings :: maxIter ); ++i)
244 {
245 LIAAnswer = mLIASolver .check(true);
246 if ( LIAAnswer == Answer :: SAT)
247 {
248 mLIAModel = mLIASolver .model ();
249 answer = Answer :: SAT;
250 }



60 Appendix B. CSplitModule source code

251 else if ( LIAAnswer == Answer :: UNSAT)
252 {
253 FormulaSetT LIAConflict { mLIASolver . infeasibleSubsets () [0]};
254 if ( bloatDomains ( LIAConflict ))
255 {
256 LIAAnswer = Answer :: UNKNOWN ;
257 answer = analyzeConflict ( LIAConflict );
258 }
259 }
260 }
261 }
262 mLIASolver .pop ();
263
264 if ( answer != Answer :: UNKNOWN )
265 {
266 mCheckedWithBackends = false;
267 return answer ;
268 }
269 }
270
271 /// Check the asserted formula with the backends
272 mCheckedWithBackends = true;
273 Answer answer { runBackends ()};
274 if ( answer == Answer :: UNSAT)
275 getInfeasibleSubsets ();
276
277 return answer ;
278 }
279
280 template <class Settings >
281 bool CSplitModule <Settings >:: resetExpansions ()
282 {
283 /// Update the variable domains and watch out for discretization

conflicts
284 for ( Expansion & expansion : mExpansions )
285 {
286 RationalInterval & maximalDomain { expansion . mMaximalDomain };
287 if ( expansion . mChangedBounds )
288 {
289 maximalDomain = mVariableBounds . getInterval ( expansion .

mRationalization );
290 if ( expansion . mRationalization .type () == carl :: VariableType :: VT_REAL

)
291 maximalDomain *= Rational ( Settings :: discrDenom );
292 maximalDomain . integralPart_assign ();
293 if ( expansion . mMaximalDomain . isUnbounded ())
294 expansion . mMaximalDomainSize = DomainSize :: UNBOUNDED ;
295 else if ( expansion . mMaximalDomain . diameter () > Settings ::

maxDomainSize )
296 expansion . mMaximalDomainSize = DomainSize :: LARGE;
297 else
298 expansion . mMaximalDomainSize = DomainSize :: SMALL;
299 expansion . mChangedBounds = false;
300 }
301 if ( maximalDomain . isEmpty ())
302 return false;
303 expansion . mActiveDomain = RationalInterval :: emptyInterval ();
304 expansion . mPurifications .clear ();
305 }
306
307 /// Activate all used purifications bottom -up
308 for (auto purificationIter = mPurifications .begin (); purificationIter

!= mPurifications .end (); ++ purificationIter )
309 {
310 Purification & purification { purificationIter -> second };
311 if ( purification . mUsage )
312 {
313 carl :: Monomial :: Arg monomial { purificationIter ->first };



61

314
315 /// Find set of variables with maximal domain size
316 carl :: Variables maxVariables ;
317 DomainSize maxDomainSize { DomainSize :: SMALL };
318 for (const auto& exponent : monomial -> exponents ())
319 {
320 const carl :: Variable & variable { exponent .first };
321 auto expansionIter { mExpansions . firstFind ( variable )};
322 if ( expansionIter == mExpansions .end ())
323 expansionIter = mExpansions . emplace ( variable );
324 Expansion & expansion {* expansionIter };
325
326 if ( maxDomainSize <= expansion . mMaximalDomainSize )
327 {
328 if ( maxDomainSize < expansion . mMaximalDomainSize )
329 {
330 maxVariables .clear ();
331 maxDomainSize = expansion . mMaximalDomainSize ;
332 }
333 maxVariables . emplace ( variable );
334 }
335 }
336
337 /// Find a locally optimal reduction for the monomial
338 const auto isReducible = [&]( const auto& purificationsEntry ) {
339 return purificationsEntry . second . mActive
340 && monomial -> divisible ( purificationsEntry .first)
341 && std :: any_of (
342 maxVariables .begin (),
343 maxVariables .end (),
344 [&]( const carl :: Variable & variable ) {
345 return purificationsEntry .first ->has( variable );
346 }
347 );
348 };
349 auto reductionIter {std :: find_if (std :: make_reverse_iterator (

purificationIter ), mPurifications .rend (), isReducible )};
350
351 /// Activate the sequence of reductions top -down
352 carl :: Monomial :: Arg guidance ;
353 if ( reductionIter == mPurifications .rend ())
354 monomial -> divide (* maxVariables .begin (), guidance );
355 else
356 monomial -> divide ( reductionIter ->first , guidance );
357 auto hintIter { purificationIter };
358 for (const auto& exponentPair : guidance -> exponents ())
359 {
360 const carl :: Variable & variable { exponentPair .first };
361 Expansion & expansion { mExpansions . firstAt ( variable )};
362 for (carl :: exponent exponent = 1; exponent <= exponentPair . second ;

++ exponent )
363 {
364 hintIter -> second . mActive = true;
365 expansion . mPurifications . emplace_back (& hintIter -> second );
366 monomial -> divide (variable , monomial );
367 if (monomial -> isAtMostLinear ())
368 hintIter -> second . mReduction = mExpansions . firstAt (monomial ->

getSingleVariable ()). mQuotients [0];
369 else
370 {
371 auto temp{ mPurifications . emplace_hint (hintIter , std ::

piecewise_construct , std :: make_tuple ( monomial ), std ::
make_tuple ())};

372 hintIter -> second . mReduction = temp -> second . mSubstitutions [0];
373 hintIter = temp;
374 }
375 }



62 Appendix B. CSplitModule source code

376 }
377 }
378 else
379 purification . mActive = false;
380 }
381
382 /// Activate expansions that are used for case splits and deactivate

them otherwise
383 for ( Expansion & expansion : mExpansions )
384 {
385 /// Calculate the center point where the initial domain is located
386 expansion . mNucleus = ZERO_RATIONAL ;
387 if ( expansion . mMaximalDomain . lowerBoundType () != carl :: BoundType ::

INFTY
388 && expansion . mNucleus < expansion . mMaximalDomain .lower ())
389 expansion . mNucleus = expansion . mMaximalDomain .lower ();
390 else if ( expansion . mMaximalDomain . upperBoundType () != carl :: BoundType

:: INFTY
391 && expansion . mNucleus > expansion . mMaximalDomain .upper ())
392 expansion . mNucleus = expansion . mMaximalDomain .upper ();
393
394 /// Calculate and activate the corresponding domain
395 RationalInterval domain (0, 1);
396 domain . mul_assign ( Rational ( Settings :: initialRadius ));
397 domain . add_assign ( expansion . mNucleus );
398 domain . intersect_assign ( expansion . mMaximalDomain );
399 changeActiveDomain (expansion , std :: move( domain ));
400 }
401
402 return true;
403 }
404
405 template <class Settings >
406 bool CSplitModule <Settings >:: bloatDomains (const FormulaSetT &

LIAConflict )
407 {
408 /// Data structure for potential bloating candidates
409 struct Candidate
410 {
411 Expansion & mExpansion ;
412 const Rational mDirection ;
413 const Rational mRadius ;
414
415 Candidate ( Expansion & expansion , Rational && direction , Rational &&

radius )
416 : mExpansion ( expansion )
417 , mDirection (std :: move( direction ))
418 , mRadius (std :: move( radius ))
419 {}
420
421 bool operator <( const Candidate & rhs) const
422 {
423 if ( mDirection *rhs. mDirection == ONE_RATIONAL )
424 return mRadius < rhs. mRadius ;
425 else if ( mDirection == ONE_RATIONAL )
426 return mRadius < Rational ( Settings :: thresholdRadius );
427 else
428 return rhs. mRadius >= Rational ( Settings :: thresholdRadius );
429 }
430 };
431 std ::set <Candidate > candidates ;
432
433 /// Scan the infeasible subset of the LIA solver for potential

candidates
434 for (const FormulaT & formula : LIAConflict )
435 if ( formula . isBound ())
436 {
437 const ConstraintT & constraint { formula . constraint ()};



63

438 const carl :: Variable & variable {* constraint . variables ().begin ()};
439 auto expansionIter { mExpansions . secondFind ( variable )};
440 if ( expansionIter != mExpansions .end ())
441 {
442 Expansion & expansion {* expansionIter };
443 Rational direction ;
444 if ( constraint . isLowerBound ()
445 && ( expansion . mMaximalDomain . lowerBoundType () == carl :: BoundType ::

INFTY
446 || expansion . mMaximalDomain .lower () < expansion . mActiveDomain .

lower ()))
447 direction = MINUS_ONE_RATIONAL ;
448 else if ( constraint . isUpperBound ()
449 && ( expansion . mMaximalDomain . upperBoundType () == carl :: BoundType ::

INFTY
450 || expansion . mMaximalDomain .upper () > expansion . mActiveDomain .

upper ()))
451 direction = ONE_RATIONAL ;
452 if ( direction != ZERO_RATIONAL )
453 {
454 Rational radius {( direction *( expansion . mActiveDomain - expansion .

mNucleus )).upper ()};
455
456 if (! Settings :: maximalRadius
457 || radius <= Settings :: maximalRadius )
458 {
459 candidates . emplace (expansion , std :: move( direction ), std :: move(

radius ));
460 if ( Settings :: maxBloatedDomains
461 && candidates .size () > Settings :: maxBloatedDomains )
462 candidates .erase(std :: prev( candidates .end ()));
463 }
464 }
465 }
466 }
467
468 /// Change the active domain of the candidates with highest priority
469 for (const Candidate & candidate : candidates )
470 {
471 RationalInterval domain ;
472 if ( candidate . mRadius <= Settings :: thresholdRadius )
473 domain = RationalInterval (0, ONE_RATIONAL );
474 else if ( candidate . mExpansion . mPurifications .empty ())
475 domain = RationalInterval (0, carl :: BoundType ::WEAK , 0, carl ::

BoundType :: INFTY);
476 else
477 domain = RationalInterval (0, candidate . mRadius );
478 domain . mul_assign ( candidate . mDirection );
479 domain . add_assign ( candidate . mExpansion . mActiveDomain );
480 domain . intersect_assign ( candidate . mExpansion . mMaximalDomain );
481 changeActiveDomain ( candidate .mExpansion , std :: move( domain ));
482 }
483
484 /// Report if any variable domain was bloated
485 return candidates .empty ();
486 }
487
488 template <class Settings >
489 Answer CSplitModule <Settings >:: analyzeConflict (const FormulaSetT &

LIAConflict )
490 {
491 /// Construct an infeasible subset from the LIA conflict
492 FormulaSetT conflict ;
493 for (const FormulaT & formula : LIAConflict )
494 {
495 if ( formula . isBound ())
496 {



64 Appendix B. CSplitModule source code

497 auto expansionIter { mExpansions . secondFind (* formula . variables ().begin
())};

498 if ( expansionIter != mExpansions .end ())
499 {
500 const Expansion & expansion {* expansionIter };
501 if ( expansion . mRationalization .type () == carl :: VariableType ::

VT_REAL
502 || expansion . mMaximalDomain != expansion . mActiveDomain )
503 return Answer :: UNKNOWN ;
504 else
505 {
506 FormulaSetT boundOrigins { mVariableBounds . getOriginSetOfBounds (

expansion . mRationalization )};
507 conflict . insert ( boundOrigins .begin (), boundOrigins .end ());
508 }
509 }
510 }
511 else if ( formula . getType () == carl :: FormulaType :: CONSTRAINT )
512 {
513 const ConstraintT & constraint { formula . constraint ()};
514 auto linearizationIter { mLinearizations . secondFind ( constraint .lhs ().

normalize ())};
515 if ( linearizationIter != mLinearizations .end ())
516 {
517 const Linearization & linearization {* linearizationIter };
518 if ( linearization . mHasRealVariables )
519 return Answer :: UNKNOWN ;
520 else
521 {
522 carl :: Relation relation { constraint . relation ()};
523 if (carl :: isNegative ( constraint .lhs (). lcoeff ()) != linearization .

mParity )
524 relation = carl :: turnAroundRelation ( relation );
525 conflict . emplace ( linearization . mNormalization , relation );
526 }
527 }
528 }
529 }
530
531 mInfeasibleSubsets . emplace_back (std :: move( conflict ));
532 return Answer :: UNSAT;
533 }
534
535 template <class Settings >
536 void CSplitModule <Settings >:: changeActiveDomain ( Expansion & expansion ,

RationalInterval && domain )
537 {
538 RationalInterval activeDomain {move( expansion . mActiveDomain )};
539 expansion . mActiveDomain = domain ;
540
541 /// Update the variable bounds
542 if (! activeDomain . isEmpty ())
543 {
544 if ( activeDomain . lowerBoundType () != carl :: BoundType :: INFTY
545 && ( domain . lowerBoundType () == carl :: BoundType :: INFTY
546 || domain .lower () != activeDomain .lower ()
547 || domain . isEmpty ()))
548 propagateFormula ( FormulaT ( expansion . mQuotients [0]- Poly( activeDomain .

lower ()), carl :: Relation :: GEQ), false);
549 if ( activeDomain . upperBoundType () != carl :: BoundType :: INFTY
550 && ( domain . upperBoundType () == carl :: BoundType :: INFTY
551 || domain .upper () != activeDomain .upper ()
552 || domain . isEmpty ()))
553 propagateFormula ( FormulaT ( expansion . mQuotients [0]- Poly( activeDomain .

upper ()), carl :: Relation :: LEQ), false);
554 }
555 if (! domain . isEmpty ())



65

556 {
557 if ( domain . lowerBoundType () != carl :: BoundType :: INFTY
558 && ( activeDomain . lowerBoundType () == carl :: BoundType :: INFTY
559 || activeDomain .lower () != domain .lower ()
560 || activeDomain . isEmpty ()))
561 propagateFormula ( FormulaT ( expansion . mQuotients [0]- Poly( domain .lower

()), carl :: Relation :: GEQ), true);
562 if ( domain . upperBoundType () != carl :: BoundType :: INFTY
563 && ( activeDomain . upperBoundType () == carl :: BoundType :: INFTY
564 || activeDomain .upper () != domain .upper ()
565 || activeDomain . isEmpty ()))
566 propagateFormula ( FormulaT ( expansion . mQuotients [0]- Poly( domain .upper

()), carl :: Relation :: LEQ), true);
567 }
568
569 /// Check if the digits of the expansion need to be encoded
570 if ( expansion . mPurifications .empty ())
571 {
572 activeDomain = RationalInterval :: emptyInterval ();
573 domain = RationalInterval :: emptyInterval ();
574 }
575
576 /// Update the case splits of the corresponding digits
577 for ( size_t i = 0; activeDomain != domain ; ++i)
578 {
579 if ( domain . diameter () <= Settings :: maxDomainSize )
580 {
581 /// Update the currently active linear encoding
582 Rational lower{ activeDomain . isEmpty () ? domain .lower () :

activeDomain .lower ()};
583 Rational upper{ activeDomain . isEmpty () ? domain .lower () :

activeDomain .upper ()+ ONE_RATIONAL };
584 for (const Purification * purification : expansion . mPurifications )
585 {
586 for ( Rational alpha = domain .lower (); alpha < lower; ++ alpha)
587 propagateFormula (
588 FormulaT (
589 carl :: FormulaType :: IMPLIES ,
590 FormulaT (Poly( expansion . mQuotients [i])-Poly(alpha), carl ::

Relation ::EQ),
591 FormulaT (Poly( purification -> mSubstitutions [i])-Poly(alpha)*Poly(

purification -> mReduction ), carl :: Relation ::EQ)
592 ),
593 true
594 );
595 for ( Rational alpha = upper; alpha <= domain .upper (); ++ alpha)
596 propagateFormula (
597 FormulaT (
598 carl :: FormulaType :: IMPLIES ,
599 FormulaT (Poly( expansion . mQuotients [i])-Poly(alpha), carl ::

Relation ::EQ),
600 FormulaT (Poly( purification -> mSubstitutions [i])-Poly(alpha)*Poly(

purification -> mReduction ), carl :: Relation ::EQ)
601 ),
602 true
603 );
604 }
605 }
606 else if ( activeDomain . diameter () <= Settings :: maxDomainSize )
607 {
608 /// Switch from the linear to a logarithmic encoding
609 if ( expansion . mQuotients .size () <= i+1)
610 {
611 expansion . mQuotients . emplace_back (carl :: freshIntegerVariable ());
612 expansion . mRemainders . emplace_back (carl :: freshIntegerVariable ());
613 }
614 for ( Purification * purification : expansion . mPurifications )



66 Appendix B. CSplitModule source code

615 {
616 if ( purification -> mSubstitutions .size () <= i+1)
617 purification -> mSubstitutions . emplace_back (carl ::

freshIntegerVariable ());
618 for ( Rational alpha = activeDomain .lower (); alpha <= activeDomain .

upper (); ++ alpha)
619 propagateFormula (
620 FormulaT (
621 carl :: FormulaType :: IMPLIES ,
622 FormulaT (Poly( expansion . mQuotients [i])-Poly(alpha), carl ::

Relation ::EQ),
623 FormulaT (Poly( purification -> mSubstitutions [i])-Poly(alpha)*Poly(

purification -> mReduction ), carl :: Relation ::EQ)
624 ),
625 false
626 );
627 for ( Rational alpha = ZERO_RATIONAL ; alpha < Settings ::

expansionBase ; ++ alpha)
628 propagateFormula (
629 FormulaT (
630 carl :: FormulaType :: IMPLIES ,
631 FormulaT (Poly( expansion . mRemainders [i])-Poly(alpha), carl ::

Relation ::EQ),
632 FormulaT (Poly( purification -> mSubstitutions [i])-Poly( Settings ::

expansionBase )*Poly( purification -> mSubstitutions [i+1]) -Poly(
alpha)*Poly( purification -> mReduction ), carl :: Relation ::EQ)

633 ),
634 true
635 );
636 }
637 propagateFormula ( FormulaT (Poly( expansion . mQuotients [i])-Poly(

Settings :: expansionBase )*Poly( expansion . mQuotients [i+1]) -Poly(
expansion . mRemainders [i]), carl :: Relation ::EQ), true);

638 propagateFormula ( FormulaT (Poly( expansion . mRemainders [i]), carl ::
Relation :: GEQ), true);

639 propagateFormula ( FormulaT (Poly( expansion . mRemainders [i])-Poly(
Settings :: expansionBase -1) , carl :: Relation :: LEQ), true);

640 }
641
642 /// Calculate the domain of the next digit
643 if (! activeDomain . isEmpty ())
644 if ( activeDomain . diameter () <= Settings :: maxDomainSize )
645 activeDomain = RationalInterval :: emptyInterval ();
646 else
647 activeDomain = carl :: floor( activeDomain / Rational ( Settings ::

expansionBase ));
648 if (! domain . isEmpty ())
649 if ( domain . diameter () <= Settings :: maxDomainSize )
650 domain = RationalInterval :: emptyInterval ();
651 else
652 domain = carl :: floor( domain / Rational ( Settings :: expansionBase ));
653
654 /// Update the variable bounds of the next digit
655 if (! activeDomain . isEmpty ())
656 {
657 if ( domain . isEmpty () || domain .lower () != activeDomain .lower ())
658 propagateFormula ( FormulaT ( expansion . mQuotients [i+1]- Poly(

activeDomain .lower ()), carl :: Relation :: GEQ), false);
659 if ( domain . isEmpty () || domain .upper () != activeDomain .upper ())
660 propagateFormula ( FormulaT ( expansion . mQuotients [i+1]- Poly(

activeDomain .upper ()), carl :: Relation :: LEQ), false);
661 }
662 if (! domain . isEmpty ())
663 {
664 if ( activeDomain . isEmpty () || activeDomain .lower () != domain .lower ()

)
665 propagateFormula ( FormulaT ( expansion . mQuotients [i+1]- Poly( domain .



67

lower ()), carl :: Relation :: GEQ), true);
666 if ( activeDomain . isEmpty () || activeDomain .upper () != domain .upper ()

)
667 propagateFormula ( FormulaT ( expansion . mQuotients [i+1]- Poly( domain .

upper ()), carl :: Relation :: LEQ), true);
668 }
669 }
670 }
671
672 template <class Settings >
673 inline void CSplitModule <Settings >:: propagateFormula (const FormulaT &

formula , bool assert )
674 {
675 if ( assert )
676 mLIASolver .add( formula );
677 else
678 mLIASolver . remove (std :: find( mLIASolver . formulaBegin (), mLIASolver .

formulaEnd (), formula ));
679 }
680 }
681
682 # include " Instantiation .h"





Bibliography 69

Bibliography

[BFT16] C. Barrett, P. Fontaine, and C. Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). 2016. url: http://www.smt-lib.org.

[Bor+12] C. Borralleras et al. SAT Modulo Linear Arithmetic for Solving Polynomial
Constraints. In: Journal of Automated Reasoning 48 (2012), pp. 107–131. doi:
10.1007/s10817-010-9196-8.

[Bor+09] C. Borralleras et al. Solving Non-linear Polynomial Arithmetic via SAT Modulo
Linear Arithmetic. Ed. by R. A. Schmidt. 2009. doi: 10.1007/978-3-642-
02959-2.

[CS12] A. Cimatti and R. Sebastiani, eds. Theory and Applications of Satisfiability
Testing - SAT 2012. Vol. 7317. Lecture Notes in Computer Science. Springer,
2012. isbn: 978-3-642-31612-8. doi: 10.1007/978-3-642-31612-8_35.

[Cor+12] F. Corzilius et al. “SMT-RAT: An SMT-Compliant Nonlinear Real Arithmetic
Toolbox”. In: Theory and Applications of Satisfiability Testing - SAT 2012.
Ed. by A. Cimatti and R. Sebastiani. Vol. 7317. Lecture Notes in Computer
Science. Springer, 2012, pp. 442–448. isbn: 978-3-642-31612-8. doi: 10.1007/
978-3-642-31612-8_35.

[Fon+17] P. Fontaine et al. Subtropical Satisfiability. In: Computing Research Repository
abs/1706.09236 (2017). url: http://arxiv.org/abs/1706.09236.

[Hei+18] M. Heizmann et al. The Satisfiability Modulo Theories Competition (SMT-
COMP). 2018. url: http://www.smtcomp.org.

[HS18] H. Hong and T. Sturm. Positive Solutions of Systems of Signed Parametric
Polynomial Inequalities. In: (2018). url: https://arxiv.org/abs/1804.
09705.

[KS08] D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point
of View. Texts in Theoretical Computer Science. An EATCS Series. Springer,
2008. isbn: 978-3-540-74104-6.

[Krü15] A. Krüger. Bitvectors in SMT-RAT and Their Applications to Integer Arith-
metic. MA thesis. RWTH Aachen University, 2015.

http://www.smt-lib.org
https://doi.org/10.1007/s10817-010-9196-8
https://doi.org/10.1007/978-3-642-02959-2
https://doi.org/10.1007/978-3-642-02959-2
https://doi.org/10.1007/978-3-642-31612-8_35
https://doi.org/10.1007/978-3-642-31612-8_35
https://doi.org/10.1007/978-3-642-31612-8_35
http://arxiv.org/abs/1706.09236
http://www.smtcomp.org
https://arxiv.org/abs/1804.09705
https://arxiv.org/abs/1804.09705


70 Bibliography

[Sch09] R. A. Schmidt, ed. Automated Deduction – CADE-22. Vol. 5663. Lecture Notes
in Artificial Intelligence. Springer, 2009. isbn: 978-3-642-02959-2. doi: 10.
1007/978-3-642-02959-2.

[Stu15] T. Sturm. Subtropical Real Root Finding. In: Computing Research Repository
abs/1501.04836 (2015). url: http://arxiv.org/abs/1501.04836.

https://doi.org/10.1007/978-3-642-02959-2
https://doi.org/10.1007/978-3-642-02959-2
http://arxiv.org/abs/1501.04836


Zentrales Prüfungsamt/Central Examination Office 

 

 

Eidesstattliche Versicherung  
Statutory Declaration in Lieu of an Oath 
 

___________________________   ___________________________ 

Name, Vorname/Last Name, First Name  Matrikelnummer (freiwillige Angabe) 
Matriculation No. (optional) 

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/ 

Masterarbeit* mit dem Titel 
I hereby declare in lieu of an oath that I have completed the present paper/Bachelor thesis/Master thesis* entitled 

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________ 

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting) 

erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt. 

Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich, 

dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in 

gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen. 
independently and without illegitimate assistance from third parties (such as academic ghostwriters). I have used no other than 

the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, I declare that the written 

and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form. 

 

___________________________    ___________________________ 

Ort, Datum/City, Date      Unterschrift/Signature  

        *Nichtzutreffendes bitte streichen 

*Please delete as appropriate 

Belehrung: 
Official Notification:  

§ 156 StGB: Falsche Versicherung an Eides Statt 

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung 

falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei 

Jahren oder mit Geldstrafe bestraft. 

Para. 156 StGB (German Criminal Code): False Statutory Declarations 

Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely 

testifies while referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine. 
§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt 

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so 

tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein. 

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158 

Abs. 2 und 3 gelten entsprechend.  

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence 

(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not 
exceeding one year or a fine. 
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2) 
and (3) shall apply accordingly. 

 
Die vorstehende Belehrung habe ich zur Kenntnis genommen: 
I have read and understood the above official notification: 

___________________________    ___________________________ 

Ort, Datum/City, Date      Unterschrift/Signature 


	Abstract
	Introduction
	Preliminaries
	Satisfiability Modulo Theories
	DPLL-based SMT solving
	SMT-RAT

	Subtropical Satisfiability
	Limiting behaviour of multivariate polynomials
	Restriction process as geometric projection
	Exploiting the linear separabilty of frame vertices
	Strictly separable frame vertices
	Weakly separable frame vertices
	Linearly inseparable frame vertices

	Application to the SMT problem
	Single constraint with an arbitrary relation
	Common solution of multiple constraints
	Extension to mixed-integer problems

	Benchmarking results and conclusion

	The Case-Splitting Method
	Case-splits for monomial equalities
	Purification of nonlinear constraints
	Discretization of real-valued variables
	Extraction of nonlinear monomial equations

	Case-splitting for variables with bounded domains
	Handling small domains
	Handling large domains

	Unsatisfiability and learning for unbounded domains
	Unsatisfiability and learning
	Optimal choice of reduction sequences

	Benchmarking results and conclusion

	STropModule source code
	CSplitModule source code
	Bibliography
	Statutory Declaration

