Conflict Driven Cylindrical
Algebraic Coverings

for Nonlinear Arithmetic
in SMT Solving

Hanna Franzen

MASTER THESIS

13th February 2020

Examiners:)
Prof. Dr. Erika Abraham,
Prof. Dr. Jiirgen Giesl

Advisor:
Gereon Kremer M.Sc.

RWTH Aachen University
Informatik 2: Theory of Hybrid Systems

Abstract

The Cylindrical Algebraic Decomposition (CAD) algorithm is an
established algorithm which can be used to decide the Satisfiability
(SAT) of problems from the theory of non-linear real arithmetic.
Based on the same ideas, the new Cylindrical Algebraic Covering
(CACQ) algorithm based on using coverings instead of decompositions
was recently introduced [33]. It is designed to be used in SAT Modulo
Theories (SMT) solving. The CAC algorithm was implemented as
the main work for this thesis. It was realized as a module for the
toolbox SMT-RAT. The mechanisms used in the implementation and
the results of testing the implementation against an implementation
of the CAD algorithm are presented in this thesis.

iii

Contents

Contents
1 Introduction

2 Related Work
2.1 Satisfiability Modulo Theories Solving
2.2 Cylindrical Algebraic Decomposition

3 Theoretical Background
3.1 Satisfiability Modulo Theories solving
3.2 Cellso oo

4 Algorithm: Finding Cylindrical Algebraic Coverings

5 Implementation
5.1 Non-Incremental Approach
5.2 Incremental Approach

6 Test results
7 Conclusion
Glossary

Bibliography

13

21
22
34

37

41

43

45

Introduction

The Satisfiability (SAT) decision problem is one of the most fundamental
problems in computer science. It describes the problem to decide the
satisfiability of first-order Boolean formulae. A number of more complex
problems can be abstracted to the SAT problem.

One of these problems is the SAT Modulo Theories (SMT) decision
problem where the formula is not limited to Boolean variables but is com-
posed of constraints from a certain theory. Hence, the variables can have
values in an arbitrary domain and there can be additional operations and
relations, accordingly. The topic of SMT solving is an often researched
problem but there are some basic mechanics that are always present. The
input of an SMT solver is a formula consisting of a Boolean combination
of constraints that is to be examined. The SMT solver outputs a Boolean
value that describes the satisfiability of the input formula. Additionally,
the output includes a satisfying variable assignment or a reason for unsat-
isfiability, respectively.

The basic SMT solver is usually a combined system of solvers for two
domains, a SAT solver and a theory solver. The SAT solver examines
the Boolean structure of the input formula and can compute subsets of
constraints such that the satisfiability of their conjunction implies the
satisfiability of the input formula. The theory solver takes into account the
underlying logic, called theory in this context, to calculate the satisfiability
of the conjunction of the constraints from the subset.

In this thesis, a new algorithm designed to serve as a theory solver is
explored and implemented. The algorithm used is the Cylindrical Algeb-
raic Covering (CAC) algorithm recently introduced by Abrahém, Daven-
port, England, and Kremer [33]. It works on the theory of non-linear real
arithmetic (NRA).

The new CAC algorithm is based on the established Cylindrical Algeb-
raic Decomposition (CAD) algorithm that was first introduced by Collins
in 1975 [16]. The CAD algorithm is a method for quantifier elimination for
the real closed field, a problem that was shown to be decidable by Tarski
[31]. Relatively to Tarski’s method, the CAD method is much more ef-

1

2 CHAPTER 1. INTRODUCTION

ficient and was the first method to be practical [24]. As Tarski noted, a
quantifier elimination procedure can be used as a decision method [16].
Hence, the CAD algorithm is used in SMT solving to decide the satisfiab-
ility of constraints over the theory of non-linear real arithmetic. The CAC
algorithm aims at being faster than the CAD algorithm for the computa-
tion of unsatisfiability.

A history of SMT solvers and their usage as well as an overview of the
CAD algorithm are provided in Chapter 2. The theoretical background
of the basic concepts used in this thesis is introduced in Chapter 3. In
Section 3.1 the process of SMT solving is explained in detail. The concepts
on which the CAD algorithm is based are introduced in Section 3.2 as a
foundation for understanding the CAC algorithm. The basic process of
the CAC algorithm is explored in Chapter 4. The actual implementation
and its mechanisms are described in Chapter 5. In Chapter 6, the results
of testing the implementation are presented. The overall results of the
thesis are concluded in Chapter 6.

Related Work

One of the basic problems in the field of theoretical computer science
is the Boolean Satisfiability (SAT) decision problem. The problem is to
decide whether a formula in propositional (Boolean) logic is satisfiable,
i.e. whether there exists an assignment to the Boolean variables in the
formula such that the formula resolves to true. There was and still is a
lot of research into the topic. Modern SAT solver implementations are
capable of handling problems with millions of constraints and hundreds
of thousands of variables [28]. SAT solving can be used to solve low level
abstraction of a lot of practical problems from a wide range of fields like,
for example, verification, image computation, and scheduling [21, 23]. The
implementation that is presented in this thesis is used in the context of
SAT Modulo Theories (SMT) solving, which is a process that uses a SAT
solver as one of its main components. Details on the background of SMT
solving are given in Section 2.1.

This thesis is written with regard to the 2020 paper on deciding the
consistency of non-linear real arithmetic constraints with a conflict driven
search using cylindrical algebraic coverings by Abrahém, Davenport, Eng-
land, and Kremer [33]. The paper describes a new algorithm to solve the
satisfiability of conjunctions of non-linear real arithmetic constraints in
the context of SMT solving. The algorithm will be referred to as the
Cylindrical Algebraic Covering (CAC) algorithm in this thesis. As the
implementation of the CAC algorithm is the main work of this thesis, it
will be described in detail in Chapter 4. The algorithm is based on the
idea of the Cylindrical Algebraic Decomposition (CAD) algorithm that
was first described by Collins in 1975 [16]. Details on the history and
variants of the CAD algorithm are introduced in Section 2.2. Due to the
suggested application of the CAC algorithm as part of an SMT solver,
some background knowledge on such solvers is introduced in the following
section.

4 CHAPTER 2. RELATED WORK

2.1 Satisfiability Modulo Theories Solving

The basic structure of an SMT solver usually consists of a SAT solver and
a theory solver. The input to such solvers are formulae in a certain theory
for which a theory solver is available. A formula is a Boolean combina-
tion of constraints. The SAT solver examines the Boolean structure of
the formula by viewing the constraints as Boolean variables. The theory
solver solves a partial problem determined by the SAT solver consisting
of a set of constraints that the SAT solver determined to be true in a
valid Boolean assignment and the negation of the other constraints. If
the theory solver determines the conjunction of the constraints in this
set to be satisfiable, the formula can be satisfied. Else, there is a con-
flict and the theory solver gives an unsatisfiable subset of the constraints
to the SAT solver as an explanation. The SAT solver can add a con-
flict clause to the original formula and backtrack to try to find another
Boolean-wise valid assignment. This process in the SAT solver is based on
the Davis—Putnam-Logemann—Loveland (DPLL) procedure and is called
conflict-driven clause learning (CDCL). The details of the SMT solving
process will be introduced in Chapter 3. Over the years, optimizations to
and new procedures based on this basic process have been proposed.

A popular SMT approach was developed by de Moura and Jovanovié
in 2013 [19]. The technique is called model-constructing satisfiability cal-
culus (mcSAT) and is an adaption of the DPLL procedure. In mcSAT,
the conflict resolution is not restricted to Boolean decisions in the SAT
solver. In this approach, the SAT solver includes the building of a model
in the given theory. The theory solver is used when searching for a conflict
once the SAT solver found a satisfying Boolean solution. The creation of
new literals is allowed to describe the conflict in the formula and values
can be concreted by variable assignments.

There are several implementations of SMT solvers. A lot of them are
regularly updated according to the current research. Their development
can, for example, be seen in the International Satisfiability Modulo The-
ories Competition held every year [10].

One of the most popular SMT solver implementations is Z3 which was
developed by de Moura and Bjgrner as part of Microsoft Research [18].
73 does not only consist of the obligatory SAT and theory solvers but
also includes a number of simpifiers and (pre-)processor modules. The Z3
solver was applied to a number of real-world problems, including extended
static checking, predicate abstraction, test case generation, and bounded
model checking over infinite domains [18], but also applications less close
to computer science theory like in biological computations [32]. The Z3
tool and the corresponding paper have won several awards. To name

2.2. CYLINDRICAL ALGEBRAIC DECOMPOSITION 5

some, they won the Test of Time Award in 2018 [30] for the often cited
2008 paper and the Herbrand Award for Distinguished Contributions to
Automated Reasoning in 2019 for the overall contribution to SMT solving
[29]. Z3 is open source software, its code is available on GitHub [4].

Another open source SMT solver is Yices [3]. It is developed by the
SRI International’s Computer Science Laboratory [6]. It is capable of
solving a range of first-order theory problems applicable to solve problems
concerning, for example arithmetic, uninterpreted functions, bit vectors,
arrays, and recursive data types [20]. Its four main theory solvers are
specialized on uninterpreted functions with equalities, linear arithmetic,
bitvectors, and arrays. In 2019, the Yices 2.6.2 incremental solver won the
first place for solving linear integer arithmetic in the 14th International
Satisfiability Modulo Theories Competition [8].

Another SMT solver is SMT-RAT. It is a toolbox created as a modular
solver in which a custom strategy decides which theory solvers are used to
solve the input problem. The toolbox is developed at the RWTH Aachen
University in the group of Theory of Hybrid Systems, [17]. SMT-RAT
is the SMT solver that is used in this thesis. With its default configur-
ation, it has won the first place in the 13th International Satisfiability
Modulo Theories Competition for quantifier-free non-linear mixed integer
real arithmetic (QFNIRA) in 2018 and 2019 [7, 9]. SMT-RAT’s code is
open source and published on GitHub [2]. While the CAC algorithm as
described in [33] is meant for dealing with real numbers, the realization of
such is difficult on computers. SMT-RAT actually calculates on algebraic
numbers. The underlying arithmetic is computed using the CArL library
that is developed along with SMT-RAT [1]. To handle problems on real
numbers, the toolbox provides a wrapper class for algebraic numbers that
can be treated similarly to real numbers by the programmer.

There is an international initiative to unify input and output languages
of SMT solvers and provide a strong community for the research topic
of SMT solving. It is organized in the Satisfiability Modulo Theories
Library (SMT-LIB) [5] and also provides a large collection of benchmark
units over different logical theories.

2.2 Cylindrical Algebraic Decomposition

The original CAD algorithm was developed in the 1970s by Collins [16].
The context for the algorithm was not SMT solving but it was origin-
ally inspired by Tarski’s quantifier elimination procedure [24]. The CAD
procedure was described as an algorithm that “given a set of r-variate
integral polynomials, a cylindrical algebraic decomposition of euclidean 7-

6 CHAPTER 2. RELATED WORK

space E" partitions E” into connected subsets compatible with the zeros
of the polynomials” is calculated [11, p.1]. The expected theory of the
input formulas is stated to be well-formed in the first-order theory of the
real closed field [11], just like Tarski’s procedure used the theory of the
real closed field [24]. The usage of the CAD algorithm to eliminate quan-
tifiers is adaptable to the SMT context because the formula can be treated
as being fully existentially quantified. The idea for the CAC algorithm
examined in this paper is based on the established CAD algorithm.

The basic CAD algorithm has a projection and a lifting phase [12]. In
the projection phase, the algorithm eliminates a variable from the con-
straints’ polynomials. In order to preserve the original sign-invariant re-
gions of the polynomial set, new polynomials can be added during this
process. Sign-invariant regions are regions in which none of the polyno-
mials change their algebraic sign. This is done consecutively for each but
one variable. How exactly this projection works depends on the used pro-
jection operator. The original one proposed by Collins [16] was improved
many times, e.g. by McCallum in 1985 [26], by Hong in 1990 [22] or,
recently proven to be valid, by Lazard in 1994 [25, 27].

After the projection is finished, the lifting phase begins where the
one-dimensional domain is decomposed into sign-invariant regions for the
remaining variable. This is the one-dimensional CAD. Then, consecut-
ively, the polynomials from the next higher dimension in the projection
are filled with samples from the determined regions for the lower dimen-
sional variables for each cell. This results in as many possible variants of
the polynomials as there were cells in the last dimension’s CAD. These
are, again, divided into sign-invariant regions to be the next dimension’s
CAD. This is repeated until the full-dimensional CAD is determined. To
put it differently, a CAD is a partitioning of the state space into connected
subsets which are called cells. To decide satisfiability, one can determine
whether one of the CAD’s cells is satisfying. Then the whole problem is
satisfiable by assigning values from the cell to the variables.

Over the years, a lot of simplifications and adaptations of the CAD
algorithm were proposed and implemented. One branch of approaches,
for example, are the single (open) cell approaches by Brown and Kosta
[13, 15]. They take a single point and a set of polynomials as input
and construct a cell around this point that is broader than the original
CAD cell would be. Partial approaches like this one can be embedded in
other adaptations of the CAD algorithm. The mentioned approaches by
Brown and Kosta were inspired by a new, also CAD-based approach for
solving non-linear arithmetic by Jovanovi¢ and de Moura called NLSAT
[24]. As the CAD algorithm computes new conflict polynomials based
on the original polynomials, the problem size can explode. To put it

2.2. CYLINDRICAL ALGEBRAIC DECOMPOSITION 7

briefly, Jovanovi¢ and de Moura try to reduce this size by backtracking
and involving the model, i.e. the assignment to the variables, that the
algorithm tried to build into the conflict resolution. Using this additional
information, the algorithm aims at determining only a conflict core instead
of all possible conflict polynomials.

An approach based on Jovanovié¢’s and de Moura’s NLSAT algorithm is
the creation of an open Non-uniform Cylindrical Algebraic Decomposition
(NuCAD) as introduced by Brown in 2015 [14]. In this approach, cells still
have to be cylindrical but the necessity of being cylindrically arranged with
respect to the other cells in the decomposition is omitted. This results into
a decomposition with fewer cells than the regular CAD. The approach by
Brown does not have to build the full projection at the beginning but can
operate iteratively. Using the model-based approach by Jovanovi¢ and de
Moura [24] and the iterative proceeding, Brown’s approach has an easier
computation for the projection onto lower dimensions than the basic CAD
algorithm.

Theoretical Background

3.1 Satisfiability Modulo Theories solving

Satisfiability (SAT) Modulo Theories (SMT) solving usually is the com-
bination of a SAT solver and one or more theory solvers. In this thesis the
concept of a Cylindrical Algebraic Covering (CAC) algorithm will be used
to solve theory problems in the context of SMT solving. The algorithm
that is being examined can be used in an SMT solver as a theory solver.

For an overview of the SMT solving process, have a look at figure 3.1
on page 10. The input of an SMT solver is a quantifier-free first-order
logic formula, i.e. a Boolean combination of constraints over an arbitrary
theory for which a theory solver is provided. In the figure the input
formula is depicted as ¥. The solver actually uses the set of all constraints
from the formula and their negations. In general, the SAT solver regards
the constraints as Boolean variables as an abstraction and tries to find
a satisfying assignment for the Boolean formula. If the conjunction of
this subset of Boolean-wise true constraints and the negation of the other
constraints is satisfiable, the input formula can be satisfied. All of these
constraints that the SAT solver marked as true and the negation of the
other ones are given to the theory solver. The theory solver can then
determine whether this subset of the known constraints is satisfiable. For
this thesis the underlying theory is assumed to be quantifier-free non-
linear real arithmetic (QFNRA). If the theory solver decides that there is
a satisfying assignment it gives such a solution to the SAT solver. The SAT
solver returns the assignment, possibly in combination with its own results.
In case the theory solver finds that the given conjunction is unsatisfiable it
should give the SAT solver an explanation, e.g. a subset of the constraints
that contains the contradiction. From this explanation a new term called
a conflict term can be build that is added to the original formula. Again,
the SAT solver checks the Boolean formula, but due to the conflict term
excludes the former theory conflict. The new subset of constraints can
again be passed to the theory solver until either the theory solver can find
a satisfying assignment in respect to the given subset of constraints or the

9

10 CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.1: Schematics of an SMT solver

_>
satisfying assignment
SAT Solver - SAT/UNSAT
unsatisfiable subset
subset of satisfying assignment/
constraints explanation subset

Theory Solver

SAT solver determines the Boolean abstraction of the formula including
the conflict terms to be unsatisfiable.

There are two basic concepts of how the theory solver deals with sets
of constraints passed by the SAT solver. Either the theory solver checks
the whole subset of constraints for unsatisfiability. This is called non-
incremental theory solving. Alternatively, the theory solver stores the
previous calculations and works only on the changes of the subset, i.e.
extends or reverses the former calculation only regarding newly added
or removed constraints. This kind of theory solvers is iterative, working
incrementally. In this case the SAT checker may only pass the changes
and the theory solver has the capability to backtrack and apply changes
to its former data according to the changed constraints.

To understand how the algorithm that is examined in this thesis works,
a more precise definition of a constraint is necessary. To introduce the
notion of constraints as used in this thesis, a definition of polynomials is
needed.

Definition (Polynomial). A polynomial in n variables is defined as

p(T1,. .., Tp) 1= Zci . Hszk

where m is an arbitrary positive integer, n is the number of variables, and
e;x 1S the positive integer or zero exponent of the variable xy in the product
i. The constants c¢; are limited to rational numbers for this thesis. The
terms coefficient and leading coefficient are used as usual.

3.2. CELLS 11

Definition (Constraint). A constraint consists of a polynomial in relation
to zero, so a constraint c is defined as

¢ :=p(x1,...,2,) ~0, where ~ € {<,>, <, >, =, #}
and p(z1,...,Ty) is an arbitrary polynomial in variables 1, . .., Ty,

The domain of the polynomials is R™, so the underlying theory is the
non-linear real arithmetic (NRA). The input is expected not to contain
quantifiers, so NRA can be further restricted to QFNRA. The input
formula v as shown in Figure 3.1 is a Boolean combination of constraints.
The input of the theory solver is a subset of the constraints contained
in the formula or their negations. This subset is implicitly treated as a
conjunction of the constraints.

3.2 Cells

To understand how the CAC algorithm works, the concept of cells as
used in the Cylindrical Algebraic Decomposition (CAD) algorithm is in-
troduced in its most common form [11, 33]. Note that in some literature
cells are called regions [11] instead. The term region is used differently in
this thesis and will be introduced later in this chapter.

Definition (Cell). A cell is a non-empty connected subset of R™.

In the CAD context, only algebraic cells are considered. As the al-
gorithm examined in this thesis is based on the ideas of the CAD al-
gorithm, this characteristic should be established.

Definition (Algebraic Cells). A cell is algebraic if and only if it can be
defined by a conjunction of algebraic constraints.

For example, an algebraic cell in R! could be defined by the conjunction
zo+2>0Ax29 <O0.

A CAD is a cylindrical decomposition, so this term must be introduced,
too.

Definition (Decomposition). A decomposition D is a partitioning of R™
into disjoint cells:

D C C such that J.cp = R™ and Vej,c; € D.¢;Nej =10

where C' is the set of all cells in R™.

12 CHAPTER 3. THEORETICAL BACKGROUND

Definition (Cylindrical decomposition). A decomposition is cylindrical
if and only if the arrangement of its cells is cylindrical. This is the case if
for each pair of cells in the decomposition of dimension R?, the projections
of these cells onto the dimension R are either identical or disjoint.

In the basic CAD algorithm, cells are sign-invariant for the polynomial
of each constraint in every dimension. This will not necessarily be the case
in the algorithm presented in Chapter 4, but sign-invariance is still the
key idea to build the current dimension’s cell part. The definition is given
as in the CAC source paper [33].

Definition (Sign-Invariance). A cell C is sign-invariant for a polynomial
p if and only if exactly one of the following conditions hold

Veze C. plx) <0,

Veze C. plx)> 0,

Veze C. plz)=0.

More verbose, this means that a cell is sign-invariant for a polynomial
if in the whole cell the polynomial evaluates to values that are solely
above or below zero, or evaluates to exactly zero for the whole cell. A cell
is sign-invariant for a constraint if it is sign-invariant for the constraint’s
polynomial. As the constraints relate the polynomials to zero one can
easily determine whether the constraint is valid in a sign-invariant cell.
This can also be applied to sub-cells of current dimension 7 with variable x;
if the evaluated constraint does not actually use the variables x;1,..., 2,
of higher dimensions.

The CAC algorithm aims to find cells in which the unsatisfying sign-
invariant regions of the current dimension cover R. Note that in this
context, the term ”unsatisfying sign-invariant region of the current dimen-
sion” refers to an unsatisfying interval in the current dimension. Intervals
are defined as usual with a lower and an upper bound which can be open
or closed. Both bounds are allowed to be unbounded towards the corres-
ponding infinity. The algorithm will see the former dimensions as fixed
and only determine such intervals for the current variable x;.

Definition (Covering). A covering D of R is defined as a set of intervals
such that their union covers R, i.e. let I be the set of intervals in R, then

D C 1T such that J,cp = R.

If there is a covering of R in these intervals for x;, the algorithm will
either exclude an appropriate interval from the former dimension, or, if
the dimension is the first one, will determine the conjunction of the given
constraints to be unsatisfiable.

Algorithm: Finding
Cylindrical Algebraic
Coverings

As it is important to understand the details of the Cylindrical Algebraic
Covering (CAC) approach to understand the implementation, the CAC
algorithm will be described in this chapter. It stems from the paper by
Abrahdm, Davenport, England, and Kremer [33]. It is designed to be used
as the theory solver of an Satisfiability (SAT) Modulo Theories (SMT)
solver. As such, one can assume that there is a set of constraints that
was passed by the SAT solver according to the mechanisms introduced
in Chapter 3. Hence in the context of SMT solving, the objective of the
CAC algorithm is to determine whether the conjunction of the given con-
straints is satisfiable. The output data should also include a subset of
these constraints whose conjunction is unsatisfiable, if the result is un-
satisfiability. In case of satisfiability of the conjunction, the result should
include a satisfying witness, i.e. a satisfying set of assignments of values
to the variables.

Note that the presented CAC algorithm is not exclusively useful for
the purpose as a theory solver. It can, with little adaptation, be applied
to any problem in which a conjunction of constraints is to be solved. It is,
however, optimized for the application in an SMT solver and was designed
with the search for unsatisfiability in mind. As such, the aim of this
thesis is to determine whether the new CAC algorithm is faster than the
traditional Cylindrical Algebraic Decomposition (CAD) algorithm with
regard to finding a problem to be unsatisfiable. Nonetheless, the algorithm
should still find assignments in case of satisfiability, so another point of
analysis is the algorithm’s performance in satisfiable cases.

The main algorithm to find coverings is based on identifying unsatisfy-
ing intervals in a recursive fashion over the variables. Due to the recursion,
the algorithm follows a depth-first approach in creating cells. A pseudo

13

14 CHAPTER 4. ALGORITHM: FINDING COVERINGS

Algorithm 1: Main algorithm: get_unsat_cover [33]

Data: Set of global constraints defined over R", variables
LlyeeeyIp.
Input :s=(x;=wv1,...,2i-1 =vi_1)
Output: SAT or UNSAT,
satisfying witness or unsatisfiable interval covering
1 [:= get_unsat_intervals(s, x;)

2 while |J;.;/ #R do

3 s; := sample_outside(I)
4 if 7 =n then
5 L return (SAT, (s1,...,si—1,5i))
(f,0) := get_unsat_cover((s1,...,Si—1,5))

if f =SAT then
L return (SAT, O)

9 else if f = UNSAT then

10 R = construct_characterization((sy,..., si—1,$),0)
11 I = interval _from_

characterization((sy,...,si—1), Si, R)
12 I=Tu{l}

13 return (UNSAT,T)

code schematic is depicted in Algorithm 1 which was taken from Abrahdm
et al. [33].

Briefly, if there are unexplored regions of the domain, a sample for the
current variable is taken from these regions and checked for compatibility
with the remaining dimensions. If this sample is satisfying and further
satisfying samples could be found for the remaining variables, a satisfying
witness was found and there is no unsatisfying covering. Else, the reason
for the unsatisfiability is explored and a new unsatisfying interval can be
added. In this case, the loop restarts and samples from the remaining
unexplored regions. The recursion stops once a full sample set for all vari-
ables was computed or the whole real domain is covered with unsatisfying
intervals.

It is assumed that the variables have a given order and that the samples
for the variables are to be computed in that order. In the following,
the recursion depth will be referred to as the current dimension . This
correlates with the current variable x; for which the algorithm tries to find
a satisfying sample in dimension 3.

For this algorithm, the notion of intervals is expanded. They include

15

Algorithm 2: get_unsat_intervals [33]

Input : Sample set of current dimension
Output: Set of unsatisfiable intervals
11=0
2 C; := constraints with main variable x;
3 foreach c € C; do

4 d = c(s) /1 ¢ =p~0
5 if ¢ = false then

6 L return {(—o0,00,0,0, {p},0)}

7 if ¢ = true then

8 L continue

// ¢ is univariate in the i*" variable
9 Z =real roots(p,s) // Z ={z ...z} ordered ascend.

10 Regions = {(—o00, 21), [21, 1], (21, 22), -, (2K, 00) }
11 foreach I € Regions do

12 let r € I if ¢(r) = false then

13 LU:=0

14 if £ # —oo then L := {p}

15 if u # oo then U := {p}

16 I:=TU{(¢,u,L,U,{p},0)}

17 return I

lower and upper bounds as usual, referred to as lower bound [and upper
bound u. Additionally, they hold a set of polynomials for each bound that
describe the bound in the current dimension ¢. These sets of polynomials
are referred to as L for the lower bound and U for the upper bound.
Further additions are two more sets of polynomials, F; and P,. P; holds
all polynomials with main variable x; from which the interval originates.
P, holds all polynomials with main variables of lower dimensions from
which the interval originates.

In detail, first the set of unsatisfying intervals is computed with respect
to the former dimensions as described in Algorithm 1 in Line 1. A detailed
pseudo code overview of this process is depicted in Algorithm 2 which is
also taken from Abrahdm et al. [33].

Algorithm 2 takes into account the set of samples until the current
it dimension and all constraints with the main variable z;. The set of
constraints is considered to be known. Into each such constraint the given,
potentially partial, sample set is substituted (Line 4). It might happen
that the constraint is thus fully substituted in which case it can be trivially

16 CHAPTER 4. ALGORITHM: FINDING COVERINGS

handled by evaluating the resulting statement. If the statement is false,
the whole domain in this dimension is unsatisfiable for this sample and
a covering can be returned (Line 6). As Line 8 shows, fully substituted
constraints resulting into a tautology can be skipped as they do not provide
unsatisfying intervals. The more intricate case happens if the constraint
has x; as the only remaining variable. In this case the real roots of the
polynomial in the constraint are computed. The sign-invariant regions
for this polynomial are computed as a point interval for each root and
open intervals between them, including unbounded intervals before the
first and after the last root as shown in Line 10. For each such sign-
invariant interval that violates the constraint, an unsatisfying interval is
introduced. The interval includes the information from which polynomial
it originated. The details on how the storage depicted in Lines 13 to 16
works will be explained at a later point. In the end, all found unsatisfying
intervals are returned.

Back to the main Algorithm 1, Line 2, the computed set of unsatisfying
intervals is checked for coverings. If such a covering exists, the algorithm
can return that the current dimension is unsatisfiable with the given set of
samples and which intervals are responsible. The algorithm will go back
and try to find a different sample for the previous variable in the variable
order and add the unsatisfying interval around the previous sample. If a
covering has been detected in the first dimension, the set of constraints is
unsatisfiable.

Assuming that no covering was found yet, an arbitrary sample outside
of the unsatisfying intervals is chosen, i.e. in the intervals of the domain
that were not explored yet. If the current variable happens to be the last
one in the variable order, the sample set is full and can be returned as
a satisfying witness as depicted in Line 5 of Algorithm 1. This condi-
tion serves as the termination condition of the recursion as afterwards,
the i-dimensional set of samples is given to a recursive call of the main
algorithm. Hence, the current sample is tested in the higher dimensions
for its feasibility. In the satisfying case, the full sample set received from
the recursive call can be returned as shown in Line 8.

If no satisfiability has been detected in the higher dimensions, the
newly found unsatisfying interval around the current sample has to be
determined. For determining such an interval, one first determines a char-
acterization of the unsatisfying region around the sample as depicted in
Line 10. The characterization is a set of polynomials that describes this
region. This set can be computed using the known unsatisfying inter-
vals because they store which constraints they originated from, see Al-
gorithm 2, lines 13 to 16. Note that if the interval was created out of a
characterization in a previous run of the while loop (Algorithm 1, Line 11),

17

it might originate from more than one polynomial.

To illustrate this process, consider the example formula (22 44> —1 =
0) A (22 # 0). The variable order in this example is y < x, i.e. y is to be
assigned a value before a value is assigned to x. Assume that in the first
dimension, the get_unsat_intervals algorithm did not find any unsatis-
fying intervals for y’s dimension and the value —1 was assigned to y. In
the second dimension, get_unsat_intervals calculates the unsatisfying
point interval [0, 0] from the constraint (x? # 0). For y, -1 is substituted
into (22 4+ 32 — 1 = 0) yielding (22 = 0) and the unsatisfying intervals
(—00,0) and (0,00) are determined. The algorithm returns the covering
{(=00,0),]0,0],(0,00)}. Back in the dimension of y, the algorithm tries
to find an explanation for the unsatisfiability of the assignment y = —1.

The characterization ensures the existence of the lower and upper
bounds of the conflict by adding the leading coefficients and discrimin-
ants of the originating polynomials of each interval in the covering. The
discriminants add the information whether the original polynomials have
multiple roots in one point by evaluating the discriminants’ zeros. For the
example, the algorithm adds the discriminant y? — 1 from the polynomial
2?2 4+ y? — 1 for the interval (—o0,0). The discriminant of 22 is 0. This
discriminant will not be helpful for further computations, for simplicity it
will be omitted in the following. The last interval (0, 00) originated from
the same polynomial as (—o0,0), so the resulting discriminant is already
known. The resulting set of discriminants is {y? — 1}.

The leading coeflicients are added to the characterization because they
indicate the asymptotes of the original polynomials. Here, the coefficients
are preselected according to their usefulness for building the bounds of
the unsatisfiable region. In a loop, the leading coefficient of a polynomial
is added. If the leading coefficient evaluated at the unsatisfiable sample
is zero, the next leading coefficient of the polynomial without the former
leading coefficient is determined. If it is non-zero, all following coefficients
of the polynomial can be omitted. For the polynomials from which the
intervals in the example originated, this will add nothing.

To ensure the bounds of the unsatisfying region are the closest possible
ones, intervals include a storage for all polynomials that are define their
bounds as sets L and U. This includes the singletons stored in Line 14
and Line 15 of Algorithm 2, where the original polynomial is stored if a
real bound was found. For intervals that are calculated from a charac-
terization, these defining sets might contain more that one polynomial.
Another component stored in the interval is a set P; of all polynomials
with main variable x; that were used to create the intervals. For Line 16
of Algorithm 2 that is the fifth input of the interval but again the set may
contain more than one polynomial. For the example, the polynomial z2 is

18 CHAPTER 4. ALGORITHM: FINDING COVERINGS

stored as a reason for both bounds of the interval [0, 0] and the polynomial
y? + 22 — 1 is stored as a reason for the higher bound of (—o0,0) and the
lower bound of (0, c0).

To use all this information for ensuring the lower bound to be the
closest one, one computes a new set of polynomial resultants for each of
the unsatisfying intervals as explained in the following.

{res(p,q) | p € L, q € P;, q has a root smaller than or equal to [}

The set contains all resultants of a defining polynomial of the lower
bound, p € L, and one of the polynomials from which the interval ori-
ginated with the current variable z; as its main variable. This second
polynomial is named ¢ and is only chosen if it has a root below or at the
interval’s lower bound . This new resultant set is added to the character-
ization for each interval. In the example only one polynomial is involved
in each of the intervals. Hence, these resultants will always be 0 and are
omitted. So far, the characterization is still {y* — 1}.

For the upper bound, these sets are calculated analogously as all res-
ultants of a defining polynomial of the upper bound p € U and an origin
polynomial with the main variable z; that has a root above or at the
interval’s upper bound u.

{res(p,q) | p€ U, q € P;, q has a root larger than or equal to u }

The resultants for the upper bounds are omitted for the example for
the same reason as omitting the resultants for the lower bounds.

For each pair of consecutive intervals, the resultants of the polynomials
that define their bounds are added, too. For the example, this adds the
resultant y2 —1 from 2?4y —1 and 2?2 for the intervals (—oo,0) and [0, 0].
The resultant is added to the characterization set. The same happens for
the intervals [0,0] and (0, 00), where the same resultant is calculated. As
the characterization is a set, it remains to be {y? — 1}. For more details
on why resultants are added, one can refer to [33].

If some other polynomials with main variables on a lower dimension
also played a role in the creation of the interval, these were stored in the
interval and can be added to the characterization, too. For the example,
as x is the main variable for the second dimension in all polynomials, none
have to be added.

Finally, the characterization of the unsatisfying region is complete and
a new interval can be computed from it as illustrated in Algorithm 1 at
Line 11. At this point a new unsatisfying interval is created from the char-
acterization that contains the unsatisfying sample. In consequence, the

19

algorithm cannot exclude only the exact point of the sample but poten-
tially a larger region. To find the largest known unsatisfying area, all real
roots of the polynomials from the characterization are computed. These,
as well as positive and negative infinity, are candidates for the interval
bounds (or for unboundedness, in case of the infinities). For the example,
this results in the candidate set {—oo, —1, 1,00} for the characterization
{y* - 1}.

The bounds for the new interval are chosen from these candidates
as the ones the current dimension’s sample lies between or on. The lower
interval bound is the largest candidate that is below or equal to the sample
and the upper bound is the smallest candidate that is above or equal to
the sample. In this context, the negative infinity counts as the smallest
candidate and the positive infinity as the largest one. Hence, the interval
may be unbounded towards infinity if the sample is not between any two
roots. In the example, the interval [—1, —1] is chosen as the newly found
unsatisfying interval for y.

For future iterations, the interval stores all polynomials from the char-
acterization as responsible for it being unsatisfying. This includes the
information which polynomials have roots at the new bounds as the sets
L and U, which can be used in another iteration of finding a characteriz-
ation.

To conclude the example, a new value is chosen for y that lies outside
of the unsatisfying interval set {[—1,—1]}. Assume that the algorithm
chooses 0. Then this assignment is given to a new call of get_unsat_cover
on the dimension for z. Substituting the new value for y into (z?+y?>—1 =
0), the algorithm computes the unsatisfying intervals (—oo,—1), (—1,1),
and (1, 00). From the constraint (2% # 0), the interval [0, 0] is added again.
As the new unsatisfying intervals do not form a covering, a new value for
x can be chosen. Choosing for example x = —1, there are valid variable
assignments for all variables. The algorithm can deduce the satisfiability
of the input formula with the satisfying assignment {y = 0,z = —1}.

Implementation

Implementing the Cylindrical Algebraic Covering (CAC) algorithm de-
scribed in Chapter 4 is realized as a module for the toolbox SMT-RAT.
SMT-RAT is written in C++ and the implementation is object-oriented.
The code of SMT-RAT is available on GitHub [2].

An SMT-RAT module can be used as a theory solver integrated into a
user-defined strategy. For further information on SMT-RAT, one can refer
to Chapter 2. The CAC module, following the architecture of SMT-RAT,
receives the set of constraints that was handed down from the Satisfiability
(SAT) solver in each solving step. The constraint set is a subset of the
constraints in the input formula and their negations. The module has to
decide whether the conjunction of these constraints is satisfiable. In SMT-
RAT, each time the CAC module is called it receives a set of constraints to
add and a set of constraints to remove from the former set. For this, each
module must implement an addCore and a removeCore method. These
are called for each constraint in the subset.

After these calls, the module’s check function is called. This function
is expected to decide the satisfiability of the given constraint set. The
CAC module contains a store for a logical model that can be filled if
the given problem is satisfiable. The model contains an assignment of
variables to values, which is empty in the beginning. There is also a
store for unsatisfiable subsets of constraints that is to be filled if the given
problem is unsatisfiable.

Two similar implementations are proposed in this thesis, namely the
non-incremental approach of rechecking all constraints on every iteration
and the incremental approach. The non-incremental approach was imple-
mented as described in the following section. The incremental approach
is designed as an extension of the non-incremental approach but the im-
plementation was not stable yet at the end of the thesis.

21

22 CHAPTER 5. IMPLEMENTATION

5.1 Non-Incremental Approach

For the non-incremental approach, the constraints that were received to
add and remove are stored by the module such that the currently regarded
subset of constraints is known. The module contains a CAC class in which
the actual implementation of the CAC algorithm resides. In the call of
check, the former constraint data in the CAC class is reset and the new
set of constraints is inserted. The CAC class stores the constraints and
extracts the variables contained in the constraints. As the CAC imple-
mentation will assign values to the variables consecutively, it is relevant
in which order the variables are. This variable order might have a relev-
ant influence on the complexity of the necessary computations. How this
order is determined is outside of the scope for this thesis, hence for this
thesis it is assumed that a static variable order is determined by the tool
in a black-box fashion.

In the following, the implementation of the CAC algorithm that was
the main work of this thesis is described. In this chapter, it is often de-
scribed that the algorithm uses a sample, so the term has to be explained.
A sample is a set of assignments of values to variables. Given the current
dimension, the provided sample of the main algorithm will always contain
assignments to all variables of the lower dimensions. The algorithm will
try to expand the sample for the current dimension by finding a valid
assignment for the current variable.

The implementation works on intervals as regions of the domain in the
current dimension as described in Chapter 3. As described in the theory
of the CAC algorithm in Chapter 4, there is some additional data about
the origin of the intervals that has to be stored. Due to this additionally
needed information, the existing implementation of intervals in SMT-RAT
is not suitable for the CAC implementation. Therefore the CAC imple-
mentation requires a new class for intervals. The main items that the
intervals have to store are the values for the upper and lower bounds as
algebraic numbers. As mentioned in Section 3.1, this is due to the CArL
implementation. Additionally, intervals need to store whether the bound
is open or closed and, as a special case of open bounds, whether the bound
is infinite. To meet the requirements of building a characterization of a
conflict as depicted in Algorithm 1 in Line 10 and described in Chapter 4,
the intervals need additional store for polynomials. These are stores for
polynomials that contribute to the reasons for each bound and stores for
contributing polynomials with the dimension’s variable as main variable
and such ones that have a lower main variable. Additionally, all con-
straints from which the interval originated are stored, including the ones
the mentioned polynomials originated from. The constraint store will be

5.1. NON-INCREMENTAL APPROACH 23

used for building an explanation set of constraints in case of unsatisfiab-
ility, and in the incremental approach for backtracking.

The new intervals have a few handy functions. They allow a trivial
check whether they cover the whole domain, as this only happens if both
bounds are unbounded towards infinity. The new intervals can also check
whether a given value is contained in the interval. For the use in the finding
of new samples, the intervals are capable of giving a representative from
the interval, i.e. an arbitrary fixed value contained within the interval.
For convenience, the new interval class has some additional constructors
to input possible subsets of data tailored to the specific applications in the
CAC algorithm. As the intervals are to be ordered within the implement-
ation, there is a new comparison operator that determines an interval A
to be lower than another interval B if the lower bound of A is lower than
the lower bound of B, or in case the lower bounds are equal, if the upper
bound of interval A is lower than the upper bound of B. This comparison
considers infinities as well as open and closed bounds. This results in an
interval order which is consistent with the one in the originating paper
of the CAC algorithm [33]. While the CAC algorithm usually works on
intervals for which the bounds are either both open or both closed, the
new class can technically handle the other cases, too. In the following,
the term interval will refer to this new interval implementation.

Figure 5.1: Call tree of the CAC algorithm

—>| CAC.check
get_unsat_cover >

sample_outside
compute_cover

construct_characterization

/

get_unsat_intervals

interval _from_characterization

An overview of the main functions used by the CAC algorithm is shown
in Figure 5.1 to guide the reader through the process. The names are
similar to the ones used in Chapter 4 and in Algorithm 1 to indicate
that they implement the corresponding functions. The implementation is,
as suggested in Chapter 4 in the theory, designed in a recursive fashion.
This is especially interesting during the backtracking in the incremental
approach.

24 CHAPTER 5. IMPLEMENTATION

The satisfiability of the entered problem given by the tool is determ-
ined by the function get_unsat_cover. The current constraints whose
conjunction is to be checked are known to the CAC class. The variable
order is also known. The function first calls the function get unsat_
intervals to get all intervals in which any constraint is unsatisfied. It
receives the current set of samples (which is empty in the beginning) and
the current variable.

At first the get_unsat_intervals function filters the constraints for
the ones with the current variable as their main variable as these are the
ones relevant in this dimension. This is realized by looping through each
constraint’s variables and checking whether the main variable is contained
and no higher variable in terms of variable order is used.

The get_unsat_intervals function loops through all constraints that
it has found to have the current main variable. Within this loop, it com-
putes all unsatisfying intervals in this dimension by evaluating the con-
straint with the given sample of dimension ¢-1. This can result in the
constraint being false, true, or being ambiguous. The polynomial of the
constraint is univariate after the evaluation. This stems from the sample
being substituted into the constraint before the evaluation. During this
process, all of the variables of lower variable order are replaced by the
corresponding assignment in the sample. As the get_unsat_intervals
function only regards the constraints with main variable x;, there are no
variables with higher index, either.

If the constraint evaluates to false, a trivial conflict was found and
there is an unsatisfying covering. To illustrate this case, have a look at the
polynomial in Figure 5.2a on page 25. The constraint x§+2-xi+1.2 < 0, for
example, does present a trivial conflict as the polynomial does not include
any values below zero. If this case appears, the set only containing the
interval (-00, 00) with information about its origin is returned as the new
set of unsatisfying intervals.

The second case where the constraint evaluates to true is also trivial as
no unsatisfying intervals can be added from the constraint. The example
polynomial in Figure 5.2a can be used to illustrate this case, too. Assum-
ing the corresponding constraint is z7 + 2 - ; + 1.2 > 0, the constraint
evaluates to true for this dimension.

More intricate is the case in which the constraint does not evaluate
to a Boolean value yet. This happens if the polynomial of the constraint
with the substituted sample is not sign-invariant. In the theory, this was
the case depicted in Algorithm 2 from Line 9 on. An example of such a
polynomial is shown in Figure 5.2b. If the shown polynomial mZQ + 2z
is the polynomial of a constraint, unsatisfying intervals can be computed.
If such a constraint is found, all sign-invariant regions of its polynomial

5.1. NON-INCREMENTAL APPROACH 25

Figure 5.2: Example polynomials for computing unsatisfiable intervals

(@)p=a?+2-2;+1.2 b)yp=a?+2-x;
2 2
1) . i .
a0 a0
—1+ | -1 -
72 1 1 1 1 72 1 1 1 1
—4 -3 -2 -1 0 1 2 —4 -3 -2 -1 0 1 2
Z; T

are computed by regarding its real roots. These are computed and the re-
gions are determined to be point intervals at these roots and the intervals
between each two consecutive roots. Before the first root and after the
last one, another interval unbounded towards the corresponding infinity
is included in the regions to cover the rest of the domain. For the ex-
ample polynomial z? + 2 - z;, the regions are (—o0, —2), [-2, 2], (—2,0),
[0,0], and (0, 00). These regions are designed to be sign-invariant for the
constraint with respect to the given sample.

Out of each computed region, the algorithm determines a represent-
ative as described in the capabilities of the interval class. This represent-
ative, a value within the interval, is assigned to the current dimension’s
variable. By substituting the constraint with the accordingly extended
sample and reevaluating it, one can determine the truth value of the con-
straint in this region. The regions that are determined to be false by this
method are added to the set of unsatisfying intervals. These intervals re-
ceive the originating constraint and, for the bounds that are not infinite,
the constraint’s polynomial as defining the bound. As noted in Chapter 4,
this information can later be used to compute further unsatisfying inter-
vals.

When the main algorithm get_unsat_cover gets the set of unsatisfying
intervals, it enters a loop. This is a direct implementation of the loop
described in Chapter 4, see Algorithm 1 in Line 2. The loop condition is,
as in the theory, whether a covering of unsatisfying intervals exists. This
is done in its own function called compute_cover. This function receives
the computed intervals.

To illustrate when a covering can be present with regard to the con-

26 CHAPTER 5. IMPLEMENTATION

straints, consider the example depicted in Figure 5.3. The figure shows
the polynomials of the constraints xf +2.2; <0and —0.5- xf —z;+1<
0. The constraint ajf 4+ 2 - x; < 0 to which the upper polynomial be-
longs excludes the intervals (—oo, —2) and (0, 00). The second constraint,
—0.5- 22 —z; + 1 < 0, adds the unsatisfying interval (-1 — v/3,/3 — 1)
which overlaps with the other two intervals, forming a covering.

Figure 5.3: Example for a compound covering using (p; = :L’ZQ +2-2,) <0
and (pp = —05-2? —2; +1) <0

2

P1,DP2
o

Coverings can consist of at most the number of intervals in the set
of unsatisfying intervals but might not include all of them. The func-
tion compute_cover can find such coverings. This algorithm was only
described informally in the paper by Abrahém et. al, so the method used
in the implementation was developed anew for this thesis. A pseudo code
depiction of compute_cover is shown in Algorithm 3. To cover the trivial
cases, the function first checks whether the interval set is either empty or
contains am interval whose two bounds are infinite. If the interval set is
indeed empty, it cannot contain a covering (see Line 1). As the intervals
have a build-in function to check whether they span the whole domain
and therefore form a singleton covering, the check for such is trivial, too.
Should such an interval exist, it is returned as a covering (see Line 3).

The remaining part of the compute_cover function builds coverings
from more than one interval in an iterative fashion. The basic idea is to
find an interval unbounded towards negative infinity to start with and ex-
pand it with other intervals until the whole domain is covered. It starts by
determining whether there is an interval whose lower bound is unbounded

5.1. NON-INCREMENTAL APPROACH 27

Algorithm 3: Pseudo Code: compute_cover

Input : set of intervals I

Output: subset of I forming a covering or () if no covering exists
1 if I == () then return ()
2 if I contains I with lower bound —oo and upper bound co then
3 L return {/}

4 if T does not contain an interval with lower bound —oo then

L return ()
6 else
prev := interval with largest upper bound from {I|I € I and
lower bound —oo}
8 | covering.add(prev)
9 for next € I do
10 if prev.u == next.u and prev.u open and next.u closed then
11 L covering.add(next); prev := next
12 else if prev.u == next.l then
13 if prev.u open and next.l open then return ()
14 covering.add(next)
15 else if next.u == oo then return covering
16 | prev := next
17 else if next contains prev.u then
18 covering.add(next)
19 if next.u == oo then return covering
20 | prev = next
21 | else return ()

22 return ()

towards negative infinity. To make this search easier, the intervals are
ordered according to the interval 'lower’ relation described before. Inter-
vals that feature negative infinity as their lower bound are the lowest one
in the order. If there is no such interval, there cannot be a covering as
this 'lowest’ part of the domain is not covered. At this point the function
will return an empty set as a covering to indicate that there is none to be
found.

If there are intervals unbounded towards negative infinity, the al-
gorithm chooses the largest one in the interval comparison operator as
a starting point. This is the one with the greatest upper bound. As there
was a test for singleton coverings beforehand, this upper bound cannot be

28 CHAPTER 5. IMPLEMENTATION

unbounded towards positive infinity at this point. To illustrate the pro-
cess of finding a covering, consider the example shown in Figure 5.4. The
points shown in the figure represent closed point intervals. The lines rep-
resent intervals with open bounds where the outermost intervals that end
without an arrow are unbounded towards the corresponding infinity. As
the function get unsat_intervals only returns intervals of such forms,
the example was chosen accordingly. Note that the implementation can
also handle intervals with mixed open and closed bounds. As the intervals
are ordered, the depicted intervals are labelled with their index in the
interval order.

Figure 5.4: Example for unsatisfiable intervals that contain a covering

I4 I? 110 113

[] [] [] []
I Is Iy I
[] [] [] []

Is
—
Il \ ya I6 \ ya 112
I3
| | | | | | | J
—10 -5 0 5 10
T

For this example, the algorithm would choose interval I; as a starting
interval as it is the only one unbounded towards negative infinity. This
interval is added to the covering, see Algorithm 3 in Line 8. As the
intervals are ordered, the function assumes that there is no additional
information in intervals that appear before the currently regarded one
in the order. As such, it regards the next interval in the order which
is interval Iy in the example. Interval I; was (—oo, —4), interval I is
[—4,—4]. At first, the function checks whether the upper bound of the
last interval is equal to the upper bound of the regarded one as computed
in Algorithm 3, Line 10. This is the case for intervals Iy and Is. Due
to the order, the lower bound of the regarded interval must be lower or

5.1. NON-INCREMENTAL APPROACH 29

equal to this value, too. If both bounds of the regarded interval have the
same value, as is the case for I3, the interval is a point interval. There
is only additional information in such an interval if the upper bound of
the last interval is open because the bound was previously excluded. As
this is true for I; and I, the function can conclude in Line 10 that the
interval (—oo,—4] is covered by the unsatisfying intervals, including the
closed bound. Interval Is cannot give any new information at this point
and the function regards the next interval in the order, I3 which is (—4, 3).

Starting anew for this pair of intervals, the intervals Is and I3 do not
have the same upper bounds. The next case the function considers is
whether the upper bound of the last interval is equal to the lower bound
of the regarded interval as illustrated in Line 12, which fits for I and I3.
If both of these bounds are open, the exact bound would be excluded.
The interval order takes open and closed bounds into account and counts
closed lower bounds as 'lower’ that open lower bounds. There would not
be an interval including the point of the bound in the set if both bounds
were open and the function could conclude that the interval set contains
no cover in Line 13. As this is not true for I and I3, the function can
conclude that I3 extends the computed covering. The upper bound of I3
could be unbounded towards infinity, in which case the covering would be
complete and could be returned as depicted in Line 15 of the pseudo code.
The upper bound is 3, so the function is not finished yet.

It adds I3 to the covering in Line 14 and regards Iy which is [—2, —2].
Neither is the upper bound of I; equal to the one of I3 nor is the upper
bound of I3 equal to the lower bound of Iy. Therefore, the intervals do
not border. The remaining case to consider is whether the upper bound of
I3 is contained in Iy in Line 17. Then the intervals would overlap and I,
would according to the interval order add some more of the domain to the
covering. This case is not met, so I4 is not included in the covering and
the function regards the next interval while keeping I35 as the last interval
that added to the covering. The function iteratively finds that neither I5,
nor I or Iy being [0,0], (0,2), and [1,1] add any new information to the
covering.

The next interval to trigger one of the cases is Ig which is (1,6). The
upper bound of the last interval I3 is 3 and contained in Ig. In this case
the function checks whether the upper bound of Ig is unbounded towards
infinity in Line 19, which would complete the covering. As this is not true,
the interval Ig is added to the covering and the next interval is checked.
Intervals Ig, I19, and I;; are point intervals contained in Ig and as such
add no new information. When checking I which is (4,00), the case
of the upper bound of I3 being contained in [15 is true. This time, the
function finds the upper bound of the regarded interval to be unbounded

30 CHAPTER 5. IMPLEMENTATION

towards infinity in Line 15. The interval I1» completes the covering which
can be returned.

Note that the last interval in the order, /33 which is [6, 6] is not checked
by the function. The covering could be completed beforehand without
including it. If there was another interval with its upper bound unbounded
towards infinity with a higher lower bound than Iys, this one would not
be added as part of the covering, too.

Going back to the main algorithm get_unsat_cover, the while loop
can with the help of the compute_cover function decide whether to con-
tinue. As suggested by the theory in Algorithm 1, if a covering was found
it is returned. The module extracts all constraints stored as used in the
computation of the contained intervals and returns them to the tool as
explanation for the unsatisfiability.

If the compute_cover function could not find a covering, there are
areas of the domain that are not covered by any of the known unsatisfying
intervals. A new value from these areas is chosen to be assigned to the
current variable. The choosing of a value is done by calling the function
sample_outside which receives the known unsatisfying intervals as input.
Some examples of this process are depicted in Figure 5.5.

The underlying principle is to find the first gap between the unsat-
isfying intervals and use a value from this gap. The algorithm to find
samples is not described formally in the CAC paper [33], so the concept
for the sample_outside function was newly developed for this thesis. The
functioning is similar to the one of compute_cover. Therefore the func-
tion starts with searching the set of intervals for one unbounded towards
negative infinity. If there is no such interval, the function finds the in-
terval with the lowest lower bound and returns an arbitrary value below
this bound using functionality from the underlying CArL library. Having
a look at the example in Figure 5.5a where the interval with the lowest
lower bound is (-4,6). The chosen value in this example is -5. Note that
if the set of unsatisfying intervals is empty, this principle will also be ap-
plied and the function will return an arbitrary value below 0. If there are
intervals that are unbounded towards negative infinity, the function stores
the one with the greatest upper bound. Going through the other intervals
and using the interval order similarly to the compute_cover function, the
function distinguishes three cases. The first case applies when the next
interval overlaps with the previous one, then the higher upper bound is
saved for further comparison as shown in Figure 5.5b.

The second case is the stored bound being equal to the lower bound of
the next interval, i.e. the intervals may border to each other. This shared
bound can either be excluded from both intervals, which would provide
a valid value at this point that can be returned. In the example shown

5.1. NON-INCREMENTAL APPROACH

Figure 5.5: Examples for choosing sample values

(a) No interval open towards —oo

—

—10 -5 0 5 10
Zi

(c) Intervals exclude common bound

—-10 -5 0 5 10

Zq

(e) Bordering with closed interval

-10 -5 0 5 10

Zq

(g) Value above interval

MMT T T T T T T T T T T T T 7T T T T
[]

[———

O Y A o

-10 -5 0 5 10

Tq

(b) Overlapping intervals

MM T T T T T T T T T T T T T 1T 111
—_—

—

-10 -5 0 5 10
Ty
(d) Bordering with point interval

—

A o

-10 =5 0 5 10
T

(f) Gap between intervals

-10 -5 0 5 10

T

31

in Figure 5.5¢, the value -4 is excluded from both intervals and hence a
valid assignment for the current variable. The next interval bound could
also be a point interval, in which case the bound can be included if it
had been previously excluded from the unsatisfying area. For an example
of this case one can refer to Figure 5.5d where the point interval [1,1]

32 CHAPTER 5. IMPLEMENTATION

adds the point at the value 1 to the previously known unsatisfying area
(—00,1). The last case of this type of a shared bound applies when the
newly regarded interval is not a point interval as shown in the example
in Figure 5.5e. This case will not happen in this implementation as the
generated intervals have either open bounds or are point intervals. The
function handles this case for expandability of the implementation. The
interval’s information can be added as if the intervals would overlap in
this case.

The third case regards the next interval’s lower bound being greater
than the highest stored unsatisfiable bound. Using the functionality from
CArL again, here the function can return an arbitrary value in between
these bounds. As an example shown in Figure 5.5f, the value -3 is chosen
using the intervals (—oo, —4) an (—2,8). If no other cases apply, there is
no further interval greater than the currently known highest bound and
the function uses the CArL functionalities to return an arbitrary value
above this bound. For the example in Figure 5.5g, the chosen value above
the bound of the interval (—o0,0) is 1.

Having found a new value for the current variable, this assignment is
inserted into the sample in the main function get_unsat_cover. As ex-
tensions to the sample on higher dimensions will be done by a recursive
call of the get_unsat_cover function, there has to be a termination cri-
terion. For this reason there is a check whether the sample is complete,
i.e. whether there is an assignment to all variables. The current variable
is the last one in the variable order and there was a satisfying value to
assign to it. The function can return this sample as a satisfying witness
of the conjunction of the constraints and terminate.

Assuming that the dimension is not the highest one yet, the function
tries to complete the sample by doing a recursive call. The new call of
get_unsat_cover receives the sample including the newly found value and
the next variable in the variable order to find a value for. The sample is
recursively handed down to the first call of get_unsat_cover to return
it to the toolbox. If the recursive call returns the sample to be unsatis-
fiable it found a covering for the next dimension. This covering can be
used to find the unsatisfying area around the sample value for the current
dimension. To find all relevant polynomials for building this new unsatis-
fying interval around the current sample point, the function construct_
characterization is called.

The construct_characterization function builds, as the name sug-
gests, a set of polynomials that form a characterization of the unsatisfying
area from which a corresponding interval can be built. The implement-
ation of construct_characterization stays close to the theory as de-
scribed in Chapter 4, so this chapter only gives a brief overview of the

5.1. NON-INCREMENTAL APPROACH 33

implementation-related aspects. To build the characterization, the func-
tion uses the polynomials that were stored in the unsatisfying intervals
as the origin of the interval and its bounds. As suggested in the theory
in Chapter 4, the function goes through all of the intervals in the cov-
ering and starts with adding all polynomials with a lower main variable
to the characterization. Note that as the intervals are received from the
next higher dimension, this might include polynomials with the current
variable as their main variable.

To be able to compute the new interval’s bounds, the function then
works with polynomials with the next higher dimension’s variable as their
main variable. For the bound computation, discriminants and coefficients
of those polynomials are added. As the CArL library includes an operator
for computing the discriminants, they can be computed by calling this
functionality. For the further computations, the discriminants are nor-
malized and only added if they are not zero. This happens to all added
polynomials before being added to the characterization. The coefficients
are only added if they are deemed useful for the bound calculation as
explained in Chapter 4.

To ensure the bounds that can be computed from the information
added so far are the closest possible ones, the function adds resultants
as suggested in Chapter 4. For these computations, intervals that are
unbounded towards negative or positive infinity are omitted for the com-
putation steps of the corresponding bounds. The CArL library provides
the functionalities needed for the computation of resultants. For the com-
putation of the resultants of two consecutive intervals, the interval order
is used. When all of these resultants are added, the characterization is
complete.

Afterwards, the function interval _from_characterization is called
on the computed characterization to compute the newly found unsatisfying
interval around the current dimensions’ current assignment. This, again,
is implemented close to the theory in Chapter 4 and only implementation-
related aspects are discussed in this chapter. The theory suggests that
all polynomials from the characterization are stored within the interval as
responsible for the unsatisfiability. In the implementation, the polynomi-
als are split into the set of polynomials that form their irreducible factors
before adding them to the characterization. This division into factors is
done by the CArL library.

The polynomials with the current variable as main variable are the ones
whose roots are potential bounds of the new interval. The function can
determine the bounds of the new interval by choosing the two consecutive
roots in between which the sample value for the current dimension lies.
This is computed by choosing the maximal root smaller than or equal to

34 CHAPTER 5. IMPLEMENTATION

the sample value as the lower bound and the minimal root greater than
or equal to the sample value as the upper bound. The polynomials that
have roots at the respective bound are stored as the polynomials which
define the bound. Again, instead of the polynomials themselves, their
irreducible factors are stored. It is possible that there are no roots above
or no roots below the sample value, in which case the respective bound is
unbounded towards infinity instead. If the bounds are equal to the sample,
the interval is a (closed) point interval, otherwise the defined bounds are
open.

This newly computed interval is added to the set of unsatisfying in-
tervals in the current dimension. As suggested in Chapter 4, the main
algorithm get_unsat_cover will then restart its loop. The expanded in-
terval set is checked for a covering and if there is none, the function tries
to find a new value to assign to the variable. If a covering is found, the
function returns this covering instead.

5.2 Incremental Approach

The implementation of the incremental approach was not finished during
the work of this thesis. However, it can be implemented as described in this
section. The incremental implementation extends the non-incremental
implementation. It stores intermediate results from within the different
dimensions and tries to reuse as much data as possible on the next call
of the CAC module. For this reusing, the module holds a store for sets
of unsatisfying intervals that are associated with the variable for which
they were created. The information about the origin of the intervals that
they hold for the algorithm can also be used to react to changes of the
constraint set. The model also stores the logical model that was found
in its last call, i.e. a satisfying variable assignment, in case the former
constraint set was satisfiable. As the SAT solver in SMT-RAT is more
advanced than the basic SAT solver described in Section 3.1, it might give
smaller subsets of constraints to the theory solver those satisfiability do
not necessarily decide the satisfiability of the whole input formula.

The main difference of the incremental implementation is that the
CAC module does not have to store the current constraint set as a whole.
Instead, constraints that are added by a call of the addCore function of the
module get checked for consistency. If there is a model from the previous
run, the constraint is evaluated for this model. Should the constraint not
be satisfied using this model, the stored data has to be updated accord-
ingly. This is done by a crude backtrack function that finds out from
which dimension on the constraint adds a new restriction on the former

5.2. INCREMENTAL APPROACH 35

findings. It starts with the first variable in the variable order and evalu-
ates the constraint on this dimensions. That means that the assignment
to the first variable in the former model is substituted into the constraint
before the evaluation. If the constraint is does not evaluate to false, the
assignment for the next variable is added to the substitution and the con-
straint is reevaluated. This continues until the first variable dimension is
found in which the constraint evaluates to false. All stored unsatisfying
interval sets from higher dimensions are deleted from the store. These
have to be recomputed to adapt to the new conditions. The dimension
where the conflict occurred is stored. The get_unsat_cover function will
start on this dimension on the next call. In case there is more than one
backtrack of this kind, the starting dimension for get_unsat_cover is set
to the lowest detected dimension in which a conflict was detected.

During a call of removeCore in the incremental approach, the module
does a remove operation on the stored data. This is less complicated
than adding constraints as removing constraints has only the potential to
remove unsatisfying intervals, not adding new ones. The function removes
all unsatisfying intervals that originated from the removed constraint. The
former assignment is still satisfiable as this does not impact the satisfiable
regions.

In the check function of the module, the CAC object is not reset as
in the non-incremental approach as they were updated before. The basic
structure of the called functions is still the same as in the non-incremental
approach. The module’s check function calls the function get_unsat_
cover, but gives the lowest conflict dimension as a starting point. If there
was no previous assignment, it still starts with the first variable in the
variable order. The function uses the known assignment and from the
previous run for the lower dimensions. When get_unsat_inters is called,
it first adds the known intervals to the set of unsatisfying intervals. The
function still calculates the unsatisfying intervals from the constraints as
these might be newly added. There is an information gain through the
intervals from the previous run if intervals were calculated from conflicts
before.

Another final difference to the non-incremental approach is in how the
get_unsat_cover function handles conflicts. Before a characterization is
calculated, the stored unsatisfying intervals for the higher dimensions are
removed. This insures that further recursion calls do not add unsatisfying
intervals that was calculated with the old sample.

Test results

To get an evaluation of how the Cylindrical Algebraic Covering (CAC)
algorithm works in practice, its implementation was tested on instances
from the Satisfiability Modulo Theories Library (SMT-LIB) [5]. To have a
comparison to define a 'goodness’ of the results, the results of the test runs
using the new CAC algorithm implementation are compared to SMT-RAT
with Cylindrical Algebraic Decomposition (CAD) settings. SMT-RAT is
a modular toolbox. It allows the user to specify a custom strategy for the
solver. This strategy determines what modules are used and in what order
and under which conditions they are applied. For further information on
SMT-RAT’s strategy, the SMT-RAT manual can be consulted [2]. For
the CAC implementation, the only other used module is the Satisfiability
(SAT) module which works as a SAT solver as described in Chapter 3. The
theory solver consists only of the CAC module. This CAC strategy was
tested in comparison of a run of the toolbox using only the SAT module
and SMT-RAT’s CAD module implementation using SMT-RAT’s Lazard
projection operator. For the test of the non-incremental CAC approach,
the compared CAD strategy is also non-incremental.

As of the end of this thesis the incremental implementation is not stable
yet, the resulting intermediate results are not informative yet. Therefore
there is no test of the incremental CAC implementation in this thesis.

The implementation of the CAC algorithm was tested on the QF_
NRA instance set from the SMT-LIB, the set containing instances over
quantifier-free non-linear real arithmetic (QFNRA), from 2019 [5]. This
set includes 11,489 instances. The time limit of the solver was set to
60 s with a tolerance of about 3 s. The data stems from runs on AMD
Opteron 6172 processors, with a total of 4GB RAM per benchmark. The
benchmark was run on each strategy and the computation time and results
were measured. A benchmark consisted of a run of the solver on each
instance of the QF_NRA library.

The results of using the non-incremental implementations are presen-
ted first. An overview of the results using the non-incremental approach
is depicted in Table 6.1. The run on the CAD strategy of SMT-RAT ran

37

38 CHAPTER 6. TEST RESULTS

CAD Strategy CAC Strategy
Result # % av. time # % av. time
unsat 3,348 29.14 0.991 4,032 35.09 1.783
sat 4,264 37.11 0.238 4,290 37.34 0.304
total solved 7,612 66.25 0.569 8,322 72.43 1.020
timeout 3,772 32.83 63.052 3,064 26.67 63.058

memout /error 105 0.91 32.546 103 0.90 31.333

Table 6.1: Statistics of non-incremental runs on SMT-LIB QF_NRA lib-
rary with 11,489 instances, times in s, timeout 60 s.

into this limit on 3,772 of the instances which are about 32.83% of the
instances. For the CAC strategy, only 3,064 instances ran into the time
limit which is about 26.67% of the instances. Hence, the CAC implement-
ation was able to solve more than 6% of instances more than the CAD
approach within the time limit.

Other instances that could not be solved usually ran into memory
problems, there was only one instance that ran into an memory error in
the CAD strategy run, so this is included in the memory section. Using
the CAD strategy, the solver ran into memory problems in only about
0.91% of cases and 0.90% of instances in the CAC implementation. Of
the 105 impacted runs, 101 instances ran into these problems for both
strategies. These 101 instances are omitted for the rest of the evaluation.

Of the 11,489 instances, the solver with the CAD strategy could detect
4,264 to be satisfiable. The CAC strategy could compute 4,290 instances
to be satisfiable, which is a slight increase in comparison to the CAD
strategy. The average solving time for these solved cases increased a bit,
from 0.238 s to 0.304 s.

The original inspiration for the CAC included that it might result in a
speed-up in comparison to the CAD algorithm on unsatisfiable problems.
The CAD algorithm is part of the CAD strategy. Using SMT-RAT’s CAD
strategy, the solver could determine the unsatisfiability of 3,348 instances.
In contrast to that, the CAC implementation could detect 4,032 unsatis-
fiable instances within the given time limit. That means that the CAC
implementation could detect unsatisfiability in nearly 6% more of the in-
stances than the CAD strategy. On average, the CAC module took 1.783
s for these instances while the CAD solver took only 0.991 s. This is an
average increase of 0.792 s.

Looking at the data above, one can already gather that more instances
could be solved using the CAC strategy in comparison to the CAD within

39

the time limit. That does not only include the suspected unsatisfiable
instances but a few satisfiable instances, too. As the number of instances
that run into the time limit have decreased in comparison to the CAD, the
CAC strategy could even solve some instances more than the CAD. The
total number of instances solved with the CAC module is 8,322 while the
CAD solver could solve 7,612. Hence in total, the CAC implementation
solved about 6% more instances than the CAD.

More detailed information about the benchmark of the non-incremental

Comparison on all 11,489 instances

Result # % av. time difference
unsat +684 +5.95 +0.792
sat +26 +0.23 +0.066
total solved +710 +6.18 +0.451
timeout -708 -6.16 -0.006
memout /error -2 -0.02 -1.214

Instances with the same result for both strategies

Result # % av. time difference
unsat 3,269 28.45 -0.388
sat 4112 35.79 £0.046
total solved 7,381 64.24 -0.146
timeout 2,830 24.63 +0.010

Instances only solvable or timeout on CAC strategy

Result # % av. time
unsat 763 6.64 7.296
sat 178 1.55 3.071
total solved 941 8.19 6.497
timeout 234 2.04 63.006

Instances only solvable or timeout on CAD strategy

Result # % av. time
unsat 79 0.69 5.406
sat 152 1.32 2.954
total solved 231 2.01 3.792
timeout 942 8.20 63.051

Table 6.2: Statistical evaluation of CAC strategy in comparison to CAD
strategy on SMT-LIB QF_NRA library, non-incremental runs, timeout 60
s, times in s.

40 CHAPTER 6. TEST RESULTS

implementation are depicted in Table 6.2. In the first part of the table,
the differences of the two solver strategies are shown again. They are
shown as positive if the number increased for the CAC implementation in
comparison to the CAD and negative if the number decreased, respect-
ively. The decrease in instances running into the time limit is about equal
to the increase in solved instances. To get more information, the rest of
the table is divided into instances that were solved for both strategies and
such that were only solved in one of them. The percentages in the table
were calculated referring to the full set of 11,489 instances as 100%.

The instances that run into the time limit in both cases account for
most of the timeout runs happening for the CAC strategy. About 2% of
instances ran into the limit in the CAC implementation while being solved
by the CAD solver. In contrast to the 8% of instances that could not be
solved by the CAD strategy, this number is relatively low.

On the instances that could only be solved by the CAC strategy within
the time limit, the CAC implementation took more time for the solving
process that the CAD solver needed for the instances that it solely solved.
Remarkably, the instances solved as unsatisfiable by both strategies took
less time to solve on average using the CAC strategy. The data suggests
that there is, in fact, a speed-up for the instances that the solver was able
to solve in this time limit with its CAD strategy. Hence, the original aim
of the algorithm is met for instances with relatively low solving time.

The average solving time for satisfiable instances solved by both SMT-
RAT variants increased minimally by 0.046 s. This increase is relatively
low. The percentage of satisfiable instances that could be solved by only
one of the strategies is similar for both instances, so there is no relevant
advantage or disadvantage to using the CAC implementation on satisfiable
instances.

In general, the average solving times of instances that could solely
solved by one of the strategies is higher than the average times shown
in Table 6.1. A reason for that phenomenon could be that the instances
solved by only one of the strategies contained special cases the respective
strategy was better suited for. The non-incremental CAC strategy could
solve more than 8% of the instances that the CAD strategy was not able
to solve in the given time. It can be concluded that the strategy is better
suited to solve these instances in QFNRA than the corresponding CAD
SMT-RAT strategy.

As mentioned in Chapter 5, there was no stable implementation of the
incremental CAC approach at the end of the thesis. Accordingly, there
are no test results for this approach.

Conclusion

In this thesis, the Cylindrical Algebraic Covering (CAC) algorithm de-
scribed in the paper by Abrahém, Davenport, England, and Kremer [33]
was implemented. There are two approaches to implement the CAC
algorithm, a non-incremental and an incremental approach. Both im-
plementations were designed as a theory module for the Satisfiability
(SAT) Modulo Theories (SMT) solving toolbox SMT-RAT. The incre-
mental implementation was not finished but could be build as an ex-
tension of the non-incremental implementation. To get a notion of how
good the non-incremental implementation works, both implementations
were tested by running benchmarks on them using suitable instances from
the Satisfiability Modulo Theories Library (SMT-LIB). The results were
compared on runs of the same instances against SMT-RAT’s Cylindrical
Algebraic Decomposition (CAD) implementation with Lazard projection.

In conclusion for the non-incremental approach, the experiments in-
dicate that using the CAC implementation instead of the non-incremental
CAD strategy might actually result in a speed-up on unsatisfiable in-
stances. For instances with short solving time, a small speed-up could
be observed. As the CAC strategy could solve a relevant percentage of
instances that the CAD strategy could not solve within the time limit, it
can be concluded that these instances would take more time on the CAD
settings. Hence, while not directly visible in the presented data set, there
is in fact a speed-up on the tested instance set. As the solving times and
rates for satisfiable instances for the CAC strategy were similar to the ones
to the CAD strategy, there is no disadvantage in using the CAC strategy
for such instances. In result, the incremental CAC strategy is time-wise
better suited to solve the given instances in quantifier-free non-linear real
arithmetic (QFNRA) than the CAD strategy.

As an outlook, the future work will include stabilizing the incremental
CAC implementation. There are also some more optimizations that can be
applied to the implementation of the CAC algorithm. These include, for
example, adding more data to extend the incremental approach. If the im-
plementation would keep more information about which constraints were

41

42 CHAPTER 7. CONCLUSION

newly added, the get_unsat_intervals function could omit computing
unsatisfying intervals for all formerly known constraints. This might need
more information about whether the intervals of this level were computed
before. Currently, this is not stored. An empty set of unsatisfying inter-
vals may mean that they were deleted, or not computed before, or that the
computation did find no unsatisfying intervals for this dimension. Storing
and using these information could save some computation time.

Another possible optimization to the implementation in general is the
merging of the basic functionalities used in the functions compute_cover
and sample_outside that were described in Chapter 5. These are sim-
ilar enough as both search a set of consecutive intervals. Actually, the
implementation is easily adaptable to this optimization as the function
compute_cover was originally designed with the capability to return the
last added interval in the case there is no covering. Additionally, the CAC
object could store this information and restart both of the algorithms at
this last found interval on the next call. Note that for an incremental
approach, this would need further adapting when intervals are deleted.

Glossary

CAC
SAT
SMT
CAD
NRA
QFNRA
QFNIRA
mcSAT
DPLL
CDCL
NuCAD

Cylindrical Algebraic Covering

Satisfiability

SAT Modulo Theories

Cylindrical Algebraic Decomposition

non-linear real arithmetic

quantifier-free non-linear real arithmetic
quantifier-free non-linear mixed integer real arithmetic
model-constructing satisfiability calculus
Davis—Putnam—Logemann—Loveland

conflict-driven clause learning

Non-uniform Cylindrical Algebraic Decomposition

SMT-LIB Satisfiability Modulo Theories Library

43

Bibliography

CArL git repository. https://github.com/smtrat/carl [Online; ac-
cessed 09-February-2020].

SMT-RAT git repository. https://github.com/smtrat/smtrat [On-
line; accessed 09-February-2020].

Yices git repository. https://github.com/SRI-CSL/yices2 [Online; ac-
cessed 09-February-2020].

Z3 git repository. https://github.com/Z3Prover/z3 [Online; accessed
09-February-2020].

SMT-LIB, the satisfiability modulo theories library, 2019.
http://smtlib.cs.uiowa.edu/ [Online; accessed 04-February-2020].

The Yices SMT solver, 2020. https://yices.csl.sri.com/ [Online; ac-
cessed 02-February-2020].

SMT Workshop 2018 affiliated with Federated Logic Confer-
ence 2018. 13th international satisfiability modulo theor-
ies competition (SMT-COMP 2018), results QF_NIRA, 2018.
http://smtcomp.sourceforge.net /2018 /results-QF _NIRA.shtml [On-
line; accessed 27-January-2020].

SMT Workshop 2019 affiliated with the 22nd International
Conference on Theory and Applications of Satisfiability Test-
ing. 14th international satisfiability modulo theories competi-
tion (SMT-COMP 2019), results QF_LIA, 2019. https://smt-
comp.github.io/2019 /results/qf-lia-incremental [Online; accessed 02-
February-2020].

SMT Workshop 2019 affiliated with the 22nd International
Conference on Theory and Applications of Satisfiability Test-
ing. 14th international satisfiability modulo theories competi-
tion (SMT-COMP 2019), results QF_NIRA, 2019. https://smt-

45

https://github.com/smtrat/carl
https://github.com/smtrat/smtrat
https://github.com/SRI-CSL/yices2
https://github.com/Z3Prover/z3
http://smtlib.cs.uiowa.edu/
https://yices.csl.sri.com/
http://smtcomp.sourceforge.net/2018/results-QF_NIRA.shtml
https://smt-comp.github.io/2019/results/qf-lia-incremental
https://smt-comp.github.io/2019/results/qf-lia-incremental
https://smt-comp.github.io/2019/results/qf-nira-single-query
https://smt-comp.github.io/2019/results/qf-nira-single-query

46

[14]

BIBLIOGRAPHY

comp.github.io/2019 /results/qf-nira-single-query [Online; accessed
12-February-2020].

SMT Workshop 2020 affiliated with the International Joint Confer-
ence on Automated Reasoning 2020. 15th international satisfiability
modulo theories competition (SMT-COMP 2020), 2020. https://smt-
comp.github.i0o/2020/ [Online; accessed 30-January-2020].

Dennis S. Arnon, George E. Collins, and Scott McCallum. Cylindrical
algebraic decomposition I: the basic algorithm. SIAM J. Comput.,
13(4):865-877, 1984.

Christopher W. Brown. Simple CAD construction and its applica-
tions. J. Symb. Comput., 31(5):521-547, 2001.

Christopher W. Brown. Constructing a single open cell in a cylindrical
algebraic decomposition. In Manuel Kauers, editor, International
Symposium on Symbolic and Algebraic Computation, ISSAC’13, Bo-
ston, MA, USA, June 26-29, 2013, pages 133-140. ACM, 2013.

Christopher W. Brown. Open non-uniform cylindrical algebraic de-
compositions. In Kazuhiro Yokoyama, Steve Linton, and Daniel
Robertz, editors, Proceedings of the 2015 ACM on International Sym-
posium on Symbolic and Algebraic Computation, ISSAC 2015, Bath,
United Kingdom, July 06 - 09, 2015, pages 85-92. ACM, 2015.

Christopher W. Brown and Marek Kosta. Constructing a single cell
in cylindrical algebraic decomposition. J. Symb. Comput., 70:14-48,
2015.

George E. Collins. Quantifier elimination for real closed fields by cyl-
indrical algebraic decomposition. In H. Barkhage, editor, Automata
Theory and Formal Languages, 2nd GI Conference, Kaiserslautern,
May 20-23, 1975, volume 33 of Lecture Notes in Computer Science,
pages 134-183. Springer, 1975.

Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp,
and Erika Abrahdm. SMT-RAT: an open source C++ toolbox for
strategic and parallel SMT solving. In Marijn Heule and Sean A.
Weaver, editors, Theory and Applications of Satisfiability Testing
- SAT 2015 - 18th International Conference, Austin, TX, USA,
September 24-27, 2015, Proceedings, volume 9340 of Lecture Notes
in Computer Science, pages 360-368. Springer, 2015.

https://smt-comp.github.io/2019/results/qf-nira-single-query
https://smt-comp.github.io/2019/results/qf-nira-single-query
https://smt-comp.github.io/2020/
https://smt-comp.github.io/2020/

BIBLIOGRAPHY 47

[18]

[19]

[20]

22]

Leonardo Mendonca de Moura and Nikolaj Bjgrner. Z3: an effi-
cient SMT solver. In C. R. Ramakrishnan and Jakob Rehof, edit-
ors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008, Held as Part of
the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceed-
ings, volume 4963 of Lecture Notes in Computer Science, pages 337—
340. Springer, 2008.

Leonardo Mendonga de Moura and Dejan Jovanovic. A model-
constructing satisfiability calculus. In Roberto Giacobazzi, Josh
Berdine, and Isabella Mastroeni, editors, Verification, Model Check-
ing, and Abstract Interpretation, 14th International Conference, VM-
CAI 2013, Rome, Italy, January 20-22, 2013. Proceedings, volume
7737 of Lecture Notes in Computer Science, pages 1-12. Springer,
2013.

Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, ed-
itors, Computer Aided Verification - 26th International Conference,
CAV 201/, Held as Part of the Vienna Summer of Logic, VSL 201/,
Vienna, Austria, July 18-22, 2014. Proceedings, volume 8559 of Lec-
ture Notes in Computer Science, pages 737-744. Springer, 2014.

Aarti Gupta, Zijiang Yang, Pranav Ashar, and Anubhav Gupta. Sat-
based image computation with application in reachability analysis. In
Warren A. Hunt Jr. and Steven D. Johnson, editors, Formal Methods
in Computer-Aided Design, Third International Conference, FMCAD
2000, Austin, Texas, USA, November 1-3, 2000, Proceedings, volume
1954 of Lecture Notes in Computer Science, pages 354-371. Springer,
2000.

Hoon Hong. An improvement of the projection operator in cylindrical
algebraic decomposition. In Shunro Watanabe and Morio Nagata, ed-
itors, Proceedings of the International Symposium on Symbolic and
Algebraic Computation, ISSAC 90, Tokyo, Japan, August 20-24,
1990, pages 261-264. ACM, 1990.

Andrei Horbach. A boolean satisfiability approach to the resource-
constrained project scheduling problem. Annals OR, 181(1):89-107,
2010.

Dejan Jovanovic and Leonardo Mendonga de Moura. Solving non-
linear arithmetic. In Bernhard Gramlich, Dale Miller, and Uli Sat-
tler, editors, Automated Reasoning - 6th International Joint Confer-

48

[25]

[26]

32]

BIBLIOGRAPHY

ence, IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings,
volume 7364 of Lecture Notes in Computer Science, pages 339-354.
Springer, 2012.

Daniel Lazard. An improved projection for cylindrical algebraic de-
composition. In Chandrajit L.Bajaj, editor, Algebraic Geometry and
its Applications: Collections of Papers from Shreeram S. Abhyankar’s
60th Birthday Conference, pages 467-476. Springer New York, 1994.

Scott McCallum. An improved projection operation for cylindrical
algebraic decomposition. In B. F. Caviness, editor, FUROCAL 85,
European Conference on Computer Algebra, Linz, Austria, April 1-3,
1985, Proceedings Volume 2: Research Contributions, volume 204 of
Lecture Notes in Computer Science, pages 277-278. Springer, 1985.

Scott McCallum, Adam Parusinski, and Laurentiu Paunescu. Validity
proof of Lazard’s method for CAD construction. J. Symb. Comput.,
92:52-69, 2019.

Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation
= lazy clause generation. In Christian Bessiere, editor, Principles
and Practice of Constraint Programming - CP 2007, 13th Interna-
tional Conference, CP 2007, Providence, RI, USA, September 23-27,
2007, Proceedings, volume 4741 of Lecture Notes in Computer Sci-
ence, pages 544-558. Springer, 2007.

Conference on Automated Deduction. Herbrand award for
distinguished contributions to automated reasoning, 2019.
http://www.cadeinc.org/Herbrand-Award [Online; accessed 27-
January-2020].

European Joint Conferences on Theory & Practice of Soft-
ware. ETAPS 2018 test of time award, April 2018.
https://etaps.org/2018/test-of-time-award [Online; accessed 27-
January-2020].

Alfred Tarski. A decision method for elementary algebra and geo-
metry. In Bob F. Caviness and Jeremy R. Johnson, editors, Quanti-
fier Elimination and Cylindrical Algebraic Decomposition, pages 24—
84. Springer Vienna, 1998. Reprint with permission from University
of California Press, Berkeley and Los Angeles, 1951.

Boyan Yordanov, Youssef Hamadi, Hillel Kugler, and Chris-
toph M. Wintersteiger. Z3-4biology SMT-based analysis of bio-
logical computation. Technical Report MSR-TR-2012-31, March

http://www.cadeinc.org/Herbrand-Award
https://etaps.org/2018/test-of-time-award

BIBLIOGRAPHY 49

2012. https://www.microsoft.com/en-us/research /publication/z3-
4biology-smt-based-analysis-of-biological-computation/ [Online, Ac-
cessed 09-February-2020].

FErika Abrahém, James H. Davenport, Matthew England, and Gereon
Kremer. Deciding the consistency of non-linear real arithmetic con-
straints with a conflict driven search using cylindrical algebraic cov-
erings (preprint). Journal of Logical and Algebraic Methods in Pro-
gramming, 2020. https: //publications.rwth-aachen.de/record /782464
[Online, Accessed 09-February-2020].

https://www.microsoft.com/en-us/research/publication/z3-4biology-smt-based-analysis-of-biological-computation/
https://www.microsoft.com/en-us/research/publication/z3-4biology-smt-based-analysis-of-biological-computation/
https://publications.rwth-aachen.de/record/782464

	Contents
	Introduction
	Related Work
	Satisfiability Modulo Theories Solving
	Cylindrical Algebraic Decomposition

	Theoretical Background
	Satisfiability Modulo Theories solving
	Cells

	Algorithm: Finding Cylindrical Algebraic Coverings
	Implementation
	Non-Incremental Approach
	Incremental Approach

	Test results
	Conclusion
	Glossary
	Bibliography

