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Abstract

Satisfiability Modulo Theories (SMT) solving is a technology for checking the
satisfiability of quantifier-free first-order logic formulas over some theories. In
this thesis, we implement the method which was proposed by the authors of
[CGI+18]. The idea of the authors is to perform over-approximative linear
abstraction iteratively on a non-linear formula by uninterpreted functions and
check the satisfiability of the abstraction. If the abstraction is unsatisfiable
then the original formula is unsatisfiable, too. Otherwise, if the solution for the
linear formula does not satisfy the non-linear formula, then this linear formula
is incrementally refined by a set of axioms. In this thesis we adapt this method
to use linear abstraction by variables instead of uninterpreted functions and
experiment with some heuristics aspects in SMT-RAT. We also propose a new
axiom named Interval Constraint Propagation (ICP) axiom for refinement.
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Chapter 1

Introduction

This thesis is about checking the satisfiability of logical formulas. If the logical formula
is a quantifier-free non-linear real-arithmetic formula, then checking its satisfiability
is computationally costly. The idea in the Ph.D. thesis [Irf18] and the related publica-
tion [CGI+18] is to apply linear approximations which are over-approximative. For a
given non-linear formula, the authors define a linear formula whose solution set over-
approximates the set of satisfying solutions of the non-linear formula. If a solution for
the linear formula is found in the over-approximation which does not satisfy the non-
linear one, then they refine the linear abstraction by making the solution set smaller.
The solution set gets smaller means that it is getting closer to the non-linear formula
though in general it is not necessarily reached. That is why this method is incom-
plete. So, the authors of [CGI+18] proposed an approach, referred to as Incremental
Linearization, that trades the use of expensive solvers for non-linear formulas for an
abstraction-refinement loop on top of computationally much less expensive solvers for
linear formulas [CGI+18].
Our contribution in this thesis is the implementation of this method in the SMT
solver SMT-RAT and the experimental evaluation of different heuristics which are
not addressed in the Ph.D. thesis [Irf18]. We have also contributed in this thesis work
by introducing a new axiom referred to as the Interval Constraint Propagation (ICP)
axiom as an additional axiom type based on which the refinement is performed.
The organization of this thesis is as follows. In Chapter 2 we introduce basic terms and
definitions including a brief explanation on Incremental Linearization for non-linear
real-arithmetic formulas as proposed in the Ph.D. thesis [Irf18]. Chapter 3 explains
our contributions with algorithmic descriptions and examples. Chapter 4 describes
the implementation. Chapter 5 discusses experimental results. Finally, we conclude
the thesis in Chapter 6 and discuss possible directions for future work.
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Chapter 2

Preliminaries

2.1 Propositional Logic
Propositional logic deals with logical relationships between propositions. A proposi-
tion is a boolean variable that has either a truth value true or a truth value false, also
called atomic proposition. The syntax of well-formed propositional logic formulas is
as follows:

ϕ := a | (¬ϕ) | (ϕ ∧ ϕ)

where a is an atomic proposition. So, a propositional logic formula can be an atomic
proposition or it can be constructed from atomic propositions by using logical con-
nectives for negation ¬ and for conjunction ∧. In the following we sometimes omit
parentheses assuming that negation binds stronger than conjunction. There are some
more logical connectives used in propositional logic, but they all are syntactic sugar.
In the syntax, we have only ¬ and ∧ as logical connectives because these are sufficient
to express syntactic sugar. Syntactic sugar are:

false := (a ∧ ¬a)
true := (a ∨ ¬a)

(ϕ1 ∨ ϕ2 ) := ¬(¬ϕ1 ∧ ¬ϕ2 )
(ϕ1 → ϕ2 ) := (¬ϕ1 ∨ ϕ2 )
(ϕ1 ↔ ϕ2 ) := (ϕ1 → ϕ2 ) ∧ (ϕ2 → ϕ1 )
(ϕ1 ⊕ ϕ2 ) := (ϕ1 ↔ ¬ϕ2)

Example 2.1.1. Some propositional logic formulas are:

¬a

(¬a ∧ (b ∨ c)︸ ︷︷ ︸
ϕ1

)

(b → (a ∧ c)︸ ︷︷ ︸
ϕ2

)

Here, a, b and c are atomic propositions, whereas ϕ1 and ϕ2 are propositional for-
mulas.
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2.2 First-Order Logic

Sometimes propositional logic is not enough for modeling and we need a more expres-
sive language.
First-order (FO) logic is a framework which has the ingredients, theory symbols,
predicate symbols and logical symbols. Theory symbols can be constants, variables,
function symbols. All constants and variables are theory expressions. If t1, . . . , tn
are theory expressions and f is an n-ary funtion symbol, then f(t1, . . . , tn) is also a
theory expression. The difference between predicate symbols and function symbols
is that the predicate symbols always give boolean values, but the function symbols
give values from a theory domain. Predicate symbols are special function symbols,
but they have boolean values and they made the switch from theory expressions to
boolean expressions. If t1, . . . , tn are theory expressions and P is an n-ary predicate
symbol, then P (t1, . . . , tn) is called a constraint. Logical symbols are logical connec-
tives ¬,∧,∨,→, . . . and quantifiers. Two types of quantifiers are available, existential
quantifier (∃) and universal quantifier (∀).
FO logic is called first-order logic because it allows the quantification over variables
and it does not allow the quantification over predicates. We can have a hierarchy of
logic, for example, second-order logic, third-order logic and so on. We are not going
into the details of those as we are only interested in FO logic.

Example 2.2.1. Assume the following:

• All girls are cute.

• Lily is a girl.

• Therefore, Lily is cute.

We can formalize it by defining:

• Constants: Lily

• Variables: x

• Predicate symbols: isGirl(·), isCute(·)

Formalization:

• ∀x. isGirl(x) → isCute(x)

• isGirl(Lily)

• isCute(Lily)

FO logic formulas can be constructed by the following syntax, where c is a constraint:

ϕ := c | ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∀x.ϕ

For ∀x.ϕ and ∃x.ϕ, we call ϕ the scope of the quantification for x and we call oc-
currences of x in ϕ bound. An occurrence of a variable in a first-order logic formula
is free if it is not bound. A formula without any free variable occurrence is called a
sentence. A theory T is a set of sentences.



2.3. Real Arithmetic 13

Example 2.2.2. The following is a FO logic formula over the theory of integers with
addition, also called linear integer arithmetic:

∀x.∃y. (x+ 1 < y) ∧ (x+ 2 = z)

Here, 1 and 2 are constants, x, y and z are variables, + is a function symbol, < and
= are predicate symbols, ∧ is a logical connective and ∀ and ∃ are quantifiers. All
occurrences of x and y are bound, whereas the only occurrence of z is free.

2.2.1 Quantifier-Free FO Logic

A quantifier-free formula in FO logic is a formula that does not contain quantifiers.
In other words, a quantifier-free formula is either a constraint which has truth values
or the application of logical connectives to constraints. So, quantifier-free FO logic
formulas have the following syntax:

ϕ := c | ¬ϕ | ϕ ∧ ϕ

Example 2.2.3. An example quantifier-free FO logic formula for non-linear integer
arithmetic including multiplication:

((x+ 1 < y) ∧ (x+ 2 = z)) ∨ (x+ 6 = y ∗ z)

If each constraint of a quantifier-free FO logic formula is replaced by a fresh boolean
variable, then we get the boolean skeleton and the formula will become a propo-
sitional logic formula. To specify propositional logic as a quantifier-free first-order
logic instance we only need boolean variables as the logical connectives are already in
quantifier-free FO logic. Thus, propositional logic is also a FO logic.

Example 2.2.4. The followings are examples for a quantifier-free FO logic formula
ϕQF and its boolean skeleton ϕsk which is a propositional logic formula:

ϕQF := ((x+ 1 < y) ∧ (x+ 2 = z)) ∨ (x+ 6 = y ∗ z)
ϕsk := (a ∧ b) ∨ c

2.3 Real Arithmetic

(Non-linear) real arithmetic (NRA) is a first-order logic over the theory of the reals
with addition and multiplication. NRA constraints can be built upon constants r from
some coefficient ring R (here we will use the rationals Q), real-valued variables x and
the functions addition + and multiplication ∗ according to the following quantifier-free
syntax:

Polynomials: p := r | x | p+ p | p ∗ p
Constraints: c := p < p
Formulas: ϕ := c | ¬ϕ | ϕ ∧ ϕ

There are also syntactic sugar such as the relational operators >,≤,≥,=, 6= and the
logical connectives ∨,→ etc.. We use µ to denote assignments (i.e., functions assigning
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values to all variables) and write µ(x) for the value of x under µ. The semantics is
defined as usual.
A monomial is a product of variables and the empty product represents the constant
1. A term r ∗m is a product of a coefficient r ∈ R and a monomial m. A polynomial
is a theory expression. Polynomials are often written as sums of terms

p(x1, . . . ,xn) = admd + . . .+ a0m0

with coefficients ad, . . . , a0 ∈ R \ {0} and pairwise different monomials md, . . . ,m0

for some non-negative integer d (the empty sum is seen equivalent to 0). We write
R[x1, . . . ,xn] for the set of all polynomials with coefficients from R and variables
x1, . . . ,xn. If a polynomial has only one variable, then it is called univariate, else it
is called multivariate.
The degree of xi in a monomial xd11 ∗ . . .∗xdnn is its exponent di and the total degree of
the monomial is the sum of the degrees of all variables appearing in that monomial.
The degree of xi in the polynomial p is its maximal degree under all monomials.
A monomial is linear if it has total degree less than or equal to one. Otherwise, it is
nonlinear and similarly for polynomials.
Formulas without multiplication between variables, i.e. considering only linear poly-
nomials, form the logic of linear real arithmetic (LRA).
Please note that in this thesis work we will be dealing with quantifier-free LRA and
NRA. So, from now on if we use the words LRA and NRA, that means we are talking
about quantifier-free LRA and NRA; sometimes we write QF_NRA and QF_LRA
to emphasize this fact.

Example 2.3.1. The following is a LRA formula:

ϕ = (2x+ 4y ≤ 0) ∧ (6x+ 4z < 0)

Here, x, y, z are monomials, 2x, 4y, 6x, 4z are terms. As it is a linear formula, each
variable has a degree of 1 in ϕ.

Example 2.3.2. The following is a NRA formula:

ϕ = (x5 + 2x+ 4z︸ ︷︷ ︸
p1

≤ 0) ∧ (6xy3 + 4z︸ ︷︷ ︸
p2

< 0)

Here, x5, x, z, xy3 are monomials, 2x, 4z, 6xy3 are terms. The degree of x in p1 and
p2 is 5 and 1, respectively.

2.4 Satisfiability Modulo Theories Solving
Satisfiability Modulo Theories (SMT) solving [KS16, BHvMW09] checks the satisfia-
bility of FO logic formulas with respect to a background theory [dMDS07]. It is called
satisfiability because we assume quantifier-free formulas whose satisfiability should be
decided and modulo theories because different theories can be considered.
The satisfiability checking problem for propositional logic is the problem of determin-
ing whether a given propositional logic formula is satisfiable. A propositional logic
formula is said to be satisfiable if there exists a variable assignment that makes the
formula true, otherwise unsatisfiable. One of the most successful technologies for this
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test is SAT solving. A SAT solver solves the satisfiability checking problem by im-
plementing a decision procedure. The Davis–Putnam–Logemann–Loveland (DPLL)
algorithm is the basis for most modern SAT solvers [BHvMW09]. The DPLL algo-
rithm expects the input formula to be in a conjunctive normal form (CNF) defined
in the following.

Definition 2.4.1. (Conjunctive Normal Form). A propositional logic formula is said
to be in Conjunctive Normal Form (CNF) if and only if it is a conjunction of clauses,
where a clause is a disjunction of literals. A literal is either a positive or a negative
instance of a boolean variable. A CNF formula ϕ is defined as follows:

ϕ =
∧

i=1...n

Ci

Ci =
∨

j=1...mi

aij

Here, Ci is the ith clause and n is total the number of clauses in ϕ, aij is a literal
and mi is the total number of literals in Ci.

Example 2.4.1. The following is a CNF formula:

ϕ = (x)︸︷︷︸
C1

∧ (¬x)︸︷︷︸
C2

∧ (¬x ∨ y)︸ ︷︷ ︸
C3

∧ (¬x ∨ ¬y)︸ ︷︷ ︸
C4

where x,¬x, y and ¬y are literals and C1, . . . , C4 are clauses.

A theory solver for a theory T takes as input a set (interpreted as an implicit con-
junction) ϕ of literals and determines whether ϕ is T -satisfiable [Bar].
Figure 2.1 shows the main structure of an SMT solver. A SAT solver searches for a
satisfying solution for the boolean skeleton of the problem. That means, it does not
look into the theory; it checks the abstraction of the formula. In order to be complete,
the SAT solver communicates with the theory solver which extends the logical search
by checking theory constraints. The communication is in two directions. First, the
SAT solver sends a request to the theory solver and the theory solver gives some
feedback about the result to the SAT solver. If we have a certain logic which we want
to solve, for example, LRA, we have a SAT solver to handle the boolean structure of
the LRA formula and we also have e.g. a simplex solver [DdM06] as theory solver to
check conjunctions of LRA constraints.

2.5 Approximation-Based Approach

NRA formulas are in general hard to solve and the applicability is restricted in prac-
tice because the decision procedures are computationally intensive. That is why we
perform linearization for NRA formulas.
Our thesis work is inspired by the Ph.D. thesis work, "Incremental Linearization
for Satisfiability and Verification Modulo Nonlinear Arithmetic and Transcendental
Functions" [Irf18]. The authors of [CGI+18] deal with the problems of SMT and
Verification Modulo Theories (VMT), based on checking the satisfiability of formu-
las of quantifier-free NRA and quantifier-free NRA augmented with transcendental
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Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 14/15 3 / 25Figure 2.1: Full lazy SMT solver [Ábr]

functions (NTA). Transcendental functions include the exponential function, the log-
arithm and the trigonometric functions.
The main idea of [CGI+18] is to abstract non-linear multiplication and transcendental
functions as uninterpreted functions (UFs) as described in Section 2.5.1 below. This
abstraction is performed iteratively over an abstract domain containing LRA and
uninterpreted functions. The theory of uninterpreted functions (UFs) is the first-
order theory with no restriction on the signature

∑
, the set of non-logical symbols.

In [CGI+18], uninterpreted functions are used to model non-linear and transcendental
functions that are iteratively and incrementally axiomatized with a lemma-on-demand
approach [CGI+18]. In other words, a refinement of the abstraction is performed and
spurious interpretations are eliminated to be closer to satisfying solutions of the NRA
formula. The authors named this abstraction-refinement approach as Incremental
Linearization (IL).
Multiplication between variables is abstracted as a binary uninterpreted function.
Detection of spurious models helps to tighten the abstraction. After detecting the
spurious models, for each abstraction-refinement loop, some linear constraints are
added to the input formula loop to tighten the abstraction. The linear constraints in-
clude tangent planes resulting from differential calculus and monotonicity constraints
[CGI+18]. On the other hand, each transcendental function is abstracted as a unary
uninterpreted function. Taylor series is used to compute the coefficients. When spu-
rious models are found, the piecewise-linear axioms are instantiated with upper and
lower bound. For transcendental functions, the abstraction refinement is based on the
addition.
In [CGI+18], the authors have explained their contributions for the SMT case briefly
and also described the extension of IL from the SMT to the VMT case. However,
we are only concerned about the details of the refinement mechanisms and of the
detection of satisfiable results for SMT case only. Also, this thesis work does not deal
with transcendental functions. So, we will not be going into the details of the authors’
contributions regarding the transcendental functions for SMT case.
Next we give a brief explanation of solving NRA formulas by IL for SMT case accord-
ing to [CGI+18].
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2.5.1 Incremental Linearization for SMT (NRA)
In [CGI+18], the authors have proposed Algorithm 1 listed below, for checking the
satisfiability of quantifier-free NRA formulas.
The input is an NRA formula ϕ. The algorithm returns a boolean value if ϕ is
detected to be satisfiable or unsatisfiable. If ϕ is unsatisfiable, it also returns a set
Γ of constraints from the combined theory of uninterpreted functions and linear real
arithmetic (UFLRA). If ϕ is satisfiable, it returns the empty set ∅.

Algorithm 1 The main algorithm SMT-NRA-CHECK [CGI+18]
SMT-NRA-CHECK(ϕ)
1: ϕ′ := SMT-PREPROCESS(ϕ)
2: ϕ̂ := SMT-INITIAL-ABSTRACTION(ϕ′)
3: Γ := ∅
4: while true do
5: 〈sat, µ̂〉 :=SMT-UFLRA-CHECK(ϕ̂ ∧

∧
c∈Γ c)

6: if not sat:
7: return 〈false,Γ〉
8: 〈sat,Γ′〉 :=CHECK-REFINE(ϕ, ϕ̂, µ̂)
9: if sat:

10: return 〈true, ∅〉
11: Γ := Γ ∪ Γ′

In line 1, a method SMT-PREPROCESS is invoked which performs a preprocessing
step. This preprocessing step generates a formula ϕ′ = ϕ∧ϕshift where ϕshift defines
the values of some fresh real variables wx in terms of some variables x in ϕ. Then in
line 2, the method SMT-INITIAL-ABSTRACTION performs the abstraction of the
formula ϕ′ and returns an abstracted formula that is assigned to ϕ̂. The abstraction
means recursively replacing each non-linear term e.g., x ∗ y by an uninterpreted func-
tion application f∗(x, y). So, the authors have only used the uninterpreted function
for abstraction. No abstraction is performed for linear multiplications, e.g., c∗x where
c is a constant, hence all the linear multiplications of ϕ′ remain unchanged.
The set of constraints Γ is initialized to the empty set ∅. Lines 4 to 11 is a loop where
at each iteration the abstraction is refined by extending the set of UFLRA constraints
Γ that is responsible for removing spurious solutions. The satisfiability checking of the
formula ϕ̂∧

∧
c∈Γ c is performed by invoking the method SMT-UFLRA-CHECK with

the formula ϕ̂∧
∧
c∈Γ c as input (line 5). The method SMT-UFLRA-CHECK calls an

SMT solver for UFLRA, the combined theory of linear arithmetic and uninterpreted
functions. This method returns either true with the current satisfying abstract model
µ̂ or false with an unsatisfiable core defined as follows:

Definition 2.5.1. (Unsatisfiable Core). An unsatisfiable core of an unsatisfiable CNF
formula is a subset of the clauses whose conjunction is unsatisfiable.

The loop breaks if the formula ϕ̂ ∧
∧
c∈Γ c is unsatisfiable, meaning that also the

input NRA problem ϕ is unsatisfiable (lines 6 to 7). Otherwise, in line 8, the method
CHECK-REFINE takes as input the formula ϕ, the abstracted formula ϕ̂ and an
abstract model µ̂ and returns either true with the empty set ∅ or false with a non-
empty set of UFLRA constraints Γ′. A detailed explanation of the method CHECK-
REFINE is given in the next Section 2.5.2. There is another loop-breaking condition
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from lines 9 to 10. The algorithm enters the lines 9 and 10 if CHECK-REFINE
returns true with ∅ what means that the solution for the abstraction also satisfies the
original input NRA formula ϕ. When none of the mentioned loop breaking conditions
occur, the non-empty set of UFLRA constraints Γ′ is added to Γ at line 11 and then
the next iteration starts.

2.5.2 Abstraction Refinement and Spuriousness Check
The authors propose Algorithm 2 for checking the spuriousness of the abstract solution
and refining the abstraction. Algorithm 2 shows that the method CHECK-REFINE
takes the original NRA formula ϕ, the abstracted formula ϕ̂ and the model µ̂ for the
abstracted formula as inputs. In line 1, a method CHECK-NRA-MODEL is called on
ϕ and µ̂ and this method checks if the formula ϕ is satisfied by the model µ̂. When
CHECK-NRA-MODEL returns true, the algorithm enters to line 2 and it returns true
with empty set ∅, what will terminate the whole satisfiability checking process. The
method CHECK-NRA-MODEL is described in Section 2.5.2.2.

Algorithm 2 The algorithm CHECK-REFINE [CGI+18]
CHECK-REFINE(ϕ, ϕ̂, µ̂)

1: if CHECK-NRA-MODEL(ϕ, µ̂)
2: return 〈true, ∅〉
3: Γ := BLOCK-SPURIOUS-PRODUCT-TERMS(ϕ̂, µ̂)
4: return 〈false,Γ〉

If the algorithm does not enter to line 2, it means the abstracted model µ̂ is spuri-
ous and the abstraction needs to be refined. A model is spurious means it violates
some multiplications in the original NRA formula ϕ [CGI+18]. The method BLOCK-
SPURIOUS-PRODUCT-TERMS is invoked at line 3 to refine the abstraction and
exclude the abstract model µ̂ from further search. The method BLOCK-SPURIOUS-
PRODUCT-TERMS takes as inputs ϕ̂ and µ̂ and returns a set of UFLRA formulas as
described in the next Section 2.5.2.1. This set of UFLRA formulas is stored in Γ and
returned with the boolean result false in line 4 which influences the whole process to
be continued further and to proceed for the next loop iteration (Algorithm 1, lines 9
to 10). So, when Algorithm 2 terminates, then either the original formula ϕ is found
satisfiable, or a set of refinement constraints is being created.
This was a high-level description of the abstraction refinement and spuriousness check.
We describe the concept of this refinement and spuriousness check-in details in the
following Sections 2.5.2.1 and 2.5.2.2, respectively.

2.5.2.1 Abstraction Refinement for NRA

In [CGI+18], multiplications terms are refined in the function BLOCK-SPURIOUS-
PRODUCT-TERMS. To perform the refinement, they have provided some constraint
schemata, shown in Figure 2.1 which are tautologies in NRA. These constraint
schemata prevent spurious assignments of the abstract model to multiplication terms.
In the BLOCK-SPURIOUS-PRODUCT-TERMS method, it is checked whether the
values of multiplication terms satisfy the constraint schemata. Then the method
collects all the unsatisfied constraints from the constraints schemata into a list and
returns it to the caller method CHECK-REFINE (Algorithm 2, line 3).
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In Figure 2.1, we can see five types of refinement constraints namely Zero, Sign,
Commutativity, Monotonicity and Tangent-plane where x, xi, y, yi are variables and
a, b are rational values. It is straightforward to verify that all the constraints are
valid formulas in any theory interpreting f∗() as ∗ [CGI+18]. Each Zero constraint
has a single multiplication term and that is why the refinements performed by Zero
constraints are called single-term refinements. On the other hand, the refinements
performed by Sign, Commutativity and Monotonicity constraints are called double-
term refinements as they involve pairs of multiplication terms. Moreover, Tangent-
plane constraints refer to a single multiplication term and a single point (a, b) and
the refinements by these is also called single-term refinements.
Before explaining the above-mentioned different types of refinements in a formal way,
it is needed to explain the Tangent-plane constraints as it is the interesting part of
all refinement constraints, whereas the Zero, Sign, Commutativity and Monotonicity
constraints are self-explanatory. Notice that, Tangent-plane constraints have equality
constraints and inequality constraints. The equality constraints enforce the correct
value of f∗(x, y) at x = a or y = b and provide multiplication lines. On the other
hand, the inequality constraints provide bound for f∗(x, y) while x and y are not on
multiplication lines. Figures 2.2a and 2.2b illustrate the surface of the uninterpreted
funtion f∗(x, y) = x ∗ y and the top view of the surface, respectively. This kind of
surface is known in geometry as hyperbolic paraboloid.

Definition 2.5.2. (Hyperbolic Paraboloid). A hyperbolic paraboloid is a doubly-ruled
surface, i.e., for every point on the surface, there are two distinct lines on the surface
such that they pass through the point [CGI+18].

Definition 2.5.3. (Tangent Plane). A tangent plane at a point (a, b) to a bivariate
function f(x, y) is defined as:

f(a, b) +
d

dx
f(a, b) ∗ (x− a) +

d

dy
f(a, b) ∗ (y − b).

For multiplication, this yields the tangent plane a ∗ y + b ∗ x− a ∗ b [Har].

In Figure 2.2c we can see that at each point on a hyperbolic paraboloid there is
a tangent plane to the hyperbolic paraboloid surface as defined in Definition 2.5.3.
Interestingly, the two lines on the surface going through the point are also in the
tangent plane. In other words, the two projected lines define how the plane cuts the
surface.
Different Types of Refinements:

• Let us take a constraint schema ∀x, y.ψ from Figure 2.1, i.e., a Zero, Sign,
Commutativity or Tangent-plane constraint schema. For each uninterpreted
function application f∗(t, s) in the abstraction ϕ̂, let ψ′ results from ψ by re-
placing x and y by t and s, respectively; if this formula evaluates to false under
µ̂, then we add ψ′ to an initially empty set ST µ̂∗ of refinement formulas.

• Similarly, let us take a constraint schema ∀x1, y1, x2,y2.ψ from Figure 2.1, i.e.,
Monotonicity constraint schema. For each pair of uninterpreted function ap-
plications f∗(t1, s1) and f∗(t2, s2), if the formula ψ′ that results from ψ by
substituting t1, t2, s1, s2 for x1, x2, y1, y2, respectively, then we add ψ′ to ST µ̂∗ .
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(a) x ∗ y
(b) x ∗ y (top view)

(c) x ∗ y and tangent plane
(d) x ∗ y and tangent plane (top view)

Figure 2.2: Multiplication function and tangent plane (these pictures are taken from
[CGI+18])

Example 2.5.1. Assume that the input NRA formula ϕ has the multiplication terms
t1∗s1 and t2∗s2. These multiplication terms are abstracted by f∗(t1, s1) and f∗(t2, s2),
respectively and an abstracted formula ϕ̂ is being created.
Let, µ̂ be an abstract model containing the assignments:

µ̂[t1] = 2, µ̂[s1] = 3, µ̂[f∗(t1, s1)] = 7, µ̂[t2] = 3, µ̂[s2] = −4, µ̂[f∗(t2, s2)] = 5
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Then µ̂ violates the third Zero constraint for t2 ∗ s2:

((t2 < 0 ∧ s2 > 0) ∨ (t2 > 0 ∧ s2 < 0))↔ f∗(t2, s2) < 0

The assignment µ̂ does not violate any Sign and Commutativity constraints, but vio-
lates all Monotonicity constraints:

1. ((abs(t1) ≤ abs(t2)) ∧ (abs(s1) ≤ abs(s2)))→ abs(f∗(t1, s1)) ≤ abs(f∗(t2, s2))

2. ((abs(t1) < abs(t2)) ∧ (abs(s1) ≤ abs(s2)) ∧ (s2 6= 0)) → (abs(f∗(t1, s1)) <
abs(f∗(t2, s2)))

3. ((abs(t1) ≤ abs(t2)) ∧ (abs(s1) < abs(s2)) ∧ (t2 6= 0)) → (abs(f∗(t1, s1)) <
abs(f∗(t2, s2)))

The assignment µ̂ also violates the Tangent-plane constraint in the points (2, 3) and
(3,−4):

1. at the point (2, 3):

f∗(2, s1) = 2 ∗ s1 ∧
f∗(t1, 3) = 3 ∗ t1 ∧
((t1 > 2 ∧ s1 < 3) ∨ (t1 < 2 ∧ s1 > 3))→ f∗(t1, s1) < 3 ∗ t1 + 2 ∗ s1 − 6 ∧
((t1 < 2 ∧ s1 < 3) ∨ (t1 > 2 ∧ s1 > 3))→ f∗(t1, s1) > 3 ∗ t1 + 2 ∗ s1 − 6

2. at the point (3,−4):

f∗(3, s2) = 3 ∗ s2 ∧
f∗(t2,−4) = −4 ∗ t2 ∧
((t2 > 3∧ s2 < −4)∨ (t2 < 3∧ s2 > −4))→ f∗(t2, s2) < −4 ∗ t2 + 3 ∗ s2 + 12 ∧
((t2 < 3 ∧ s2 < −4) ∨ (t2 > 3 ∧ s2 > −4))→ f∗(t2, s2) > −4 ∗ t2 + 3 ∗ s2 + 12

Finally, all these constraints are added to ST µ̂∗ and returned to refine the abstracted
formula ϕ̂ which block the spurious model µ̂.

2.5.2.2 Spuriousness Check and Detecting Satisfiability

So far, we have seen how we can perform abstraction refinement by ruling out spu-
rious models. Now we describe the behavior of the method CHECK-NRA-MODEL.
CHECK-NRA-MODEL is a representation of the method CHECK-MODEL for NRA
which detects the satisfiability of the formula ϕ and checks if the model µ̂ is spurious
(Algorithm 3). The authors of [CGI+18] do not want that the algorithm only checks
the spuriousness of µ̂, but also detect models and for that they want the algorithm
to look for an actual model for ϕ “in the surroundings” of µ̂ [CGI+18], however this
procedure of “model repair” is not implemented in this thesis and skipped in the
following.
Line 1 extracts the NRA constraints in ϕ whose linearized abstractions hold under µ̂
[CGI+18]. Here, T (ϕ, µ̂) contains all atoms in ϕ whose abstraction is true under µ̂
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Zero:

∀x, y.(x = 0 ∨ y = 0)↔ f∗(x, y) = 0

∀x, y.((x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0))↔ f∗(x, y) > 0

∀x, y.((x < 0 ∧ y > 0) ∨ (x > 0 ∧ y < 0))↔ f∗(x, y) < 0

Sign:

∀x, y.f∗(x, y) = f∗(−x,−y)

∀x, y.f∗(x, y) = −f∗(−x, y)

∀x, y.f∗(x, y) = −f∗(x,−y)

Commutativity:

∀x, y.f∗(x, y) = f∗(y, x)

Monotonicity:

∀x1, y1, x2, y2.((abs(x1) ≤ abs(x2)) ∧ (abs(y1) ≤ abs(y2)))→

(abs(f∗(x1, y1)) ≤ abs(f∗(x2, y2)))

∀x1, y1, x2, y2.((abs(x1) < abs(x2)) ∧ (abs(y1) ≤ abs(y2)) ∧ (y2 6= 0))→

(abs(f∗(x1, y1)) < abs(f∗(x2, y2)))

∀x1, y1, x2, y2.((abs(x1) ≤ abs(x2)) ∧ (abs(y1) < abs(y2)) ∧ (x2 6= 0))→

(abs(f∗(x1, y1)) < abs(f∗(x2, y2)))

Tangent plane:

∀x, y.(f∗(a, y) = a ∗ y) ∧ (f∗(x, b) = x ∗ b) ∧

((x > a ∧ y < b) ∨ (x < a ∧ y > b))→ f∗(x, y) < b ∗ x+ a ∗ y − a ∗ b ∧

((x < a ∧ y < b) ∨ (x > a ∧ y > b))→ f∗(x, y) > b ∗ x+ a ∗ y − a ∗ b

Table 2.1: The refinement UFLRA constraint schemata for multiplication, where a, b
are constants and x, y are variables [CGI+18]
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Algorithm 3 The algorithm CHECK-NRA-MODEL [CGI+18]
CHECK-NRA-MODEL (ϕ, µ̂)

1: ψ :=
∧

A∈T (ϕ,µ̂)

A ∧
∧

B∈F (ϕ,µ̂)

¬B

2: return µ̂ |= ψ

and F (ϕ, µ̂) all those that are false under µ̂. The algorithm returns whether the NRA
concretizations of the abstract constraints have the same truth value, i.e., whether µ̂
satisfies also ϕ.
The idea of this algorithm is demonstrated by the following example [CGI+18]:

Example 2.5.2. Consider the following NRA formula ϕ and the abstracted formula
ϕ̂:

ϕ := (x ∗ y = 10) ∧ (2 ≤ x ≤ 4) ∧ (2 ≤ y ≤ 4)

ϕ̂ := (f∗(x, y) = 10) ∧ (2 ≤ x ≤ 4) ∧ (2 ≤ y ≤ 4)

Assume, SMT-UFLRA-CHECK returns a model µ̂ (Algorithm 1, line 5):

µ̂[x] = 2, µ̂[y] = 4, µ̂[f∗(x, y)] = 10

So, the method CHECK-REFINE is invoked (Algorithm 1, line 8) and there is still a
chance to find a model for the original formula ϕ by using a method CHECK-NRA-
MODEL (Algorithm 2, line 1 to 2). But 2 ∗ 4 6= 10 and this inequality makes µ̂
spurious and CHECK-NRA-MODEL returns false.
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Chapter 3

Incremental Linearization for
Real Arithmetic

3.1 System Architecture

So far, we have seen the basic concepts to understand our thesis work and how the
authors of [CGI+18] have performed incremental linearization (IL) using SMT solving.
Figure 3.1 depicts the whole process of our thesis work.
The input is an NRA formula ϕ. At first, ϕ is linearized to a LRA formula ϕ̂ by a
linearization method. This linearization method follows Algorithm 5 which we will
explain later. The formula ϕ̂ is passed to the SMT solver and it results in either SAT
with a satisfying solution µ̂ of ϕ̂ or UNSAT or UNKNOWN. SAT means the SMT
solver finds ϕ̂ satisfiable, UNSAT means ϕ̂ is not satisfiable and UNKNOWN means
the SMT solver is unable to determine the satisfiability of ϕ̂. If the SMT solver results
in either UNSAT or UNKNOWN, the method terminates. Otherwise, it continues to
work following the next step.
The next step is to extend µ̂ to a model µ for assigning all variables in ϕ. We have
named µ as an estimated model. If µ satisfies ϕ, it returns SAT and we are done.
Otherwise, we have to perform refinement over some predefined axioms to resist the
spurious solution µ. This refinement process outputs a set A of axioms that prevents
spurious solutions including µ. Finally, ϕ̂ is augmented by adding each axiom ψ from
the set A and again ϕ̂ is passed to the SMT solver. This loop continues until the
SMT solver finds UNSAT or UNKNOWN for ϕ̂ or the estimated model µ satisfies ϕ.

3.2 Our Approach

In our implementation we will use SMT-RAT [CKJ+15], an open source C++ toolbox
for strategic and parallel SMT solving. SMT-RAT offers a collection of modules, under
others for solving quantifier-free linear as well as non-linear real and integer arithmetic
formulas.
SMT-RAT modules implement a common interface. The interface consists of some
methods including addCore and checkCore. The addCore(ϕi) method is invoked to
add formulas that should be satisfied, i.e., the conjunction ϕ = ∧ki=1ϕi of all added
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NRA formula ϕ

Linearization

LRA formula ϕ̂

SMT solver

SAT +
Model µ̂ of ϕ̂

UNSAT /
UNKNOWN

Extend µ̂
to assign all
variables in ϕ

ϕ̂ := ϕ̂ ∧
∧
ψ∈A

ψ

µ |= ϕ? SAT

Refinement
for NRA

Set A of axioms unsatisfied under µ̂

No

Yes

Figure 3.1: The incremental linearization process
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formulas will be the subject of the satisfiability check. The checkCore() method is
invoked at the end to check the satisfiability of ϕ.
We have constructed an SMT-RAT module named NRAILModule that linearizes an
input NRA formula incrementally, solves it and utilizes the solution if the input NRA
formula is not satisfied by it to make it satisfying via a refinement process. In our
case, we perform linearization for each ϕi in addCore(ϕi) before their addition. The
satisfiability checking logic with refinement process is formulated in checkCore().

Example 3.2.1. Assume an example quantifier-free NRA formula:

ϕ := (3x9y2 − y < 5) ∧ (xy + 1 < 0)

SMT-RAT will reorganize this fomula as follows, we will use this example formula for
other examples too:

ϕ := (3x9y2 + (−1)y + (−5) < 0) ∧ (xy + 1 < 0)

Here, the set of sub-formulas is, {3x9y2 + (−1)y + (−5) < 0, xy + 1 < 0}. Each
sub-formula from this set is denoted as ϕ′.

To understand this paper, we do not need to know the internal methodology of SMT-
RAT in depth. We will explain SMT-RAT partly whenever we will need it to under-
stand our work.

3.2.1 addCore(ϕi)

The algorithm addCore(ϕi) is shown in Algorithm 4. This addCore(ϕi) is responsible
for invoking the linearization method for each ϕi. SMT-RAT has no module or method
to linearize a formula. That is why we have introduced a method for linearization.
Also, SMT-RAT does not support uninterpreted functions. So, in this work, one of
our contributions is to adapt the linearization process by variables.
Whenever SMT-RAT runs NRAILModule, at first, it calls addCore(ϕi) for each input
formula ϕi. Each ϕi is linearized by linearization(ϕi) and stored in ϕ̂i (line 1). Finally,
addSubformulaToPassedFormula(ϕ̂i) is invoked (line 2) which adds ϕ̂i to the set of
(linearized) input formulas. The result, which is false if a conflict (unsatisfiability) is
detected already during addition and true otherwise, is returned to the caller.

Algorithm 4 The algorithm addCore
addCore(ϕi)
1: ϕ̂i := linearization(ϕi)
2: result := addSubformulaToPassedFormula(ϕ̂i)
3: return result

3.2.1.1 Linearization

The basic idea is to abstract each multiplication term (i.e., x ∗ x, x ∗ y and so on) in
a formula by a new variable called z-variable (i.e., z1, z2, . . . , zi for some i ∈ N). The
abstraction is performed incrementally until the formula is linearized. The algorithm
for linearization is shown in Algorithm 5.
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We store the input formula ϕi in ϕ̂i (line 1) and linearize it for each non-linear
constraint c in ϕi as follows. We extract the left-hand side of c which is basically a
polynomial p (line 3). We build linear abstractions of all terms in p and store them
in an initially empty list p̂ (lines 5-13). For each term t, it is checked whether it is
constant or linear, or non-linear. If t is constant or linear (line 6), then it is added as
a linear term to the list p̂ (line 7). If t is non-linear, then the else block applies (lines
8 to 12).

Algorithm 5 The algorithm linearization
linearization(ϕi)
1: ϕ̂i := empty list
2: for each non-linear constraint c ∈ ϕi
3: p := left hand side of c
4: p̂ := empty list
5: for each term t ∈ p:
6: if t is a constant || t is linear:
7: p̂.pushBack(t)
8: else
9: m := monomial of t

10: a := coefficient of t
11: z := abstractMonomial(m)
12: p̂.pushBack(a ∗ z)
13: end
14: replace c by createFormula(p̂, relational operator in c) in ϕ̂i
15: end
16: return ϕ̂i

In lines 9 and 10, we extract the monomial m and the coefficient a from t := a ∗m,
respectively. After that, abstractMonomial(m) is invoked which returns a variable z
that is used as an abstraction for m (line 11). The method abstractMonomial(m) is
explained in Section 3.2.1.2. The variable z is achieved by replacing each univariate
multiplication term of m recursively as follows:

x ∗ x︸ ︷︷ ︸
z1

∗x ∗ x︸ ︷︷ ︸
z1︸ ︷︷ ︸

z2

∗x ∗ x︸ ︷︷ ︸
z1

∗x ∗ x︸ ︷︷ ︸
z1︸ ︷︷ ︸

z2︸ ︷︷ ︸
z3

∗x

︸ ︷︷ ︸
z → z4

In multivariate monomials, first all univariate terms xd are abstracted, resulting in
products z1 ∗ · · · ∗ zi, in which we iteratively abstract each multiplication by another
fresh variable from left to right (see Equation 3.1, Example 3.2.2). In line 12 the
linear abstraction a ∗ z is added to the list p̂ and the loop continues if there are other
terms left in p.
After termination of the inner loop, in line 14, a linear constraint is created by building
a sum of the terms in p̂ and comparing it to 0 according to the comparison operator
of c. The linearization replaces each occurrence of c by this linear constraint. Note
that due to the reorganization of input formulas by SMT-RAT, as shown in Example
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3.2.1, the left-hand side of c is always a sum of terms, the latter being products of a
constant and variables and the right-hand side is zero. After this linearization step,
the outer loop continues if there are further non-linear constraints left in ϕi. Lastly,
in line 16, the algorithm returns the linear formula ϕ̂i.

Example 3.2.2. Consider the same example formula as in the Example 3.2.1:

ϕ := (3x9y2 + (−1)y + (−5) < 0) ∧ (xy + 1 < 0)

At first, linearization(ϕ1) is invoked for ϕ1 := (3x9y2 + (−1)y + (−5) < 0) (line 1,
Algorithm 4).
Now,
constraint c := (3x9y2 + (−1)y + (−5) < 0) (line 2, Algorithm 5)
left hand side p := 3x9y2 + (−1)y + (−5) (line 3, Algorithm 5)
terms are: 3x9y2, (−1)y and −5.
Now, for each term t the for loop will be run (line 5 to 13, Algorithm 5):

• For t := 3x9y2 (line 9 to 12):

monomial m := x9y2 and coefficient a := 3

This monomial is linearized as follows according to Algorithm 6:

x ∗ x︸ ︷︷ ︸
z1

∗x ∗ x︸ ︷︷ ︸
z1︸ ︷︷ ︸

z2

∗x ∗ x︸ ︷︷ ︸
z1

∗x ∗ x︸ ︷︷ ︸
z1︸ ︷︷ ︸

z2︸ ︷︷ ︸
z3

∗x

︸ ︷︷ ︸
z4

∗ y ∗ y︸︷︷︸
z5

︸ ︷︷ ︸
z6

(3.1)

So, z := z6 and p̂[0] := 3 ∗ z6

• For t := (−1)y, t is already linear (line 7):

p̂[1] := (−1)y

• For constant term t := −5 (line 7):

p̂[2] := −5

So,
linearized polynomial p̂ := z6 + (−1)y + (−5)

linearized subformula ϕ̂1 := (z6 + (−1)y + (−5) < 0)

Then ϕ̂1 is returned to addCore(ϕ1) and ϕ̂1 is inserted to ϕ̂ by addSubformu-
laToPassedFormula (ϕ̂1) (line 2, Algorithm 4). In the same way, linearization(ϕ2)
is invoked for ϕ2 := x ∗ y + 1 < 0 (line 1, Algorithm 4) and we get linear sub-
formula (z7 + 1 < 0) as follows:

(x ∗ y︸︷︷︸
z7

+1 < 0)

Finally, we get the linearized formula for ϕ:

ϕ̂ := (z6 + (−1)y + (−5) < 0) ∧ (z7 + 1 < 0)
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3.2.1.2 Abstract a Monomial Incrementally by z-variables

In the previous section, we have seen how the linearization process works and when
abstractMonomial(m) is called. We have also seen how the abstractMonomial(m)
method is executed and what this method returns (see Equation 3.1, Example 3.2.2).
Encapsulating m incrementally by z-variables is the core of the whole linearization
process. In this section, we are going to see the algorithm behind this abstraction of
m.

Algorithm 6 The algorithm abstractMonomial
abstractMonomial(m)
1: vList := empty list
2: for each variable v with vd ∈ m where d is a positive integer:
3: vList.pushBack(abstractUnivariateMonomial(v, d))
4: end
5: z := abstractProductRecursively(vList)
6: return z

Algorithm 7 The algorithm abstractProductRecursively
abstractProductRecursively(vList)

1: while (vList.size() > 1) do
2: first := vList.popFront()
3: second := vList.popFront()
4: z := getAbstractVariable(first ∗ second)
5: vList.pushFront(z)
6: return vList.front()

The main idea of Algorithm 6 is to replace univariate multiplication terms vd in
the input monomial m, where d > 1, by fresh z-variables; the abstracting z-variable
remains the same for all occurrences of vd. This replacement continues until in the
input monomial m = xd11 , . . . ,x

dn
n with di ≥ 1 for all i = 1, . . . , n, we introduced

an abstraction variable zi for each xdii with di > 1. Finally, the product of these
abstraction variables and all xi with di = 1 is abstracted by Algorithm 7 and the
result is returned to the caller method linearization(ϕi):

vList0 ∗ vList1︸ ︷︷ ︸
zj

∗ vList2

︸ ︷︷ ︸
zj+1...

∗ . . . ∗ vListi

︸ ︷︷ ︸
z → zj+i−1

(3.2)

Here, i is a non-negative integer and j is a positive integer.

3.2.1.3 Abstraction of Univariate Monomials

From Section 3.2.1.2 we have got to know that each vd, d > 1, in a monomial
m is abstracted by a fresh variable (line 3, Algorithm 6). The abstraction uses



3.2. Our Approach 31

abstractUnivariateMonomial(v, d) in Algorithm 8. We assume the exponent d to
be positive.

Algorithm 8 The algorithm abstractUnivariateMonomial
abstractUnivariateMonomial(v, d)
1: extraVList := empty list
2: while (d > 1):
3: if d%2 == 1:
4: d := d− 1
5: extraVList.pushFront(v)
6: d := d/2
7: v := getAbstractVariable(v2)
8: extraVList.pushFront(v)
9: return abstractProductRecursively(extraVList)

As long as the current univariate monomial is not linear, i.e. as long as d > 1, we
iterate (line 2) as follows. If d is odd (line 3), then the exponent is decreased by one
(line 4) and it is remembered in an initially empty list (line 1) that the abstraction
result needs to be multiplied by v (line 5). Now d is even, so each pair of v will be
easily replaced by the same z-variable (lines 6− 7). This procedure is repeated until
we get a single variable, i.e., until d = 1. We push the variable into the list extraVList
(line 8) and call abstractProductRecursively(extraVList) to compute an abstraction
for the product of all variables in the list which is returned (line 9).

Example 3.2.3. Let us consider a variable x with an odd exponent, d = 7. So,
abstractUnivariateMonomial(x, 7) executes as follows:
The exponent 7 is odd, therefore it is decreased by 1 and x is pushed into extraVList:

x ∗ x︸ ︷︷ ︸
z1

∗x ∗ x︸ ︷︷ ︸
z1

∗x ∗ x︸ ︷︷ ︸
z1

∗ x

extraVList

d :=
7− 1

2
= 3 v := z1

The exponent 3 is odd, therefore z1 is pushed to extraVList:

z1 ∗ z1︸ ︷︷ ︸
z2

∗ z1
x

extraVList

d :=
3− 1

2
= 1 v := z2
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Now the exponent is 1, z2 is pushed into the front of extraV List and the loop ter-
minates. To get the single and final z-variable, the product of each two elements of
extraV List are replaced as follows:

z2 ∗ z1︸ ︷︷ ︸
z3

∗ x

︸ ︷︷ ︸
z4

z2 z1 x

extraVList

m := z4

Example 3.2.4. In Example 3.2.2 we have seen how a monomial x9y2 is linearized
in an abstract way (Equation 3.1). In this example we will see how Algorithms 6
and 8 are executed to linearize the monomial x9y2. When abstractMonomial(x9y2) is
invoked it executes as follows:

• For x9 in m, abstractUnivariateMonomial(x, 9) is invoked (line 3, Algorithm
6). The exponent 9 is odd, therefore it is decreased by 1 and x is pushed into
extraVList:

x ∗ x︸ ︷︷ ︸
z1

∗x ∗ x︸ ︷︷ ︸
z1

∗x ∗ x︸ ︷︷ ︸
z1

∗x ∗ x︸ ︷︷ ︸
z1

∗ x

extraVList

d :=
9− 1

2
= 4 v := z1

Now the exponent d = 4 is even:

z1 ∗ z1︸ ︷︷ ︸
z2

∗ z1 ∗ z1︸ ︷︷ ︸
z2

d :=
4

2
= 2 v := z2

The exponent d = 2 is still even:

z2 ∗ z2︸ ︷︷ ︸
z3

d :=
2

2
= 1 v := z3

Now, d = 1 and the loop terminates. Then z3 is pushed into the front of
extraV List and the product of each two elements of extraV List are replaced as
follows:
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z3 ∗ x︸ ︷︷ ︸
z4

z3 x

extraVList

The method abstractUnivariateMonomial(x, 9) returns z4 (line 9, Algorithm 8).
Now, z4 is pushed back into vList (line 3, Algorithm 6).

z4

vList

• For y2 in m, abstractUnivariateMonomial(y, 2) is invoked (line 3, Algorithm 6).
The exponent 2 is even:

y ∗ y︸︷︷︸
z5

d :=
2

2
= 1 v := z5

So, abstractUnivariateMonomial(y, 2) returns z5 that is pushed back into vList
(line 3, Algorithm 6).

z5z4

vList

• Lastly, the product of each two elements of vList are replaced by z-variables from
left to right according to Equation 3.2 and abstractMonomial(x9y2) returns z6

(line 5 and 6, respectively, Algorithm 6).

z4 ∗ z5︸ ︷︷ ︸
z6

z4 z5

vList

3.2.2 checkCore()

So far, we have seen the linearization process of the input formula ϕ done by
addCore(ϕi) for each sub-formula ϕi of ϕ in detail. Now, further computations will
be handled by checkCore(). This method will check the satisfiability of the linearized
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formula ϕ̂. If ϕ̂ is satisfied, we will check whether the solution for the linear abstrac-
tion is also a solution for the non-linear formula ϕ. If it is the case, we are done.
Otherwise, we will try to modify the solution for the linear abstraction in order to
make it satisfying for ϕ. If we succeed, then we are done and ϕ is satisfiable. Oth-
erwise, we refine the abstraction by adding some additional information about the
properties of multiplication, expressed by linear formulas. This refinement process is
the core functionality of checkCore() and our thesis work as well.
The algorithm checkCore is shown in Algorithm 9. A set A is initialized as empty
(line 1). Then a while loop iterates until satisfiability can be decided (lines 2 to 11);
note that, to assure termination, we could also restrict the number of loop iterations
by adding an upper bound on it in the while-loop condition. In each loop iteration,
the abstraction ϕ̂ is passed to an SMT solver for LRA which returns either SAT or
UNSAT or UNKNOWN (line 3). If it returns SAT, it will also return a satisfying
model µ̂ for ϕ̂ and our work starts. Otherwise, checkCore() terminates by returning
UNSAT or UNKNOWN (lines 4 to 5).
Now, createEstimatedAssignment(ϕ, ϕ̂, µ̂) is invoked which will try to generate a
model µ for ϕ by adapting the model µ̂ for ϕ̂ (line 6). We have already mentioned
in Section 3.2.1 that the linearization introduced in [CGI+18] is modified not to use
uninterpreted functions but variables for the abstraction. The adaptation is relatively
straightforward, but the main difference is that now the solution to the linearization
problem does not necessarily provide assignments to all variables. That is why we
need some additional heuristic to get the assignments of variables which occur in the
original formula ϕ. So, our idea is first to check if µ̂ contains any solutions for original
variables and add it to µ. Then we guess values for the remaining original variables.
In our work, we always guess the value zero. We have named µ estimated model. Once
we find this extended model, we check if it satisfies ϕ (line 7). If ϕ is satisfied by µ,
we get SAT (line 8 to 9). SAT means our assumption (if any) is correct. Otherwise,
the refinement process is performed.

Algorithm 9 The algorithm checkCore
checkCore()
1: A := ∅
2: while true do
3: 〈result, µ̂〉 := SMT-LRA-Solver(ϕ̂)
4: if result is not sat:
5: return result
6: µ := createEstimatedAssignment(ϕ, ϕ̂, µ̂)
7: 〈sat〉 := isNRASatisfied(ϕ, µ)
8: if sat:
9: return sat

10: A := Refinement(µ̂)
11: ϕ̂ := ϕ̂ ∧

∧
ψ∈A

ψ

Refinement is a process by which we try to remove the spuriousness of a linearized
model µ̂ by adding some axioms to ϕ̂ from a list of axioms so that the solution
scopes get limited. We have already mentioned that our work is inspired by the work
[CGI+18]. We have used the same list of axioms shown in Figure 2.1 with some
modifications. We will discuss our contribution to the refinement process in the next
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section. Refinement is responsible for extending the abstraction with axioms that are
not satisfied by µ̂ (line 10). These unsatisfied axioms are collected into A. Lastly,
each axiom ψ ∈ A is conjoined to ϕ̂ (line 11) and proceed to the next loop iteration
with the refined ϕ̂.

3.2.3 Refinement Process

The refinement process aims to prevent spurious assignments of the linearized model
to multiplication terms, so that we can get closer and closer to the input NRA formula
being satisfied. For each multiplication term, it is checked whether the linearized
model satisfies all axioms shown in Figure 3.1. We are not concerned about satisfied
axioms, but the unsatisfied axioms. Unsatisfied axioms are collected to a set A for
each multiplication term (Algorithm 9, line 12). Each unsatisfied axiom of A is added
to the linearized formula and again it is passed to the SMT LRA solver. Further
computation remains the same as explained in Section 3.2.2.
The generation of axioms shown in Figure 2.1 is already done in [CGI+18]. We
generate those differently as we do not encode them as the uninterpreted function,
but another way. So, our contribution is now to generate those in our way. That is
why our list of axioms shown in Figure 3.1 is different from the list in Figure 2.1.

We have generated the axioms by encoding them as variables for each multiplication
term. If we notice, we can see some other differences between the Figures 3.1 and 2.1:

• We have ignored the axioms of type Sign and Commutativity because we do
not have parameters. That is why we do not have these expressions (i.e.,
f(x, y), f(−x,−y), f(y, x) and so on) in the formula. We only have z and if
we refine, then we will have x and y.

• We handle square expressions differently than normal multiplication by intro-
ducing a special axiom for squares instead of a tangent plane which is more
appropriate. The axiom is similar. Instead of two values for the variables, we
have only one value because the variables are the same. Let z2

1 be abstracted
by z means that z = z1 ∗z1 and their assignments are, µ̂(z) = v and µ̂(z1) = v1.
Now, if v 6= v2

1 , we will add our newly introduced axiom for square expression
to A instead of the old one.

• Congruence for equalities is added as an axiom whether it satisfies for double
multiplication terms. Let two multiplication terms be encoded as z = z1 ∗ z2

and z′ = z′1 ∗ z′2. The assignments are, µ̂(z) = v, µ̂(z1) = v1, µ̂(z2) = v2, µ̂(z′) =
v′, µ̂(z′1) = v′1 and µ̂(z′2) = v′2.

if ¬((v1 = v′1 ∧ v2 = v′2)→ v = v′),

add ((z1 = z′1 ∧ z2 = z′2)→ z = z′) to A.

ICP Axioms: We have also contributed to this work by proposing an entirely new
type of axioms based on integral constraint propagation (ICP). We named this type
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Zero:

∀x, y.(x = 0 ∨ y = 0)↔ z = 0

∀x, y.((x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0))↔ z > 0

∀x, y.((x < 0 ∧ y > 0) ∨ (x > 0 ∧ y < 0))↔ z < 0

Monotonicity:

∀x1, y1, x2, y2.((abs(x1) ≤ abs(x2)) ∧ (abs(y1) ≤ abs(y2)))→

(abs(z1) ≤ abs(z2))

∀x1, y1, x2, y2.((abs(x1) < abs(x2)) ∧ (abs(y1) ≤ abs(y2)) ∧ (y2 6= 0))→

(abs(z1) < abs(z2))

∀x1, y1, x2, y2.((abs(x1) ≤ abs(x2)) ∧ (abs(y1) < abs(y2)) ∧ (x2 6= 0))→

(abs(z1) < abs(z2))

Tangent plane:

∀x, y.(z = a ∗ y) ∧ (z = x ∗ b) ∧

(((x > a ∧ y < b) ∨ (x < a ∧ y > b))→ z < b ∗ x+ a ∗ y − a ∗ b) ∧

(((x < a ∧ y < b) ∨ (x > a ∧ y > b))→ z > b ∗ x+ a ∗ y − a ∗ b)

∀x, y.(x = a→ z = a ∗ x) ∧ (x 6= a→ z > 2 ∗ a ∗ x− a2) (for square expr. z = x2)

Congruence:

∀x1, y1, x2, y2.((x1 = x2) ∧ (y1 = y2))→ (z1 = z2)

Table 3.1: The list of axioms for refining multiplications z = x ∗ y and zi = xi ∗ yi,
i = 1, 2

of axioms ICP axioms. Let us consider z = x ∗ y such that µ(z) 6= µ(x) ∗ µ(y) and let
us take the absolute values of x, y and z:

abs(µ(x)) = a, abs(µ(y)) = b abs(µ(z)) = c

If one of a, b or c is zero or if c = a ∗ b, then we apply the Zero axioms. Assume in
the following a, b, c 6= 0 and c 6= a ∗ b.
Now, if c is lower than a ∗ b (i.e., c < a ∗ b), then we can decrease a and b such that
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their product is still above c. We choose a′ and b′ in a way that c′ = a′ ∗ b′ and
c < c′ < a ∗ b in order to exclude c. For example, we fix the value of a and modify the
value of b by making it smaller. In Figure 3.2, we make b smaller by choosing any b′
such that it is still larger than c

a which is the first case in the following. Furthermore,
it will still lead to a product a ∗ b′ that is larger than c, but closer than c to a ∗ b.
Similarly, we can do it for a which is the second case in the following (Figure 3.3).

• c < a ∗ b′ or, ca < b′ and 0 < b′ ≤ b
We choose, ca < b′ ≤ b

• c < a′ ∗ b′ or, c
b′ < a′ and 0 < a′ ≤ a

We choose, c
b′ < a′ ≤ a

a ∗ b′

a ∗ b

c

c

a
b

b′
y

a ∗ y

Figure 3.2: Fix a and modify b if c < a ∗ b′

Notice that a and b are positive and we know that their product is not c.
So, for c < a ∗ b we have two axioms, generalizing the above observations also to the
negative domain (remember we defined c′ = a′ ∗ b′):

1.
((x ≥ a′ ∧ y ≥ b′) ∨ (x ≤ −a′ ∧ y ≤ −b′))→ (z ≥ c′)

2.
((x ≥ a′ ∧ y ≤ −b′) ∨ (x ≤ −a′ ∧ y ≥ b′))→ (z ≤ −c′)

Let us consider now c > a∗b. That means we guessed the product too high. Dually to
the previous case we take some values a′ and b′ above a and b respectively such that
a′ ∗ b′ is still below c and state that for all pairs of values below a′ and b′ respectively,
their product is less than a′ ∗ b′. This way, we say that a ∗ b is at most a′ ∗ b′. So, c
will be excluded.
In the same way, we can choose a′ and b′ either the minimum (a and b, respectively)
or arbitary near the maximum (c+ ε) or something in between:
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∗a
′

b
′

a ∗ b

c

c

b′
a

a
′

x

x ∗ b
′

Figure 3.3: Fix b and modify a if c < a′ ∗ b′

• c > a ∗ b′ or, b′ < c
a and 0 < b ≤ b′

We choose, b ≤ b′ < c
a

• c > a′ ∗ b′ or, a′ < c
b′ and 0 < a ≤ a′

We choose, a ≤ a′ < c
b′

So, for c > a ∗ b we have one axiom, which covers also the case for zero values and the
symmetric case for negative values:

(−a′ ≤ x ≤ a′) ∧ (−b′ ≤ y ≤ b′)→ (−c′ ≤ z ≤ c′)

Heuristics: We have also contributed to this work by using different heuristics to
identify the unsatisfied axioms. Our primary goal of using different heuristics in
the refinement process is to identify unsatisfied axioms in a way so that the axiom
generation is computationally not too expensive and adding them for refinement will
exclude a relatively large or search-wise “relevant” part of the state space. In other
words, different heuristics will help us to find the best way of refinement. Generally,
there are maximum number of unsatisfied axioms we can use for refinement. We may
control the number of unsatisfied axioms to be added to A. We can start checking with
the easiest axioms. So, we check the Zero axioms for all multiplication terms. If we
find any unsatisfied Zero axiom, then we add it to the linearized formula and re-check.
We can also check any axioms regardless of whether the axiom is the easiest one for
all multiplication terms. Then, collect all unsatisfied axioms to A which are added
to the linearized formula and re-check. Moreover, we can remove some unsatisfied
axioms from A before adding it to the linearized formula. So, there are no specific
rules to generate A. If A is not empty, we refine and continue. If A is empty, we think
about the next axiom type.
We have tried different heuristics and observed the running times for evaluation. We
have tried to conclude whether it is better to add always one unsatisfied axiom to A
or it is better to add one for each multiplication term or some multiplication terms.
We play around because we know that we will not get the same solution for different
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heuristics. It is entirely up to us how we want to play with the axioms. That is
why we try different ways to compute the running time and evaluate to find the best
heuristic.
We have defined five types of axioms in our work: Zero axiom, Monotonicity axiom,
Tangent plane axiom, Congruence axiom and ICP axiom. Each heuristic will be
applied to different sequences of these axiom types for collecting unsatisfied axioms.
It is up to us how we want to make different sequences of axiom types. We try to place
the lightweight axiom type first in the sequences. We have used 7 different sequences
of axiom types:

1. Sequence 1: Zero, Tangent plane, ICP, Congruence, Monotonicity.

2. Sequence 2: Tangent plane, Zero, ICP, Congruence, Monotonicity.

3. Sequence 3: Tangent plane, ICP, Zero, Congruence, Monotonicity.

4. Sequence 4: ICP, Zero, Tangent plane, Congruence, Monotonicity.

5. Sequence 5: ICP, Tangent plane, Zero, Congruence, Monotonicity.

6. Sequence 6: Congruence, Zero, Tangent plane, ICP, Monotonicity.

7. Sequence 7: Monotonicity, Zero, Tangent plane, ICP, Congruence.

Each solver instance uses one of the above sequences and maintains a pointer that
initially points to the first entry in the sequence. For each refinement, the axiom type
to which the pointer points to is considered for refinement and the pointer is moved
to the next entry (or to the first one after considering the last entry). This is repeated
until an axiom type if found that could be used for refinement, i.e., until an axiom of
that type is detected to be violated by the linear solution. For the next refinement
we continue at the same position in the list, i.e., we do not start each time at the
beginning of the sequence.
For each of the above axiom type sequences, we use 3 different heuristics to decide
how many axiom instances we want to consider for the refinement:

1. Heuristic 1 (FIRST): Each loop will be run over the axioms following a given
fixed order (one of the 7 orders above). It will search in this order for an axiom
instance that is violated by the solution for the abstraction. The first such
axiom instance is added to A and the refinement process terminates.

2. Heuristic 2 (ALL): Similarly to 1, but when a violating axiom instance is
found, then all violating instances of the given axiom are added to A.

3. Heuristic 3 (RANDOM): Similarly to 2 but here a percentage of unsatisfied
axioms are deleted from A randomly. We have also chosen this percentage
randomly from 25% to 50% of the size of A.

Notice that if we apply each heuristic over each sequence, we will get 21 different
solutions for ϕ̂. We compute running time and evaluate it in different ways. The
evaluation results are discussed in Chapter 5.
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Chapter 4

Implementation

4.1 SMT-RAT

We implemented our algorithm in the SMT toolbox called SMT-RAT which is entirely
written in C++. Modules are the elementary architectural components of SMT-RAT.
SMT-RAT is extensible: It is possible to integrate SMT-RAT with new modules which
can act as a theory solver. The execution order of modules is defined in a strategy
which is a directed graph. Depending on the requirement, different strategies may
contain different module references in a different order. Modules can have settings
arguments. So, several strategies can have the same order of modules but with dif-
ferent settings parameter. Settings are some configurations which can be used to
configure a module in different ways without changing the code. SMT-RAT takes as
input, additionally to a formula, the name of a strategy that defines which modules
need to be executed in which order to decide the satisfiability of the input formula.
SMT-RAT outputs SAT if a formula is satisfiable, UNSAT if a formula is unsatisfiable
and UNKNOWN if satisfiability cannot be decided. Figure 4.1 shows an overview of
the architecture of SMT-RAT.
We can see the toolbox has various kinds of modules for example, SATModule,
LRAModule, NRAILModule and so on. Here, SATModule is a SAT solver and there
are other modules which are theory solvers e.g. LRAModule, NRAModule. Besides
SAT solver and theory solvers, there are other modules which are only responsible
for some preprossessing, e.g. the FPPModule. The module NRAILModule is our
implemented module. There are different strategies available and one of them is
NRARefinementSolver which is our defined strategy. In strategies, the modules are
connected hierarchically as a directed graph. A module in a strategy can only use
its direct successor modules for computation because a module may need the help of
another module. A module is addressed as backend and frontend for its direct an-
cestor and successor modules, respectively. Note that a module does not know which
module is its successor or ancestor module.

4.2 NRARefinementSolver

The class NRARefinementSolver is a strategy where the order of the modules is de-
clared hierarchically as shown in Figure 4.1. The first module of this strategy is
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NRAILModule

SATModule

LRAModule

SMT-RAT

Strategies
NRARefinementSolver

Modules

NRAILModule

CSplitModule

BVModule

NRASolver

. . . 

. . . 

. . . 

LRAModule

SATModule

. . . 

. . . 

. . . 

Name of the
Strategy

Input
Formula

SAT/UNSAT/UNKNOWN

Input
Output

Figure 4.1: Overview of the architecture of SMT-RAT

NRAILModule which implements incremental linearization for real arithmetic as de-
scribed in Chapter 3. The next module SATModule creates a boolean skeleton of
formula and solves the resulting formula with the SAT solver MiniSat, where af-
ter each completed decision level the constraints belonging to the assigned boolean
variables are checked for consistency by the backend LRAModule of the SATmod-
ule [CKJ+15]. If LRAModule finds inconsistency, then it provides an unsatisfiable
core which is abstracted and participated in search for a satisfying solution. The
LRAModule implements an SMT compliant Simplex method which is a method for
solving LRA constraint sets [CKJ+15]. In the following we will explain the significant
implementation details of the module NRAILModule.

4.2.1 NRAILModule

In order to be a module of SMT-RAT, the class NRAILModule has to be a child
of class Module. A basic module can implement the functions informCore, addCore,
removeCore, updateModel and checkCore. Our module implements the functions ad-
dCore and checkCore whose algorithms are briefly described in the Sections 3.2.1 and
3.2.2, respectively.

4.2.1.1 Mapping of z-variable to Multiplication Term

In Section 3.2.1.2 we have seen how a monomial m is abstracted by z-variables (i.e.,
z1, z2, . . . , zi for some i ∈ N) following Algorithm 6. During the abstraction, it is
mandatory to keep track of the z-variables and their corresponding encapsulated
multiplication terms (i.e., x∗x, x∗y and so on). There are two reasons to keep track.
Firstly, each z-variable and its corresponding encapsulated multiplication term are
used to construct formulas for different axiom types. Secondly, we want to prevent the
recreation of different z-variables for the same multiplication term. At the beginning,
we kept each z-variable and its corresponding encapsulated multiplication term in a
pair data structure and collected these pairs in a list data structure for some i ∈ N:

pairi = [zi, termi]
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List = [pair1, pair2, . . . , pairk]

To create formulas for axioms, it is enough to iterate over the pairs in the list. In
our thesis work, we estimated assignments for an input NRA formula ϕ (see line 8,
Algorithm 9). However, in future, we want to create NRA model and for that, we
need to know which term is encapsulated in each z-variable to reach the original
terms of ϕ (see Equation 3.1, Example 3.2.2). That means we have to search over the
list. So, we have to implement a search operation for searching multiplication terms
abstracted by z-variables, whereas map comes with the search by key out of the box.
Thus, we use a map to keep the track. Map stores key-value pairs and we keep each
z-variable as a key and its corresponding abstracted multiplication term as value:

Map = [(z1, term1), (z2, term2), . . . , (zk, termk)]

Extends

Singleton<T>

+ getInstance(): T

MonomialMappingByVariablePool

+ mMonomialMapping: std::unordered_map

+ nullVariable: Variable

+ insertMonomialMapping(variable, monomial): void

+ monomial(variable): monomial

+ variable(monomial): variable

Figure 4.2: Class diagram of mMonomialMapping

From Figure 4.2, we can see there is an internal map mMonomialMapping where we
keep the z-variables and multiplication terms. We also declared a special variable
called nullVariable which we used to express that a monomial has no abstraction
variable in the map (see below). The function insertMonomialMapping takes a z-
variable and corresponding multiplication term as monomial and then insert them
into the internal map. The function monomial takes a z-variable and searches it in
the mMonomialMapping. If it finds the z-variable, then it returns the corresponding
multiplication term as a monomial. Otherwise, it returns a null pointer. Similarly,
the function variable takes a multiplication term as monomial and searches it in
the mMonomialMapping. If it finds the monomial, then it returns the z-variable.
Otherwise, it returns the nullVariable.

4.2.1.2 Generation of Axiom Formulas

AxiomFactory is a class that creates formulas for different axiom types. We already
know that there are five types of axioms in our work: Zero axiom, Monotonicity
axiom, Tangent plane axiom, Congruence axiom and ICP axiom. We have defined a
data type for each type of axiom in the enum class AxiomType as follows:
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Axiom Type Data Type
Zero ZERO

Monotonicity MONOTONICITY
Tangent plane TANGENT_PLANE
Congruence CONGRUENCE

ICP ICP

Figure 4.3 shows the class diagram of AxiomFactory. The class AxiomFactory has
a function createFormula that creates axiom formulas depending on the parameter
AxiomType. The function has another parameter of Model type that is a model
linearizedModel containing the satisfying assignments for the elements of the map
mMonomialMapping. We have mentioned earlier in Section 3.2.3 that the linearized
model can be partial for some multiplication terms which are stored in the map
mMonomialMapping ; in this case we guess the missing values for the variables in
those multiplication terms. Therefore, we combine the linearized model mModel with
the guessed values for the rest of the variables into the linearizedModel and then it is
passed to the function createFormula.
We create two Data Transfer Objects called VariableCapsule and RationalCapsule.
VariableCapsule and RationalCapsule encapsulate three Variable objects and Rational
objects, respectively. We introduce these data transfer objects to avoid long parameter
lists.
We have defined different functions to generate formulas for different axiom types in
AxiomFactory. We use SMT-RAT APIs to create the formulas in these functions.
If AxiomType is ZERO or TANGENT_PLANE or ICP, we extract variables from
each map element and the extracted variables will be encapsulated in VariableCap-
sule. Afterwards, we use this VariableCapsule to generate formulas for the passed
AxiomType. Remember that the list of different types of axioms is shown in Figure
3.1. When the AxiomType is ZERO, we only pass VariableCapsule to create axiom
formulas because we do not need assignments of the variables encapsulated in the
VariableCapsule. Otherwise, for AxiomType TANGENT_PLANE or ICP, we pass
both VariableCapsule and RationalCapsule to create axiom formulas.

AxiomFactory

+ createZero(VariableCapsule): FormulasT

+ createTangentPlaneNEQ(VariableCapsule, RationalCapsule): FormulasT

+ createTangentPlaneEQ(VariableCapsule, RationalCapsule): FormulasT

+ createMonotonicity(VariableCapsule, VariableCapsule, Model): FormulasT

+ createCongruence(VariableCapsule, VariableCapsule): FormulasT

+ createICPGreater(VariableCapsule, RationalCapsule): FormulasT

+ createICPLess(VariableCapsule, RationalCapsule): FormulasT

+ createFormula(AxiomType, Model): FormulasT

Figure 4.3: Class diagram of AxiomFactory

If the AxiomType is MONOTONICITY or CONGRUENCE, then similarly, we iter-
ate over the map, but for each iteration, we iterate over the map again by a nested
loop. So, we have one outer and one inner loop. Then, we have extracted variables
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to be encapsulated in VariableCapsule objects for the outer and inner loop. Here,
the first and the second parameter of the functions createMonotonicity and create-
Congruence represent the corresponding VariableCapsule objects as outer and inner
loop, respectively. The function createMonotonicity also has a third parameter of
Model type. The implementation of createMonotonicity(VariableCapsule, Variable-
Capsule, Model) is different from other formula creator functions and we will explain
the implementation details in the next section.

4.2.1.3 Generation of Formulas for Monotonicity

From Figure 3.1, we can see that we have to generate axiom formulas for Monotonicity
axiom with the absolute value of the variables i.e., abs(x1), abs(y1), abs(z1) and so on,
for each multiplication term. There is no built-in function in SMT-RAT to create
a formula with absolute value. To solve this problem, first we create an equivalent
formula for the absolute value of each variable x by introducing a new auxiliary
variable aux_x for x as follows:

abs(x) := (x ≥ 0→ aux_x = x) ∧ (x < 0→ aux_x = −x)

Then as shown in Figure 4.4, we create equivalent formulas for each constraint i.e.,
abs(x1) ≤ abs(x2), abs(y1) ≤ abs(y2), abs(z1) ≤ abs(z2) and so on, of the original
Monotonicity axiom formulas (Figure 3.1). Note that in Figure 4.4, the relation
between two auxiliary variables depends on the relation between the absolute values of
the two variables of the constraint. Finally, connect the equivalent formulas according
to their connecting logical operators.

abs(x1) ≤ abs(x2) := x1 ≥ 0→ aux_x1 = x1 ∧
x1 < 0→ aux_x1 = −x1 ∧
x2 ≥ 0→ aux_x2 = x2 ∧
x2 < 0→ aux_x2 = −x2 ∧
aux_x1 ≤ aux_x2

Figure 4.4: Equivalent formula for a constraint with absolute value of variables

In Section 3.2.3, we have seen how we find the unsatisfied axiom formulas to be added
to the linearized formula. The axiom formulas are called unsatisfied axiom formulas if
they are not satisfied by the linearized model. But for AxiomType MONOTONICITY
we cannot find the unsatisfied formulas until the linearized model has the assignments
for the auxiliary variables. That is why we thought to create such a model which
contains the assignments for auxiliary variables. For this, we had to guess a value
for each auxiliary variable. We wanted to try two different values for each auxiliary
variable (i.e., aux_x1 = x1 or aux_x1 = −x1 and aux_x2 = x2 or aux_x2 = −x2)
containing in a constraint to check if the considered values satisfy the equivalent
formula of this constraint. If we find such a value, then we will assign this as a value
to the auxiliary variable. Otherwise, we can choose any of two different values. So,
for each constraint, we have to try out four different combinations of values for the
two auxiliary variables. This solution can make our refinement process more costly
and the performance may decrease a lot. That is why we do not pick this solution
instead think about other optimized solution.
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We create a model absoluteValuedModel which contains the absolute value of vari-
ables of the model linearizedModel. This absoluteValuedModel is passed as the third
parameter of the function createMonotonicity which was mentioned in the previous
section. The function createMonotonicity creates Monotonicity axiom formulas as
shown in Figure 3.1 for a pair of multiplication terms and checks if these are unsatis-
fied by absoluteValuedModel. If unsatisfied formulas are found, then their equivalent
formulas are generated and accumulated into the List monotonicityFormulas. Once
all unsatisfied formulas are collected for that pair of multiplication terms, the function
createMonotonicity returns monotonicityFormulas to its caller method.

4.2.1.4 Module Settings

We apply each possible combination of three heuristics and seven sequences of axiom
types in the refinement process to find less costly pair of heuristic and sequence. We
need to declare them somewhere so that we can choose any combination easily. SMT-
RAT provides Settings API by which we can declare various settings and afterward we
have to set the required settings in the strategy as a module parameter. At run-time,
we can read the settings from the module and perform the selected settings spe-
cific operation. So, we have to declare 21 different settings namely NRAILSettings1,
NRAILSettings2, . . . , NRAILSettings21.
Now we will explain how we declare our different settings for NRARefinementSolver.
Each setting must point to a heuristic and a sequence of axiom types. We declare an
enum class UNSATFormulaSelectionStrategy to represent the heuristics. This class
has three enum types for three heuristics: FIRST for heuristic 1, ALL for heuris-
tic 2 and RANDOM for heuristic 3. Each setting has one of these defined enum
types. Then we declare a sequence of axiom types in an array by putting the enum
types of enum class AxiomType sequentially. This array contains one of the sequences
(Sequence 1, . . . , Sequence 7). So, the refinement process is performed over the
axiom types in the same sequence as decelerated in the selected settings and col-
lects unsatisfied formulas according to defined heuristic in those settings. We used
NRAILSettings1 as specified in Figure 4.1 as our default settings.

Listing 4.1: Default settings

1 struct NRAILSettings1
2 {
3 moduleName = "NRAILModule<NRAILSettings1>" ;
4

5 UNSATFormulaSelectionStrategy
6 f o rmu laSe l e c t i onS t ra t egy = UNSATFormulaSelectionStrategy : : ALL;
7

8 AxiomFactory : : AxiomType
9 axiomType [ 5 ] = {AxiomFactory : : AxiomType : : ZERO,

10 AxiomFactory : : AxiomType : :TANGENT_PLANE,
11 AxiomFactory : : AxiomType : : ICP ,
12 AxiomFactory : : AxiomType : :CONGRUENCE,
13 AxiomFactory : : AxiomType : :MONOTONICITY} ;
14 } ;
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As we have 21 different settings, we have also created 21 different strategies namely
NRARefinementSolver1, NRARefinementSolver2, . . . , NRARefinementSolver21 with
NRAILSettings1, NRAILSettings2, . . . , NRAILSettings21, respectively. Each of them
are copies of NRARefinementSolver shown in Figure 4.1 but with corresponding set-
tings as module parameter. The strategy NRARefinementSolver has the default set-
tings.
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Chapter 5

Experimental Results

5.1 Experimental Setup

We evaluate our implementation by running some benchmarks over different strategies
as well as solvers. We have used QF_NRA benchmarks [SMT16] from SMT-LIB
[BFT16]. We run the benchmarks on a cluster having multiple processors of 2.10
GHz Intel Xeon Platinum 8160 and 8GB of memory per process. We decided to use
a timeout of 120 seconds (s) per problem instance for the experiment.

5.2 Results

We have already described in Section 4.2.1.4 that we use different strategies
NRARefinementSolver1, NRARefinementSolver2, . . . , NRARefinementSolver21 which
are mentioned as smtrat1, smtrat2, . . . , smtrat21, respectively in this chapter. The
results for smtrat1, smtrat2, . . . , smtrat21 without preprocessing (WoP) are reported
in Table 5.1 where the first column contains the solver’s name. The second and third
column contains the number of satisfiable and unsatisfiable instances that could solve
within the time limit, respectively, with average solving time. The total number of
solved instances with the percentage of the solution is reported in the last column
from worst to best. The detailed settings of each solver are also provided in Table 5.2
by a pair of heuristic type and sequence of axiom types (Section 4.2.1.4).
Table 5.1 shows some interesting aspects. The solver smtrat4 performs the best,
whereas smtrat7 performs the worst. However, smtrat11 and smtrat3 solve the highest
number of satisfiable and unsatisfiable instances, respectively. It is noticeable that six
solvers of heuristic type ALL which is marked green perform the best in a row. On
the other hand, the rows marked red highlight all solvers of heuristic type RANDOM
perform worse than other solvers in a row. Also, this group of solvers solves less
unsatisfiable instances compared to other solvers. We can see that smtrat7, smtrat14
and smtrat21 share the same sequence of axiom types from Table 5.2. Interestingly,
two solvers smtrat7 and smtrat21 (both are marked black) among these three solvers
rank at the last which demonstrates that sequence 7 is not effective because it has
the most expensive axiom Monotonicity at the very beginning of the sequence. The
sequence 4 is followed by both our best solver smtrat4 and the highest number of
satisfiable instances solving solver smtrat11. Moreover, smtrat4 and smtrat11 take less
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Table 5.1: Number of solved instances for our solvers without preprocessing (WoP)

Solver SAT UNSAT Overall

smtrat7 1678 2.53 s 3806 1.88 s 5484 47.7 %
smtrat21 1735 3.06 s 3759 1.91 s 5494 47.8 %
smtrat13 1867 1.12 s 3659 1.12 s 5526 48.1 %
smtrat14 1893 1.68 s 3646 1.19 s 5539 48.2 %
smtrat9 1899 1.39 s 3659 1.30 s 5558 48.4 %
smtrat10 1895 1.54 s 3664 1.30 s 5559 48.4 %
smtrat12 1902 1.61 s 3657 1.14 s 5559 48.4 %
smtrat11 1916 1.21 s 3663 1.17 s 5579 48.6 %
smtrat8 1914 1.39 s 3669 1.24 s 5583 48.6 %
smtrat16 1801 1.94 s 3818 1.84 s 5619 48.9 %
smtrat20 1813 1.70 s 3810 1.83 s 5623 48.9 %
smtrat17 1809 1.99 s 3827 1.92 s 5636 49.1 %
smtrat19 1831 1.83 s 3816 1.83 s 5647 49.2 %
smtrat18 1817 2.28 s 3840 2.10 s 5657 49.2 %
smtrat15 1859 2.34 s 3826 2.04 s 5685 49.5 %
smtrat6 1811 1.84 s 3911 1.99 s 5722 49.8 %
smtrat5 1828 1.94 s 3897 1.76 s 5725 49.8 %
smtrat1 1820 1.79 s 3908 1.61 s 5728 49.9 %
smtrat2 1827 1.99 s 3902 1.75 s 5729 49.9 %
smtrat3 1810 1.73 s 3924 2.17 s 5734 49.9 %
smtrat4 1849 1.64 s 3914 1.67 s 5763 50.2 %

solving time on average for both instances than most of the solvers. So, it can be said
that sequence 4 is the most effective sequence where our defined axiom ICP is placed
at the beginning and ICP helps to reach the solution more quickly. It also can be said
that a pair of heuristic type ALL and sequence 4 helps to improve the performance
of a solver. Therefore, we decide to consider smtrat4 for further evaluation which
follows heuristic type ALL to collect unsatisfiable axioms by performing refinement
over sequence 4.

Table 5.3 has the same structure as Table 5.1. Here, we compare smtrat4 with other
two SMT solvers Z3 [dMB08] and MathSAT [CGSS13]. We have taken two versions
of smtrat4 which are without preprocessing (WoP) and with preprocessing (WP).
In order to compare the heuristics without external influence of other modules, we
switched off preprocessing. The solvers smtrat4 WoP and WP both get the same
original inputs but the former is without and the latter is with preprocessing help.
So, for compatibility, we add also a version WP. It is visible that Z3 and MathSAT
have much better performance than smtrat4 in all cases. The reason is that the
SMT solver Z3 implements expensive and complete techniques based on variants of
the cylindrical algebraic decomposition method [CGI+18]. We are rather interested
in comparing smtrat4 with MathSAT as they implement similar approaches. The
SMT solver MathSAT implements the incremental approach as described in [Irf18]
which was a Ph.D. thesis; we have implemented a slightly modified version of that
approach in our thesis, but our implementation is rather prototypical. Furthermore,
our algorithm does not contain some effective components that are implemented in
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Table 5.2: Settings of our solvers

Solver Heuristic type Sequence no / Sequence of axiom types
smtrat1

ALL

1 / Zero, Tangent plane, ICP, Congruence, Monotonicity
smtrat2 2 / Tangent plane, Zero, ICP, Congruence, Monotonicity
smtrat3 3 / Tangent plane, ICP, Zero, Congruence, Monotonicity
smtrat4 4 / ICP, Zero, Tangent plane, Congruence, Monotonicity
smtrat5 5 / ICP, Tangent plane, Zero, Congruence, Monotonicity
smtrat6 6 / Congruence, Zero, Tangent plane, ICP, Monotonicity
smtrat7 7 / Monotonicity, Zero, Tangent plane, ICP, Congruence
smtrat8

RANDOM

1 / Zero, Tangent plane, ICP, Congruence, Monotonicity
smtrat9 2 / Tangent plane, Zero, ICP, Congruence, Monotonicity
smtrat10 3 / Tangent plane, ICP, Zero, Congruence, Monotonicity
smtrat11 4 / ICP, Zero, Tangent plane, Congruence, Monotonicity
smtrat12 5 / ICP, Tangent plane, Zero, Congruence, Monotonicity
smtrat13 6 / Congruence, Zero, Tangent plane, ICP, Monotonicity
smtrat14 7 / Monotonicity, Zero, Tangent plane, ICP, Congruence
smtrat15

FIRST

1 / Zero, Tangent plane, ICP, Congruence, Monotonicity
smtrat16 2 / Tangent plane, Zero, ICP, Congruence, Monotonicity
smtrat17 3 / Tangent plane, ICP, Zero, Congruence, Monotonicity
smtrat18 4 / ICP, Zero, Tangent plane, Congruence, Monotonicity
smtrat19 5 / ICP, Tangent plane, Zero, Congruence, Monotonicity
smtrat20 6 / Congruence, Zero, Tangent plane, ICP, Monotonicity
smtrat21 7 / Monotonicity, Zero, Tangent plane, ICP, Congruence

MathSAT, like the adaptation of solutions for the linearization to satisfy the non-
linear problem, or their piecewise linear refinement technique for concave solution
spaces.
The solver smtrat4 WP solves above 2.3K satisfiable and 4.3K unsatisfiable instances
but smtrat4 WoP solves below 2K satisfiable and 4K unsatisfiable instances. So,
the performance of smtrat4 is increased by 8% while switching on preprocessing.
Also, smtrat4 performs much better for unsatisfiable benchmarks than satisfiable
benchmarks for both cases whether switching off or on preprocessing. We can see
that MathSAT solves above 3.5K satisfiable and 5.2K unsatisfiable instances. This is
27% more than smtrat4 WoP and 19% more than smtrat4 WP. Remember that our
solver outputs only UNSAT if the LRA formula is found unsatisfiable by the SMT
solver and SAT if the input NRA formula ϕ is satisfied by the model µ of its linear
abstraction (Figure 3.1). Here, we use a different theory solver than MathSAT to
solve LRA formulas. Furthermore, we only extend the LRA model µ̂ with values for
variables that do not occur in the linearization, but we did not implement the repair.
On the contrary, MathSAT tried to repair µ̂ which might help. Furthermore, we refine
the abstraction using different axioms and different heuristics.
Figure 5.1 shows survival plots for two versions of smtrat4, MathSAT and Z3. The
horizontal axis shows the number of instances solved within the corresponding time
and the vertical shows the runtime in seconds. The survival plots behave exponen-
tially. The solver smtrat4 WoP solves the least number of instances and Z3 solves
the highest number of instances within the time limit. However, smtrat WP and
MathSAT solve approximately 6.7K and 8.9K instances in total. Initially, both of
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Table 5.3: Comparison of smtrat4 with MathSAT and Z3

Solver SAT UNSAT overall

smtrat4 WoP 1849 1.64 s 3914 1.67 s 5763 50.2 %
smtrat4 WP 2336 1.55 s 4348 2.41 s 6684 58.2 %
MathSAT 3560 1.20 s 5286 1.80 s 8846 76.9 %
Z3 5044 2.14 s 5099 1.63 s 10076 87.9 %

the smtrat4 solvers start solving instances earlier than Z3 followed by MathSAT. The
performance of smtrat4 decreases later.
There are two scatter plots shown in the Figures 5.2 and 5.3. We have generated
these scatter plots to compare pairwise solvers on individual benchmark instances.
Each point (x, y) in a scatter represents a benchmark instance which was solved by
a solver in time x and another solver in time y. Points on the inner edges labeled
by T indicate timeouts, whereas on the outer edges labeled by M indicate memory
outs. We have chosen smtrat by switching on preprocessing to draw the scatter plots
because this solver performs better than switching off preprocessing.

Figure 5.1: Survival plots for smtrat4 WoP, smtrat4 WP, MathSAT and Z3

0k 2k 4k 6k 8k 10k 11.45k

10−2

10−1

100

101

102

103

# of solved instances

ru
nt
im

e
(s
)

smtrat4 WoP
smtrat4 WP
MathSAT
Z3

Figure 5.2 shows the scatter plot for smtrat4 WP with MathSAT. We can see a thick
cloud at (0, 0) which means that smtrat4 WP and MathSAT solve many instances
quickly. Then a thinner cloud extends linearly titled to the bottom especially near the
horizontal axis. So, MathSAT is faster than smtrat4 WP for most of the instances.
There is also a branch near the vertical axis; thus smtrat4 WP is also faster than
MathSAT for some instances. Besides, the dots on the edge T parallel to the vertical
axis implies the instances which were solved by MathSAT, but smtrat4 WP was unable
to solve those. Similarly, the dots on the edge T parallel to the horizontal axis implies
the opposite phenomena though the dots are in less number compared to the edge T
parallel to the vertical axis. We can see different behavior in Figure 5.3 which is the
scatter plot for smtrat4 WP and Z3. Here, the cloud is distributed. There is a cloud
splits with one branch near the horizontal axis and another branch near the vertical
axis. There are also some dots that are a bit tilted to the top or the bottom of the
linear line. It means that both solvers behave similarly to these instances. The solver
Z3 could also solve a massive number of instances for which smtrat4 WP results in
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timeouts.

Figure 5.2: Scatter plot for smtrat4 WP and MathSAT
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Figure 5.3: Scatter plot for smtrat4 WP and Z3
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We already know that we have defined three heuristic types and seven sequences of
axiom types. We have also seen that the pair of heuristic type ALL and sequence 4
can enhance the performance of a solver. In other words, ICP has an influence on the
enhancement of the performance. That is why we think about to play around with
the sequence by concentrating on ICP the highest. So, for experimental purpose we
create four additional SMT-RAT solvers (smtrat22, . . . , smtrat25) by switching on
preprocessing with the following sequences of axiom types but with the same heuristic
type ALL:
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• smtrat22 -> ICP, Zero, Tangent plane, Congruence

• smtrat23 -> ICP, Tangent plane, Zero, Congruence

• smtrat24 -> ICP, Zero, ICP, Tangent plane, ICP, Congruence

• smtrat25 -> ICP, Tangent plane, ICP, Zero, ICP, Congruence

Table 5.4: Summary of smrat4, other additional smtrat solvers, MathSAT and Z3

Solver SAT UNSAT overall

smtrat4 WP 2336 1.55 s 4348 2.41 s 6684 58.2 %
smtrat23 WP 2438 0.61 s 4449 2.31 s 6887 59.9 %
smtrat25 WP 2401 0.87 s 4490 2.50 s 6891 60.0 %
smtrat22 WP 2465 0.63 s 4443 2.39 s 6908 60.1 %
smtrat24 WP 2463 0.92 s 4463 2.40 s 6926 60.3 %
MathSAT 3560 1.20 s 5286 1.80 s 8846 76.9 %
Z3 5044 2.14 s 5099 1.63 s 10076 87.9 %

We exclude the axiom type Monotonicity from the sequence for each of these solvers
as Monotonicity is the most costly to generate. The results are reported in Table
5.4 which maintains the same structure as Tables 5.1 and 5.3. Compared to smtrat4
WP, the total number of solved instances has increased the most (2%) for smtrat24
WP. As a result, the difference between the overall performances of our solver and
MathSAT has decreased from 19% to 17%. Notice that smtrat24 follows almost the
same pattern of the sequence 4 except that ICP is inserted after each different axiom
type in its sequence. Figures 5.4 and 5.5 are the scatter plots for smtrat24 WP with
MathSAT and Z3, respectively. These two scatter plots have the same pattern as
the scatter plots for smtrat4 WP with MathSAT (Figure 5.2) and Z3 (Figure 5.3),
respectively.
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Figure 5.4: Scatter plot for smtrat24 WP and MathSAT
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Figure 5.5: Scatter plot for smtrat24 WP and Z3
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis work focuses on how we can decide the satisfiability of logical formulas.
Solving NRA formulas is costly compared to LRA formulas. For the ease of solving
NRA formulas, we perform abstraction. This thesis work is motivated by the Ph.D.
thesis [Irf18, CGI+18] and the idea is to create a LRA formula for the input NRA
formula by abstracting multiplication terms iteratively. If the LRA model does not
satisfy the NRA formula, then refinement is performed over a set of axioms to remove
spurious assignments until we get SAT or UNSAT or UNKNOWN. Moreover, we have
introduced three types of heuristics with different sequences of axioms for collecting
unsatisfiable formulas which are added to the LRA formula as refinement. We have
also introduced ICP axioms for refinement which is one of the future work of [CGI+18].
We have integrated this method as a module in SMT-RAT. We have evaluated the
performance of the module in Chapter 5. We have seen that the module can solve
53% instances in total. For now, the percentage is satisfactory as this module is a
prototype and there are scopes available to improve the module which is mentioned
in the following section. We were unable to implement these due to time limitations.
We expect a significant enhancement of the performance once the mentioned future
works will be integrating with the module.

6.2 Future Work

Due to time limitation, we could not complete some essential tasks which are needed
to make the solver more stable. In the future, we need more time to invest in the
following areas:

• We have already several axioms, but there are still further possibilities to add
axioms. Currently, we can exclude only boxes by ICP. However, it is also possible
to exclude regions of different shapes based on templates. That means we can
try other forms of areas which we want to exclude and then derive axioms for
them.

• So far, we have assigned the values of original variables by guessing if the lin-
earized model µ̂ does not have solutions for all original variables which may
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results in UNSAT for satisfiable benchmarks. So, it is essential to generate so-
lutions to original variables as well as other variables. For example, consider
the following formula:

ϕ := x4y2 − y > 5

The monomial x4y2 is linearized as follows and we get the linearized formula
ϕ̂ := z4 − y > 5:

x ∗ x︸ ︷︷ ︸
z1

∗x ∗ x︸ ︷︷ ︸
z1︸ ︷︷ ︸

z2

∗ y ∗ y︸︷︷︸
z3︸ ︷︷ ︸

z4

Now, ϕ̂ is passed to the SMT LRA solver and the solver outputs SAT with
linearized model µ̂ := {z4 = 16, y = 1.414}. Notice that ϕ̂ does not cover all
original variables. Currently, we extend µ̂ by guessing zero for x as well as
other variables z1, z2 and z3 which will in most cases lead us to the refinement
process. Hence, instead of assuming values we can find out the solutions for
these variables based on µ̂ (if available):

? z4 = z2 ∗ z3 = z2 ∗ y ∗ y. So, z2 = 4.

? z1 = 2 as z2 = z2
1 .

? Finally, x = 4.

In the future, we will integrate this feature to our solver which will resist going
through the refinement process unnecessarily for satisfiable benchmarks. Most
importantly this feature will enhance the solver’s performance by solving more
satisfiable instances.
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