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Abstract

Satisfiability modulo theories (SMT) solving is a technology for checking the
satisfiability of quantifier-free first-order logic formulas, i.e. Boolean combinations
of constraints from some theories. For solving the theory of linear real arithmetic,
the Simplex algorithm has successfully been adapted for the DPLL(T) framework.
However, this approach reaches its limits at instances with complex Boolean
structure. This thesis presents a novel adaption of the Simplex method attempting
to overcome these limits by interleaving Simplex pivot steps with the SAT solving
process.
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Chapter 1

Introduction

Undoubtedly, there are only few technologies that influenced human life as much as
computerized systems. Algorithms, step-by-step recipes for information transformation,
form the aorta of modern life. Most of these algorithms are tailored for solving a
specific problem allowing highly efficient computations. However, ensuring that their
solutions are correct is a hard challenge and sometimes no less important than their
efficiency. Hence, developing these algorithms is hard and not always feasible. This
is why general frameworks admitting the formulation of a wide range of problem
statements have been developed, where the user does not need to know how to solve
the problem - this task is handed over to a solver. These solvers help to verify that
problem-specific algorithms work correctly and are able to solve logical problems
deductively. Developing an efficient solver for a general problem can only succeed by
focussing heuristically on practical instances. This is a consequence of the so called
no free lunch theorems [WM95, Wol96, WM97], stating, shortly speaking, that in
expectation, each algorithm performs equally bad (or well) on the set of all possible
instances. Hence, it is theoretically proven that this discipline will never render itself
obsolete and the strive for mighty solvers is never ending.

A long-known and well-studied problem is the Boolean satisfiability problem (SAT)
being the first problem proven to be NP-complete [Coo71, Lev73]. That means, simply
speaking, a wide range of interesting problems in computer science can be reduced to
this problem. As SAT admits a simple but natural language, there has been intensive
research over the past decades resulting in reasonably fast SAT solvers. The most
common approach are the conflict-driven clause-learning (CDCL) [MSS96, MMZ+01]
solvers building on the DPLL [DP60, DLL61] algorithm.

The problem statement of SAT has been extended for first-order logic, namely
satisfiability modulo theories (SMT). SMT formulas are often restricted to the quantifier-
free fragment, that is, they are Boolean combinations of constraints from some theories.
The theory of interest in this thesis is linear real arithmetic (LRA). A successful
technique for solving such formulas is the DPLL(T) framework, a modular framework
consisting of a CDCL-style SAT solver and a theory solver. The former solves a
Boolean abstraction of the formula while the latter ensures the consistency of the
Boolean solution with the underlying theory.

The constraints of linear real arithmetic are linear equalities and strict or weak
inequalities. Well-known decision procedures for this theory are the Fourier-Motzkin
variable elimination [Fou27, Mot36], the ellipsoid method [Kha79] and an adaption
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of the Simplex [Dan98] method, where the latter is the most popular one being
implemented in many solvers. In this thesis, we will present a novel adaption of
the Simplex method into the DPLL(T) framework aiming for better performance on
problems with complex Boolean structure.

This thesis starts in Chapter 2 with an introduction of the DPLL(T) framework,
systems of linear constraints, the fundamental theorem of linear programming and
the general Simplex algorithm. The fundamental theorem of linear programming is
extended for strict inequalities in Chapter 3 as a requirement for solving LRA formulas.
In Chapter 4, an adaption of the Simplex algorithm and a novel embedding into the
DPLL(T) framework is presented. In Chapter 5, the procedure is compared with the
general Simplex method, experimental results are analysed and possible extensions as
well as alternative approaches are discussed. Finally, in Chapter 6, we will conclude
the thesis.



Chapter 2

Preliminaries

2.1 SAT and SMT

2.1.1 Boolean satisfiability problem (SAT)

Given a set of Boolean variables B = {b1, . . . , bn}, the set of Boolean formulas (in
B) is inductively defined: All variables in B are Boolean formulas and if ψ and φ are
Boolean formulas then their negation ¬ψ and conjunction (ψ∧φ) are Boolean formulas,
too. As syntactic sugar, we introduce disjunction (ψ ∨ φ), implication (ψ → φ) etc. as
usual.

Given a Boolean formula φ in variables B, an assignment α : B → {0,1} assigns
each Boolean variable to a truth value allowing to evaluate φ to 0 or 1 (false respectively
true) using the usual interpretation of the connectives ¬,∨,∧,→, etc. We say that a
Boolean formula φ is satisfiable if and only if there exists an assignment α such that φ
evaluates to true, written as α |= φ; otherwise, we call φ unsatisfiable or conflicting.
The Boolean satisfiability problem (SAT) is the problem to decide the satisfiability of
a given formula.

SAT is the first problem known to be NP-complete [Coo71, Lev73]. This means
on the one hand, that many interesting and practical problems in computer science
can be reduced to SAT; but on the other hand, that most probably there exists no
polynomial-time algorithm for deciding the SAT problem. Nevertheless, there exist
algorithms and tools - so called SAT solvers - working considerably well on practical
problem instances.

2.1.1.1 The DPLL-CDCL algorithm

The most popular SAT-solving algorithms extend the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [DP60, DLL61] with Conflict-Driven-Clause-Learning
(CDCL) [MSS96]. The original DPLL algorithm used enumeration and propagation
for the search and in case of a conflict backtracked to the last decision chronologically.
This approach has been extended with conflict-driven clause-learning to explain the
roots of conflicts using Boolean resolution. Explanation clauses are an implication of
the original clause set and thus can be added to the original clause set to guide the
solving process (clause learning).

Such SAT solving algorithms assume the input to be in CNF:
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Definition 2.1.1 (Conjunctive normal form (CNF)). A formula is in conjunctive
normal form (CNF) if and only if it is of the form

ϕ =

m∧
i=1

mi∨
j=1

li,j


where li,j ∈ {b,¬b | b ∈ B}. The li,j terms are called literals, and the ∨mi

j=1li,j terms
are called clauses.

Using Tseitin’s transformation [Tse83], any formula can be transformed into a
satisfiability-equivalent CNF formula in polynomial time at the cost of additional
variables.

An overview of the DPLL-CDCL procedure is given in Algorithm 1. The procedure
maintains a partial assignment that is consistent with every clause (i.e. no clause
evaluates to false). Whenever possible, the procedure deduces values for yet unassigned
variables: If all literals of a clause except one evaluate to false under the current
assignment and the remaining literal does not evaluate to a value yet, a unique value
for the variable in the remaining literal is implied that satisfies the clause; this is
called unit clause propagation. If no propagations are possible, a heuristic picks a yet
unassigned variable and assigns it to a value (called a decision). Iterating decision
and propagation terminates when either a complete assignment satisfying ϕ is created
this way, or a conflict occurs, where a clause evaluates to false under the current
assignment. In the latter case, Boolean resolution is applied on this conflict clause and
some other clauses that contributed to the conflict by unit propagation; this results in
an explanation clause excluding the current assignment and some others that would
lead to the same conflict. If the conflict happened before any decisions have been
made, then the whole formula is unsatisfiable. Otherwise, some conflicting decisions
are backtracked and the procedure continues.

The performance of this procedure depends highly on the decision heuristic and a
bunch of optimizations; for more details, we refer to [BHvM09].

Algorithm 1: DPLL
1 function DPLL(C)

Input: a set of clauses C
Output: SAT if C is satisfiable or UNSAT otherwise

2 while true do
3 while exists unit clause c ∈ C do
4 Propagate(c)
5 if exists conflicting clause c ∈ C then
6 if ¬ Resolve(c) then
7 return UNSAT
8 if all variables assigned then
9 return SAT

10 Decide()
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2.1.1.2 Minisat

The experimental part of this thesis will rely on Minisat [ES03], a DPLL-CDCL-style
SAT solver featuring some popular SAT heuristics (amongst others):

• The order in which the Boolean variables are decided is determined by the variable
state independent decaying sum (VSIDS) [MMZ+01] scheme. Shortly speaking,
it tracks for each variable an activity score which is increased whenever a clause
that was used for resolution to derive an explanation for a conflict contained this
variable or its negation. Whenever a decision is made, an unassigned variable
with the highest activity score is picked. In order to focus on more recent
conflicts, the increment is increased after each conflict. To avoid overflow, all
activity scores are regularly divided by a constant factor.

• The first time a variable is decided, Minisat assigns the value false to it. If a
decision variable has already been assigned before (but this assignment has been
reverted), then it will be set to its last value.

• As the SAT solver progresses, the clause database grows as clauses are learned.
While learned clauses drive the solving process, too many clauses cause a
remarkable additional effort for propagation and memory management. This
is why the clause database is reduced regularly: For each clause, an activity
score similarly to the variables is maintained. Whenever the number of learned
clauses reaches a certain threshold max_learnts (relative to the initial number
of clauses), the learned clauses with an activity below a certain threshold are
deleted. To ensure completeness, max_learnts is regularly increased.

2.1.2 Satisfiability modulo theories (SMT)
SMT is an extension to the SAT problem, asking whether a sentence in the existential
fragment of first order logic is satisfiable with respect to one or multiple background
theories. We omit a formal definition here, but give a restricted view, motivating an
algorithmic solution to the problem: An SMT formula is a SAT formula where some
of the Boolean variables are replaced by predicates (theory constraints), which are
Boolean-valued functions of theory variables. These constraints are evaluated with
respect to its associated theory. For linear real arithmetic, those are linear inequalities
such as 4x1 + 5x2 ≤ 0 where x1 and x2 are real-valued variables. There exists a variety
of further theories, such as non-linear real arithmetic, uninterpreted functions, etc.,
where some of them can be combined. For more details, we refer to [BHvM09].

An SMT solver solves such problems, and in case of satisfiability generates also
a satisfying assignment for the theory variables. The SMT-LIB standard [BST+10]
defines theories, a protocol and a file format for SMT problems.

2.1.2.1 DPLL(T)

There are several approaches for SMT solving. The eager approach reduces an SMT
formula to a SAT instance and then passes the problem to a SAT solver. While this
works well enough for simple theories, another approach is employed for most theories:
In lazy SMT solving, a SAT solver communicates with a theory solver, meaning that
the SAT solver solves a Boolean abstraction of the formula while the theory solver
checks the consistency with the underlying theories. If the current Boolean solution
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does conflict with the theory, the theory solver generates explanations expressing the
theory conflict by a Boolean formula. We go into more detail:

Definition 2.1.2 (Boolean abstraction). Let ϕ be a quantifier-free first-order logic
formula. By abstraction(ϕ) we denote the Boolean formula obtained by replacing each
constraint c in ϕ by a fresh Boolean variable bc (and the constraint equivalent to ¬c by
¬bc).

The DPLL(T) algorithm is an extension to the DPLL algorithm. Let in the
following α denote the current Boolean variable assignment in the solver. The theory
solver regularly checks the set

I := {c | α(bc) = 1} ∪ {¬c | α(bc) = 0}

of constraints for consistency with the underlying theory, thus needs only to be able
to handle conjunctions of theory constraints. For inconsistent constraints, the theory
solver returns an explanation in form of a theory lemma that is violated by the current
assignment. In the simplest case, the theory solver might return ∨c∈I¬c as explanation.
However, most solvers are able to compute a smaller infeasible subset of I, excluding
bigger search areas. The Boolean abstraction of this lemma lifts the conflict from the
theory to the Boolean level, thus advises the SAT solver to backtrack and continue
the search.

There are two variants of DPLL(T): A full-lazy variant calling the theory solver
only if a complete Boolean assignment has been found, satisfying the whole abstraction;
and a less-lazy variant calling the theory solver before every decision. In the latter
case, a theory solver should be able to keep information across theory calls: Building
up the theory model incrementally and be able to backtrack conflicts.

An overview of the less-lazy procedure is given in Algorithm 2.

Algorithm 2: Less-lazy DPLL(T)
1 function DPLL(C)

Input: a set of clauses C
Output: SAT if C is satisfiable or UNSAT otherwise

2 while true do
3 while no new clauses are added to C do
4 while exists unit clause c ∈ C do
5 Propagate(c)
6 if exists conflicting clause c ∈ C then
7 if ¬ Resolve(c) then
8 return UNSAT
9 C := C ∪ TheoryCheck()

10 if all variables assigned then
11 return SAT
12 Decide()

2.2 Linear constraints
We point out that we introduce a slightly peculiar notation and usage of the mathe-
matical objects deviating from usual presentations. For a proper introduction to the
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basics of linear algebra, we refer to [Axl97, Hef18, SR12].
In the following, let F be a field, (U , <) an ordered vector space over F (or

F-vector space) and X = {x1, . . . ,xn} a set of U-valued variables.
For a1, . . . , an ∈ F , b ∈ U and a relation symbol ∼∈ {= , ≤ , ≥ , < , > , 6=}, we

call p = a1 ·x1 + . . .+an ·xn a linear F-combination of X and p ∼ b a linear constraint
(over (U , <) in variables X). An equation is a linear constraint with ∼∈ {=}. A
constraint p ∼ b is called weak if ∼∈ {=,≤,≥} and strict otherwise. By c̄ we denote
the negation of a linear constraint c, i.e. = is replaced by 6=, < is replaced by ≥ and
so on.

A constraint c can be evaluated under an assignment α : X → U the standard way.
If c is satisfied by α (denoted as α |= c), it is called a solution. The solution set of c is
defined as sol(c) = {α : X → U | α |= c}.

Furthermore, let p be a linear F-combination of X, then α(p) ∈ U denotes the
value of p under α.

Furthermore we introduce some notation for an assignment α : X → U : Let
X ′ ⊂ X, then α �X′ : X ′ → U denotes the restriction of α to X ′. Let x /∈ X be a
variable and v ∈ U , then α[x 7→ v] : (X ∪ {x})→ U denotes the extension of α where
x is assigned to v.

Let U be a structure and x be a variable, then U [x] denotes the structure U
extended by x such that U [x] is closed under all its operations. Let α : X → U [x] be
an assignment, x /∈ X and v ∈ U , then α[v/x] : X → U is the assignment where x is
replaced by v in the values of the target domain U [x].

Notation In the following, instead of i = 1, . . . ,n, we write i ∈ [n].

Linear real arithmetic (LRA) A formula ϕ in linear real arithmetic (LRA) is a
Boolean combination of linear constraints p ∼ b over (R, <) where R is viewed as a
Q-vector space and b ∈ Q. The set of linear constraints in a formula ϕ is denoted by
Constraints(ϕ); the set of R-valued variables in ϕ is denoted by Vars(ϕ).

Note that if such a formula ϕ has a solution over (R, <), then it has also a solution
over (Q, <).

Systems of linear constraints A systems of linear constraints over (U , <) is a
finite set of linear constraints. The notions for solutions can be extended for systems
by treating the system as conjunction of its elements. Two systems C1, C2 of linear
constraints are equivalent (denoted as C1 ≡ C2) if and only if sol(C1) = sol(C2).

A system of linear constraints with only equations is called an equation system.
Furthermore, given a set C = {pi ∼i bi | i ∈ [m]} of linear constraints, we define

the set of left hand sides of the constraints in C as PC = {pi | i ∈ [m]}.

Definition 2.2.1. A system C of linear constraints is called consistent or satisfiable
if and only if sol(C) 6= ∅, otherwise it is called inconsistent or conflicting.

Definition 2.2.2. A set {pi | i ∈ [m]} of linear F-combinations of a set X of variables
is called linearly independent if and only if for all f1, . . . , fm ∈ F

f1 · p1 + . . .+ fm · pm = 0 ⇐⇒ f1 = . . . = fm = 0

and linearly dependent otherwise.
A set C of linear constraints is called linearly independent (dependent) if and only

if PC is linearly independent (dependent).
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Note that in the above definition, if a constraint is trivial (i.e. some pi is 0), then
the whole set is linearly dependent.

Definition 2.2.3. The rank of a system C of linear constraints is defined as

rank(C) = max {
∣∣C ′∣∣ | C ′ ⊆ C,C ′ linearly independent}.

C is called underdetermined if and only if rank(C) < n where n is the number of
variables in C.

2.3 Satisfiability of systems of weak linear constraints
In the following, we first focus on the satisfiability of systems of weak linear constraints.
Furthermore, we will assume ≤ as the only relation, as a constraint with relation =
can be replaced by two constraints with ≤ and ≥; constraints with ≥ in turn can be
turned into ones with ≤ by multiplying them with −1.

2.3.1 Linear programming
In this thesis, we make use of some results from the theory of linear programming.
A linear program is an optimization problem maxx∈Un cT · x given the cost vector
c ∈ Fn respecting side conditions Ax ≤ b where A ∈ Fm×n, b ∈ Um. Note that the
side conditions Ax ≤ b form a system of weak linear constraints - its satisfiability is
our interest for SMT solving.

2.3.2 Fundamental theorem of linear programming
In the following, we prove a slightly stronger variant of the first part of the fundamental
theorem of linear programming. A proof for the original theorem is presented for
example in [LY84].

Definition 2.3.1 (Tight constraint). Let c be a weak linear constraint p ∼ b, i.e.
∼∈ {=,≤,≥}. We call p = b the tightness equality of c, denoted by c̃.

Let α : {x1, . . . , xn} → U , then c is called tight at α if α |= c̃.
Given a set V of weak linear constraints, we define Ṽ := {c̃ | c ∈ V }.

Theorem 2.3.1 (Adaption of the fundamental theorem of linear programming). Let
C be a system of weak linear constraints over (U , <) in variables X.

Then C is satisfiable if and only if there exists a maximal linearly independent set
V ⊆ C (i.e. |V | = rank(C)) such that

∃α : {x1, . . . , xn} → U . α |= Ṽ ∪ C.

Before proving this theorem, we present a well known fact about matrices: Let
A ∈ Fm×n be a matrix. We denote the j-th column vector of A by a−,j ∈ Fm×1
and the i-th row vector of A by ai,− ∈ F1×n. Linear independence for column and
row vectors is defined analogously to Definition 2.2.2. Inspired by Definition 2.2.3,
the row rank of A is defined as the size of a maximal linearly independent subset of
{ai,− | i ∈ [m]}. The column rank of A is defined analogously.

Theorem 2.3.2 (Row rank equals column rank). The column rank of a matrix A is
equal to its row rank.
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We omit a proof here and refer to [Axl97] instead.

Proof of Theorem 2.3.1. The backward direction is trivial. For the other direction, let
m = |C| and assume C = {pi ≤ bi | i ∈ [m]} with pi = ai,1 ·x1+. . .+ai,n ·xn for i ∈ [m]
and let α : {x1, . . . , xn} → U such that α |= C. Let I = {(pi ≤ bi) ∈ C | α(pi) = bi}
be the constraints that are tight at α.

If rank(I) = rank(C), then there exists a maximal linear subset V ⊆ I such that
|V | = rank(C) and we are done.

Otherwise, rank(I) < rank(C) and by assumption, α(pi) < bi for every constraint
(pi ≤ bi) ∈ C \ I and at least one constraint in C \ I is linearly independent from I.
In the following, we construct an assignment α′ so that such a constraint becomes
tight, i.e. rank(I) < rank(I ′) where I ′ is defined analogously to I for α′. By iterating
this, we obtain an assignment α′′ such that rank(I ′′) = rank(C).

W.l.o.g. I consists of the first k elements of C. The left hand sides of the constraints
in C can be written as matrix A = (ai,j)i∈[m],j∈[n], where the coefficients of each
constraint form a row. Then C can be restated as A · x ≤ b, thus

ai,− · [α(x1), . . . , α(xn)]T ≤ bi for all i ∈ [m]

which is equivalent to

α(x1) · a−,1 + . . .+ α(xn) · a−,n =: s ≤ b

and by assumption, it holds additionally

si = bi for i ∈ [k].

We apply Theorem 2.3.2 to the submatrix AI corresponding to the first k rows of
A: From rank(I) < rank(C) ≤ n and, by construction, rank(I) equals to the row rank
of AI , we follow that the columns of AI are linearly dependent. That is, there are
f1, . . . , fn ∈ F such that fi 6= 0 for at least one i and for

f1 · a−,1 + . . .+ fn · a−,n =: t

it holds ti = 0 for i ∈ [k].
By using Theorem 2.3.2 again on A, from rank(I) < rank(C) follows that ti 6= 0

for at least one i = k + 1, . . . ,m: Towards a contradiction, assume that all such ti = 0.
Then the columns {a−,i | fi 6= 0} are linearly dependent and thus rank(I) ≥ rank(C),
which is a contradiction.

Additionally, we can show that ti = 0 for all (pi ≤ bi) ∈ C \ I that are linearly
dependent on I: Let pi = f ′1 · p1 + . . .+ f ′k · pk, then

ti = f1 · ai,1 + . . .+ fn · ai,n =f1 ·
∑
j∈[k]

(f ′j · aj,1) + . . .+ fn ·
∑
j∈[k]

(f ′j · aj,n)

=
∑
j∈[k]

f ′j · (f1 · aj,1 + . . .+ fk · aj,k) = 0

Now, we define
αe(xi) = α(xi) + e · fi

and observe that for all e ∈ U it holds

αe(x1) · a−,1 + . . .+ αe(xn) · a−,n = s + e · t =: se with sei = bi for i ∈ [k].
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Note that for i = k + 1, . . . ,m where ti 6= 0, sei depends linearly on e.
Despite se ≤ b does not necessarily hold, we can increase or decrease e such that

se ≤ b still holds - and we can find such an e such that additionally sei = bi for one
or more i = k + 1, . . . ,m where ti 6= 0. Thus, for such an e, αe : α′ is an assignment
where I and one or more additional linearly independent constraints are tight.

2.3.3 Relation to polyhedra

An assignment α : {x1, . . . , xn} → U can be interpreted as a vector in Un; analogously,
given a linear constraint c or a system C of linear constraints, its solution set can be
viewed as sol(c) ⊆ Un respectively sol(C) ⊆ Un.

Given a constraint p ≤ b, its solution set sol(p ≤ b) defines a half space; an
intersection of half spaces is called a polyhedron. Thus, the solution set sol(C) of
a system C of weak linear constraints is a such a polyhedron. Conversely, each
polyhedron has a defining system of weak linear constraints.

Polyhedra are convex sets. A set P ⊆ Un is called convex if and only if the line
between each two points in P lies in P , that is

x,y ∈ P =⇒ λ · x + (1− λ) · y ∈ P for all λ ∈ [0,1].

A point x ∈ P of a convex set is an extreme point if it does not lie on a line between
two different points in P , that is, x cannot be written as

x = y + (1− λ) · z for y, z ∈ P \ {x} and λ ∈ [0,1].

x1

x2

•
•

•

Figure 2.1: Intuitively, in Theorem 2.3.1, we start with a satisfiable assignment, that
is, any point in the polyhedron induced by the solution set. We make constraint
by constraint tight; in each step, we move the assignment into a direction until a
constraint that defines a face of the polyhedron becomes tight while tight constraints
remain tight. As the polyhedron is convex, we do not leave the satisfiable region.

The extreme points of a polyhedron are called vertices and only exist for polyhedra
whose defining system C of weak linear constraints is of full rank rank(C) = n. It
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turns out that in this case, the extreme points are exactly the points induced by the
satisfying sets Ṽ from Theorem 2.3.1. If rank(C) < n, these definitions do not match
perfectly, as the satisfying sets Ṽ do not induce single points, but lines, planes or higher
dimensional subspaces; however, the notion of vertices could be extended analogously.
For this thesis, we are content with this intuition. Although not immediately related
to this thesis, for more intuition we refer to [Zie12].

2.4 The general Simplex algorithm

The Simplex algorithm is a well known algorithm for linear optimization over the reals
and is able to solve linear programs. The algorithm was first introduced by Dantzig
in 1947 [Dan98]; an evolution of this algorithm called the dual Simplex method was
introduced by Lemke [Lem54] in 1954. Here, we present a variant of the latter based
on the general Simplex from [KS16], first introduced in [DDM06], which is an adaption
for checking the satisfiability of systems of weak linear constraints.

Normal form We can transform any system of weak linear constraints

ai,1 · x1 + . . .+ ai,n · xn ≤ bi for i ∈ [m]

to the form
ai,1 · x1 + . . .+ ai,n · xn = si ∧ si ≤ bi for i ∈ [m]

where the si are called slack variables in contrast to the original variables xi. Let
E ∈ Fm×m be the identity matrix, then the system can be written as

[A | −E] · [x1, . . . , xn, s1, . . . , sm]T = 0 ∧
∧
i∈[m]

si ≤ bi.

Tableau [A | −E] has a special form, which we will introduce now.
A tableau is a matrix of the form

M =

x1 . . . xn s1 . . . sm a1,1 . . . a1,n f1,1 . . . f1,m
...

. . .
...

...
. . .

...
am,1 . . . am,n fm,1 . . . fm,m

(2.1)

together with bounds si ≤ bi for i ∈ [m].
Note that [A | −E] has full rank as E has full rank. As the algorithm progresses,

starting from [A | −E], the tableau is transformed retaining a similar form: The
columns could always be reordered such that some of them form a negative identity
matrix, or equivalently, for every standard vector e−,i ∈ Fm×1 with ei,i = 1 and
ej,i = 0 for j 6= i, there is a column in M equal to −e−,i. For every i ∈ [m], by
bi, we refer to the labelling variable of the first column equal to −e−,i. Then, the
variables B = {b1, . . . , bm} are called basic (or dependent) and the remaining variables
N = {x1, . . . ,xn,s1, . . . ,sm} \ B are called non-basic.

Intuitively, by this notation, each basic variable bi ∈ B is rewritten in terms of
non-basic variables: As bi occurs by definition only in the i-th row (with a non-zero
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coefficient) and all other variables occurring in the i-th row are non-basic, bi depends
on the non-basic variables:

bi =
∑

j∈[n], xj∈N

ai,j · xj +
∑

j∈[m], sj∈N

fi,j · sj

Note that initially, for [A | −E], it holds N = {x1, . . . ,xn} and B = {s1, . . . ,sm}.

Assignment The algorithm maintains an assignment α : {x1, . . . , xn, s1, . . . , sm} →
U such that the following two invariants hold:

M · [α(x1), . . . , α(xn), α(s1), . . . , α(sm)]T = 0 (2.2)

α(si) = bi for all slack variables si ∈ N
and α(xi) = 0 for all original variables xi ∈ N .

(2.3)

Note that by this definition, if a slack variable si is non-basic (si ∈ N ), then this is
equivalent to replacing si ≤ bi by si = bi. Initially, the assignment α(xi) = 0 for i ∈ [n]
and α(si) = 0 for i ∈ [m] is chosen; it is easy to see that this does fulfil the invariants.

A tableau is satisfied by α if and only if all bounds on the slack variables are
satisfied, i.e. α(si) ≤ bi for all i. Note that if α satisfies the above invariants, this
property holds trivially for all non-basic slack variables si ∈ N , thus only the basic
slack variables might cause a conflict.

Pivot step The idea is to improve the initial tableau to reach such a satisfying
assignment; this is done by a sequence of pivot steps.

If the given tableau produces a satisfying assignment, then we are already done.
Otherwise, there exists a si ∈ B such that α(si) ≤ bi is violated. Thus α(si) > bi and
α(si) needs to be decreased. Recall that the value of si depends on the non-basic
variables. Assume that si is the k-th basic variable, i.e. bk = si, then:

si =
∑

j∈[n], xj∈N

ak,j · xj +
∑

j∈[m], sj∈N

fk,j · sj .

Decreasing α(si) can be achieved by decreasing or increasing the value of a variable
occurring in the summand with a non-zero factor such that its bounds are not violated:

• A slack variable sj ∈ N such that fk,j > 0 and thus α(sj) can be decreased or

• an original variable xj ∈ N such that ak,j 6= 0 (depending on the sign of ak,j ,
the value α(xj) can be increased or decreased as it has no bound).

Such a variable is called suitable for pivoting with si. If no such variable is found, the
problem is unsatisfiable and the algorithm terminates.

Otherwise, we use a suitable non-basic variable v to push α(si) to its boundary,
that is, making si a non-basic variable by swapping it with v (making v a basic
variable).

W.l.o.g. let v = xj . We then solve the k-th row for xj and eliminate xj for all
rows k′ 6= k using the equality obtained from row k. Formally, we update:

• a′k,l = − ak,l

ak,j
for all l respectively f ′k,l = − fk,l

ak,j
for all l
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• a′k′,l = ak′,l + ak′,j · a′k,l for all l and all k′ 6= k resp. f ′k′,l = fk′,l + ak′,j · f ′k,l
for all l and all k′ 6= k

We call the element ak,j pivot element.
The thoughtful reader might have recognized the similarity to the Gaussian elim-

ination algorithm: A pivot step in the Simplex algorithm corresponds to a forward
and backward elimination step.

Termination The procedure is repeated until either unsatisfiability is detected or
a satisfying assignment is found. The completeness is guaranteed by Theorem 2.3.1,
as it can be reformulated to: Given the normal form of a system C of weak linear
constraints, C is satisfiable if and only if there exists a set S of slack variables such
that the assignment corresponding to the tableau where S ⊆ N is satisfying.

In general, it is possible that the same tableau is reached again and thus, the
algorithm cycles due to a phenomenon called degeneracy. However, when selecting the
pivot element according to a fixed ordering for the basic and non-basic variables, this
case never occurs. This rule is called Bland’s rule. It should be mentioned that there
are several heuristics for choosing a pivot element among the suitable ones, deviating
from Bland’s rule, but performing better in practice.

Geometric interpretation We can transform the system C = {pi ≤ bi | i ∈ [m]}
into an optimization problem C ′ = {pi ≤ bi + ei | i ∈ [m]} ∪ {ei ≥ 0 | i ∈ [m]} where
the ei are fresh variables with the objective function e :=

∑
i∈[m] ei to be minimized.

Note for a maximal linearly independent subset V ⊆ C, its counterpart V ′ ⊆ C ′

implies minimal values for the ei and thus for e as well, denoted by eV . Assuming
that C has full rank and sol(C) does not intersect with an axis, the general Simplex
on C minimizes e as follows:

First, a tableau is constructed by a sequence of pivot steps such that N = V
for a maximal linearly independent subset V ⊆ C; let α be the current assignment.
Observe that the assignment α[e 7→ eV ] corresponds to a vertex of sol(C ′) interpreted
as polyhedron.

From now on, given any tableau, pivoting with a non-zero fi,j as pivot element, an
assignment corresponding to a neighbouring vertex in sol(C ′) can be obtained. Thus,
the Simplex algorithm essentially jumps from vertex to vertex along the edges of the
polyhedron induced by sol(C ′) as illustrated in Figure 2.2.

Note that there is no guarantee that eV will be strictly decreased after a pivot
step - in fact, it can even increase in some cases; however, following Bland’s rule and
applying the notion of suitable pivot elements, the objective value decreases in “bigger”
steps. Moreover, the local improvements induced by the suitable pivot elements can
be so small such that in theory, the algorithm has exponential running time. However,
following them is a good heuristic on practical instances.

2.4.1 Embedding into DPLL(T)

In the DPLL(T) embedding, all constraints occurring in the formula are added to the
Simplex tableau, but there is a distinction made between active and non-active bounds:
While active bounds on a slack variable are considered for pivoting as described above,
non-active bounds are ignored and might be violated in a satisfying tableau.
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Figure 2.2: The objective value e is plotted on the upward direction dependent on the
x1 and x2 values. The dark blue area is the satisfying region of the given problem.
The red line indicates the on which the Simplex jumps from vertex to vertex. The
notion of a suitable pivot element ensures that the algorithm goes into a direction
that tends to lead down the hill.

A theory call with input I looks as follows: First, all bounds on slack variables are
set active if and only if they correspond to a constraint c ∈ I. Then the pivot steps as
described above are performed until either a satisfying assignment is found, or a row i
without a suitable pivot variable is found and the infeasible subset

{c | c corresponds to a sj such that fi,j 6= 0}

is returned.
Furthermore, to be able to handle SMT problems properly, support for the relations

< , > and 6= needs to be added. This is discussed in Chapter 3.



Chapter 3

Satisfiability of general systems
of linear constraints

Theorem 2.3.1 gives a very useful condition to find a solution for weak systems of linear
constraints, forming the basis of the general Simplex algorithm. For SMT solving
however, we need to be able to solve general systems of linear constraints containing
also strict constraints.

First, we will reduce systems containing the relations < and > to the case of weak
linear constraints in Section 3.1 by an equisatisfiable transformation. In Section 3.2,
we will introduce the notion of infinitesimals, giving a nice formalism for dealing with
strict inequalities. Finally, in Section 3.3, we will extend this to the relation 6= and
apply the obtained results to the original system.

In the following, (U [ε], <) is an ordered F -vector space and X = {x1, . . . , xn} be a
set of U [ε]-valued variables.

3.1 Strictly-greater and strictly-less constraints

In this section, we assume that constraints with relation 6= do not occur. Further-
more, constraints with relations > and ≥ can be transformed to constraints with <
respectively ≤ by multiplying both sides by −1. Thus, without loss of generality, all
relations are one of <,≤ or =.

First, we introduce a weakened version of a system of linear constraints:

Definition 3.1.1. Let C be a system of linear constraints over (U , <) in variables X.
We define the system Cw of linear constraints over (U , <) in variables X ∪ {ε} where
ε is a fresh variable such that

(p ≤ b− ε) ∈ Cw ⇐⇒ p < b ∈ C
(p ∼ b) ∈ Cw ⇐⇒ (p ∼ b) ∈ C where ∼∈ {≤,=}

Example 3.1.1. Consider the system C = {x1 > 0, x2 > 0, x2 < 2} depicted in
Figure 3.1a, and its weak version Cw = {x1 ≥ ε, x2 ≥ ε, x2 ≤ 2 − ε} depicted in
Figure 3.1b.



24 Chapter 3. Satisfiability of general systems of linear constraints

x1

x2
x1 > 0

x2 > 0

x2 < 2

(a) The original system C. The satis-
fiable regions of C are grey.

x 1

0.0
0.5

1.0
1.5

2.0
x2

0.0 0.5 1.0 1.5 2.0 2.5

ε

0.0

0.2

0.4

0.6

0.8

1.0

(b) The transformed system Cw whose satisfi-
able region has a “tent” shape. The satisfiable
regions of C are grey.

Figure 3.1: An illustration of Definition 3.1.1.

It is easy to see that a system C and its weakened version Cw are satisfiability
equivalent. We start with the easy direction:

Lemma 3.1.1. Let C be a system of linear constraints over (U , <) in variables X.
Then for any αw : {x1, . . . xn, ε} → U such that αw(ε) > 0 and αw |= Cw,

αw �{x1,...,xn}|= C.

Example 3.1.2. Continuing the previous example, Figure 3.2 illustrates the applica-
tion of Lemma 3.1.1.

x 1

0.0
0.5

1.0
1.5

2.0
x2

0.0 0.5 1.0 1.5 2.0 2.5

ε

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.2: Any point that is inside the “tent” of Cw can be turned into a solution of
C by projecting out ε.
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For the converse direction, we prove stronger statement:

Lemma 3.1.2. Let C be a system of linear constraints over (U , <) in variables X.
Then for any α : {x1, . . . , xn} → U such that α |= C,

∃g ∈ U . (g > 0 ∧ ∀e ∈ U . (0 < e ≤ g → α[ε 7→ e] |= Cw)).

Proof. Note that for (pi ∼i bi) ∈ C ∩ Cw, α[ε 7→ e] |= pi ∼i bi for all e ∈ U . Thus,
only the remaining case (pi ≤ bi − ε) ∈ Cw needs to be considered.

Let (pi ≤ bi − ε) ∈ Cw, thus (pi < bi) ∈ C. Then by assumption,

α(pi) < bi ⇐⇒ 0 < bi − α(pi) =: gi.

Now, let e ∈ U such that 0 < e ≤ gi, then

bi − gi ≤ bi − e
⇐⇒ α(pi) ≤ bi − e
⇐⇒ α[ε 7→ e] |= pi ≤ bi − ε

Note that if Cw = C, there are no bounds on ε and hence can be chosen as 1.
Thus, for all e ∈ U , 0 < e ≤ g := min({(gi | pi ≤ bi − ε) ∈ Cw} ∪ {1}), it holds
α[ε 7→ e] |= Cw.

Example 3.1.3. Considering again the familiar example, Figure 3.3 illustrates the
application of Lemma 3.1.2.

x 1

0.0
0.5

1.0
1.5

2.0
x2

0.0 0.5 1.0 1.5 2.0 2.5

ε
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0.4

0.6

0.8

1.0

Figure 3.3: Any point satisfying C can be transformed into a solution of Cw ∧ ε > 0
by moving the satisfying point up until it hits the “tent roof”.

Now, combining these lemmas with the fundamental theorem of linear programming
from Theorem 2.3.1, we obtain an elegant condition for the satisfiability of a system
of linear constraints C. Remind that given a system of linear constraints C, PC is the
set of the left hand sides of the constraints in C.
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Theorem 3.1.3. Let C be a system of linear constraints over (U , <) in variables X.
Then C is satisfiable if and only if there exists a subset V ⊆ Cw with |V | = rank(C)

such that PV ∪ {ε} is linearly independent and

∃g ∈ U . (g > 0 ∧ ∀e ∈ U . (0 < e ≤ g → ∃α : X → U . α[ε 7→ e] |= Ṽ ∪ Cw)).

Proof.

∃α : {x1, . . . ,xn} → U . α |= C

(1)⇐⇒ ∃α : {x1, . . . ,xn,ε} → U . (α |= Cw ∧ α(ε) > 0)

(2)⇐⇒ ∃α : {x1, . . . ,xn} → U . ∃g ∈ U . (g > 0 ∧ ∀e ∈ U . (0 < e ≤ g → α[ε 7→ e] |= Cw))

⇐⇒ ∃α : X → U . ∃g ∈ U . (g > 0 ∧ ∀e ∈ U . (0 < e ≤ g → α[ε 7→ e] |= Cw ∪ {ε = e}))
(4)⇐⇒ ∃g ∈ U . (g > 0 ∧ ∀e ∈ U . (0 < e ≤ g → ∃ max. lin. indep. V ⊆ Cw ∪ {ε = e}.
∃α : X → U . α[ε 7→ e] |= Ṽ ∪ Cw ∪ {ε = e})).

where (1) =⇒ : Lemma 3.1.2; ⇐= : Lemma 3.1.1
(2) =⇒ : Lemma 3.1.1, Lemma 3.1.2; ⇐= : trivial
(4) Theorem 2.3.1

Now, we prove the equivalence of the last statement above and the statement from
the theorem. While the backwards direction is clear, for the forward direction, we
need additional arguments how the quantified unknowns can be chosen:

First observe that we can choose V such that (ε = e) ∈ V and the remaining
constraints in V \ {ε = e} can be chosen from Cw.

Additionally, if g is chosen small enough, we can choose V such that V \ {ε = e} is
the same for all 0 < e ≤ g; this follows from Claim 3.1.3.1 and the fact that there are
only finitely many subsets V ⊆ Cw ∪ {ε = e}. Thus, V \ {ε = e} can be chosen before
g, which proves the theorem.

It remains to prove the following claim:

Claim 3.1.3.1. Let V ⊆ Cw with |V | = rank(C) such that PV ∪ {ε} is linearly
independent. Let e,e′ ∈ U such that 0 < e′ < e. Let α : {x1, . . . , xn, ε} → U such
that α |= Ṽ ∪ Cw ∪ {ε = e}. Furthermore, assume there exists no α′ such that
α′ |= Ṽ ∪ Cw ∪ {ε = e′}.

Then for every e′′ ∈ U , e′′ < e′ and every assignment α′′, α′′ 6|= Ṽ ∪Cw ∪ {ε = e′′}.

Proof of Claim. Assume V = {pi ≤ bi | i = 1, . . . ,k}. Note that for any β |= Ṽ ,
β(pi) = bi for i = 1, . . . ,k; analogously for any e ∈ U and β |= (ε = e), β(ε) = e holds.

As V ∪ {ε = e} is maximal linearly independent, for all (p ≤ b) ∈ Cw \ (C ∪ V ),
there exists f1, . . . , fk and fε 6= 0 such that

p = f1 · p1 + . . .+ fk · pk + fε · ε.

Let (p ≤ b) ∈ Cw \ (C ∪ V ). Then for any assignment β |= Ṽ ∪ {ε = e},

β(p) = f1 · β(p1)︸ ︷︷ ︸
b1

+ . . .+ fk · β(pk)︸ ︷︷ ︸
bk

+fε · β(ε)︸︷︷︸
e

and β |= (p ≤ b) if and only if β(p) ≤ b.
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Now, let β |= Ṽ ∪ {ε = e} and β′ |= Ṽ ∪ {ε = e′}. Then

β′(p)− β(p) = fε · (e′ − e).

As α |= Ṽ ∪ {p ≤ b, ε = e}, α(p) ≤ b. As ∀α′. α′ 6|= Ṽ ∪ Cw ∪ {ε = e′}, we
can choose a p ≤ b such that α′(p) > b for any α′ |= Ṽ ∪ {ε = e′}. Observe that
α′(p) − α(p) > 0. Furthermore, let α′′ |= Ṽ ∪ {ε = e′′}. As e′′ < e′ < e, we observe
that α′(p)− α(p) = fε · (e′ − e) > 0 implies that α′′(p)− α′(p) = fε · (e′′ − e′) > 0. It
follows that

α′′(p) = α′(p)︸ ︷︷ ︸
>b

+α′′(p)− α′(p)︸ ︷︷ ︸
>0

> b

and thus, α′′ 6|= p ≤ b. �

Example 3.1.4. We consider the system C = {2 · x1 > 0, 12 · x1 > −2} respectively

Cw = {2 · x1 ≥ ε︸ ︷︷ ︸
c1

,
1

2
· x1 ≥ −2 + ε︸ ︷︷ ︸

c2

}.

Let us go through the proof of Theorem 3.1.3 step by step. Equivalence (1) states
that C is satisfiable if and only if Cw ∧ ε > 0 is satisfiable. The latter is depicted in
Figure 3.4a.

Equivalence (2) and the following one state that there is a value g for ε such that
for this and any lower value (arbitrarily close to 0), a satisfying point in the solution
set can be found, see Figure 3.4b.

By the application of the fundamental theorem of linear programming in equivalence
(4), the problem is reduced to moving along the ridge of the induced polyhedron,
Figure 3.4c.

The aim is to find an inducing set of constraints defining the ridge that we are
moving along - this set is what is denoted by V \ {ε = e} in the proof. However, in the
current situation, these constraints change when lowering the value for ε. To address
this, we prove that when lowering the value for ε, from some point onwards, the set
of constraints defining the ridge does not change any more. Intuitively this is clear:
Given a ridge that we moved along but is cut off by another ridge at some point, we
will never move along this ridge again; this is exactly, what is proven in Claim 3.1.3.1.
As there are only finitely many constraints, the set of ridges that we can move along is
also finite. Thus, it is always possible to follow a single ridge arbitrarily small to 0
while staying in the satisfiable region, see Figure 3.4d.
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ε c1
c2

ε > 0

(a) Cw ∧ ε > 0; the satisfying region is grey.

x1

ε c1
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ε > 0

ε = g
•

(b) For any value for ε less or equal to g and
greater than 0, a satisfying solution can be
found.

x1

ε c1
c2

ε > 0

ε = g
•

(c) For any value for ε less or equal to g and
greater than 0, a satisfying solution on a ridge
of the solution set can be found.

x1

ε c1
c2

ε > 0

ε = g
•

(d) If g is chosen small enough, for any value
for ε less or equal to g and greater than 0, a
satisfying solution on the same ridge can be
found.

Figure 3.4: Illustration of Theorem 3.1.3.

3.2 Infinitesimal arithmetic
Now, we turn Theorem 3.1.3 into a handy theorem by using infinitesimal arithmetic,
as inspired from the virtual substitution quantifier elimination method [LW93, Wei97]:

Definition 3.2.1 (Infinitesimal). Let (U , <) be an ordered vector space over F . We
define ε as positive infinitesimal, that is

∀c ∈ U . (c > 0→ 0 < ε < c).

We define the extension of (U , <) for ε as the ordered vector space (U [ε], <) over F
such that:
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• + : U [ε]×U [ε]→ U [ε] with (d1 + e1 · ε) + (d2 + e2 · ε) 7→ (d1 + d2) + (e1 + e2) · ε

• · : F × U [ε]→ U [ε] with a · (d+ e · ε) 7→ a · d+ a · e · ε

• <⊆ U [ε]×U [ε] with (d1 +e1 ·ε) < (d2 +e2 ·ε) :⇐⇒ d1 < d2∨(d1 = d2∧e1 < e2)

Corollary 3.2.1. Let d+ e · ε ∈ U [ε] and < an ordering on U [ε]. Then

0 = d+ e · ε ⇐⇒ d = 0 ∧ e = 0

0 < d+ e · ε ⇐⇒ d > 0 ∨ (d = 0 ∧ e > 0)

0 ≤ d+ e · ε ⇐⇒ d > 0 ∨ (d = 0 ∧ e ≥ 0)

0 6= d+ e · ε ⇐⇒ d 6= 0 ∨ e 6= 0

From now on, (U [ε], <) denotes the extension of (U , <) for ε. Given a system C of
linear constraints over (U , <) in variables {x1, . . . , xn, ε}, we denote by C∗ the system
C but view it as a system over (U [ε], <) in variables {x1, . . . , xn}.
Theorem 3.2.2. Let C be a system of linear constraints over (U , <) in variables X.

Then C is satisfiable if and only if there exists a maximal linearly independent
subset V ⊆ C∗w such that

∃α : {x1, . . . , xn} → U [ε]. α |= Ṽ ∪ C∗w.

For proving this, the following result is needed:

Theorem 3.2.3. Any set C of linearly independent equations is satisfiable.

We omit a proof here, as it follows immediately from the Rouché-Capelli theorem,
which is proven in [SR12].

Proof of Theorem 3.2.2. From Theorem 3.1.3 it follows that

∃α : {x1, . . . ,xn} → U . α |= C

is equivalent to

∃V ⊆ Cw. ( |V | = rank(C) ∧ PV ∪ {ε} linearly independent ∧
∃g ∈ U . (g > 0 ∧ ∀e ∈ U . (0 < e ≤ g → ∃α : {x1, . . . ,xn} → U . α[ε 7→ e] |= Ṽ ∪ Cw))).

As PV ∪ {ε} is linearly independent, from Theorem 3.2.3 follows that Ṽ admits a
solution for any value of ε. It is easy to see that such a set of solutions in {x1, . . . , xn, ε}
can be described by an α : {x1, . . . , xn} → U [ε]. Thus, the equation above is equivalent
to:

∃ maximal linearly independent V ⊆ C∗w. ∃α : {x1, . . . , xn} → U [ε].

(α |= Ṽ ∧ ∃g ∈ U . (g > 0 ∧ ∀e ∈ U . (0 < e ≤ g → α[e/ε] |= Cw)))

By analysis of the definition of < on U [ε], this is equivalent to

∃ maximal linearly independent V ⊆ C∗w.
∃α : {x1, . . . , xn} → U [ε]. (α |= Ṽ ∧ α |= C∗w).

The forward direction follows immediately from ε < g for g ∈ U . For the backward
direction, plugging in α into C∗w produces bounds on ε, which are, by the semantics of
< on U [ε], only positive upper bounds or non-positive lower bounds. Thus, g can be
chosen as any value smaller than the smallest upper bound (or as any positive value if
no such bound exists).
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Before we continue, we will present some examples.

Example 3.2.1. We consider first the weak system

C = {x2 ≤ 3︸ ︷︷ ︸
c1

, x1 − x2 ≥ 0︸ ︷︷ ︸
c2

, x1 + x2 ≤ 4︸ ︷︷ ︸
c3

}

illustrated in Figure 3.5. Then we have a single choice for constructing a satisfying
vertex, which is induced by c̃2 ∧ c̃3 ≡ x1 = 2 ∧ x2 = 2. It is easy to see that c1 is
satisfied under the corresponding assignment.

x1

x2

c1

c2

c3

•

Figure 3.5: A vertex induced by a unique set of two constraints.

Example 3.2.2. We consider the modified system

C = {x2 ≤ 2︸ ︷︷ ︸
c1

, x1 − x2 ≥ 0︸ ︷︷ ︸
c2

, x1 + x2 ≤ 4︸ ︷︷ ︸
c3

}

as illustrated in Figure 3.6. Now, we have multiple choices to construct a satisfying
vertex, as all constraints are tight under [x1 7→ 2, x2 7→ 2]. Thus, for any i,j,k ∈ {1,2,3}
such that i,j,k are pairwise not equal, c̃i ∧ c̃j ≡ x1 = 2 ∧ x2 = 2.

So far, nothing exciting happened. Now, we examine how strict bounds are handled:

Example 3.2.3. We consider the system C = {x2 < 2,x1 − x2 ≥ 0,x1 + x2 ≤ 4} and

Cw = {x2 ≤ 2− ε︸ ︷︷ ︸
c1

, x1 − x2 ≥ 0︸ ︷︷ ︸
c2

, x1 + x2 ≤ 4︸ ︷︷ ︸
c3

}

depicted in Figure 3.7. In the figure, the dashed line represents the ε part of c1. In
the plot, the red dots correspond to the vertices c̃1 ∧ c̃2 ≡ x1 = 2 − ε ∧ x2 = 2 − ε
respectively c̃1 ∧ c̃3 ≡ x1 = 2 + ε∧ x2 = 2− ε. It is a crucial observation that there is a
difference between vertices over (U , <) and (U [ε], <); vertices over the latter field are
not just vertices over the first plus some infinitesimal part, but increase the number of
vertices and thus the complexity of the problem.
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Figure 3.6: An “overdetermined” vertex which is induced by multiple constraint sets.
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Figure 3.7: Vertices with infinitesimal part.

Example 3.2.4. We consider the system C = {x2 < 2,x1 − x2 > 0,x1 + x2 < 4} and

Cw = {x2 ≤ 2− ε︸ ︷︷ ︸
c1

, x1 − x2 ≥ ε︸ ︷︷ ︸
c2

, x1 + x2 ≤ 4− ε︸ ︷︷ ︸
c3

}

depicted in Figure 3.8. Note that in this case, all constraints are tight under the
choice x1 = 2 ∧ x2 = 2− ε; thus, any combination might be used as the set inducing
the vertex.

However, this is in some sense fragile: When replacing c1 by

(2 · x2 < 4)w = 2 · x2 ≤ 4− ε,

then c1 is not tight under the satisfying assignment of c̃2 ∧ c̃3 ≡ x1 = 2 ∧ x2 = 2− ε.
Moreover, when replacing c1 by

(
1

2
· x2 < 1)w =

1

2
· x2 ≤ 1− ε,
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x1

x2

c1

c2

c3

•

Figure 3.8: “Fragile” vertices with infinitesimal part.

c1 is even conflicting under c̃2 ∧ c̃3 ≡ x1 = 2 ∧ x2 = 2− ε; however, c̃1 ∧ c̃2 or c̃1 ∧ c̃3
can be chosen to induce a satisfying vertex instead. Despite the fact that the underlying
original systems are all equivalent (as we only multiplied a constraint by a constant
factor), the set of constraints inducing a satisfying vertex may vary.

As seen, our extension of the notion of a vertex could be counter-intuitive in some
cases; nevertheless, Theorem 3.2.2 guarantees the existence of a satisfying vertex w.r.t.
infinitesimal arithmetic if and only if the original system is satisfiable.

3.3 Not-equal constraints

From now on, we consider systems of linear constraints with arbitrary relation symbols.

Lemma 3.3.1. Let C be a system of linear constraints over any ordered vector space
and α be an assignment. Then

α |= C ∪ {p 6= b} ⇐⇒ α |= C ∪ {p < b} ∨ α |= C ∪ {p > b}.

Lemma 3.3.1 allows various variants of handling not-equal-constraints: The simplest
method is to check the satisfiability of two systems instead of one, as suggested
immediately by the theorem. However, increasing the number of not-equal-constraints,
the number of systems to be checked grows exponentially. Our aim is to avoid those
splits as far as possible by deferring them to the selection of the set V of tight
constraints.

Similarly, we defer replacing a strict constraint (with relation < or >) in C by its
weak correspondence in Cw to the selection of V . Thus, we extend Definition 2.3.1 for
strict inequalities by introducing the notion of a vertex candidate where the name is
inspired by the geometrical interpretation:

Definition 3.3.1 (Vertex candidate). Let C be a system of linear constraints over
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(U , <) and V ⊆ C be linearly independent. Then Ṽ is defined such that

p ∼ b ∈ V ⇐⇒


p = b ∈ Ṽ if ∼∈ {=,≤,≥}
p = b− ε ∈ Ṽ if ∼∈ {<}
p = b+ ε ∈ Ṽ if ∼∈ {>}
p = b+ ε ∈ Ṽ xor p = b− ε ∈ Ṽ if ∼∈ {6=}

Ṽ is called a partial vertex candidate of C. If V is maximal with this property, then
Ṽ is called a vertex candidate.

Let c ∈ V , then its corresponding constraint c̃ ∈ Ṽ is called the tightness equality
of c in Ṽ .

Lemma 3.3.2. Let C be a system of linear constraints over (U , <) in variables X.
Then if C is satisfiable, then there exists a vertex candidate Ṽ of C∗ such that

∃α : {x1, . . . , xn} → U [ε]. α |= Ṽ ∪ (C∗ \ V ).

Proof.

(a) First assume C does not contain constraints with relation 6=. Then the statement
follows immediately from Theorem 3.2.2 and the observation

∀α : {x1, . . . ,xn} → U [ε]. (α |= p ≤ b− ε→ α |= p < b). (3.1)

(b) Now, we allow constraints with relation 6=: Let Conv(C) be the set of all systems
containing the same constraints as C, but each 6= is replaced by either < or >
respectively. Thus, for every 6= occurring in C, the size of Conv(C) is doubled.
In the following, we abbreviate vertex candidate with v.c.

∃α : {x1, . . . , xn} → U [ε]. α |= C

(1)⇐⇒
∨

C′∈Conv(C)

∃α : {x1, . . . , xn} → U [ε]. α |= C ′

(2)
=⇒

∨
C′∈Conv(C)

∃ v.c. Ṽ of C ′. ∃α : {x1, . . . , xn} → U [ε]. α |= Ṽ ∪ (C ′)∗

=⇒ ∃ v.c. Ṽ of C. ∃α : {x1, . . . , xn} → U [ε].
∨

C′∈Conv(C)

α |= Ṽ ∪ (C ′)∗

(4)⇐⇒ ∃ vertex candidate Ṽ of C. ∃α : {x1, . . . , xn} → U [ε]. α |= Ṽ ∪ C∗

where (1), (4) Lemma 3.3.1
(2) Claim (a)

Lemma 3.3.3. Let C1 and C2 be systems of linear constraints over (U , <) in variables
X. Then ((C1)w ∪ C2)∗ is a corresponding system of linear constraints over (U [ε], )
where the constraints of C1 are “weakened” and the constraints in C2 remain untouched
but are interpreted differently. Assume there exists an α∗ : {x1, . . . , xn} → U [ε] such
that α∗ |= ((C1)w ∪ C2)∗.

Then there is an α : {x1, . . . , xn} → U such that α |= C1 ∪ C2.
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Proof. The idea is that, by the semantics of < on U [ε], each p ∼ b ∈ ((C1)w ∪ C2)∗

simplifies under α∗ in (U , <) (where ε is treated as regular variable) to one of the
following constraints (with coefficients in U):

• 0 = 0 (trivially true),

• g < ε or g ≤ ε with g ∈ U such that g < 0;

• ε < g, ε ≤ g with g ∈ U such that g > 0,

• ε 6= g with g ∈ U .

Thus, there are only not-equal and strict and weak upper bounds on the value
of ε. By choosing an e ∈ U being strictly smaller than all these bounds, we obtain
α∗[e/ε] |= C1 ∪ C2.

Summarizing Lemma 3.3.2 and Lemma 3.3.3 leads to:

Corollary 3.3.4. Let C be a system of linear constraints over (U , <) in variables X.
Then C is satisfiable if and only if there exists a vertex candidate Ṽ of C∗ such

that
∃α : {x1, . . . , xn} → U [ε]. α |= Ṽ ∪ C∗.

Example 3.3.1. Consider Example 3.2.4 again, which shows that by scaling a single
constraint of a system C, the set of satisfying vertex candidates of Cw varies. However,
note that by application of vertex candidates to the original constraints, this can be
circumvented:

We consider the system C = {x2 < 2︸ ︷︷ ︸
c1

, x1 − x2 > 0︸ ︷︷ ︸
c2

, x1 + x2 < 4︸ ︷︷ ︸
c3

}. Then still, c̃2 ∧

c̃3 ≡ x1 = 2 ∧ x2 = 2− ε. However,

[x1 7→ 2, x2 7→ 2− ε] |= h · c1 for any h ∈ F

and hence, by the notion of a vertex candidate and Corollary 3.3.4, vertex candidates
are independent from the scaling of the constraints.

Note that Theorem 3.2.2 and Corollary 3.3.4 can be applied to the general Simplex
algorithm to add support for strict inequalities.

3.4 Alternative approaches

3.4.1 Transformation to a maximization problem

Lemma 3.1.1 and Lemma 3.1.2 already yield an obvious transformation of a system C
of linear constraints over (U , <) in variables {x1, . . . , xn} to the linear program

max
α:{x1,...,xn,ε}→U

ε subject to Cw

C is satisfiable if and only if there exists a solution for Cw with a positive value
for ε, that is, the outcome of the linear program is positive.
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3.4.2 Transformation to system in a single variable ε

We defined a specific semantic for ε to establish a theorem speaking about vertex
candidates for general systems of linear constraints analogously to the case with weak
constraints only. To do so, we restricted ourselves to vertex candidates satisfying the
system for an arbitrarily small positive value for ε; however, there are further vertex
candidates satisfying the system for a positive (but not necessarily arbitrarily small)
value for ε. Thus, we could reformulate Theorem 3.1.3 to

Theorem 3.4.1. Let C be a system of linear constraints over (U , <) in variables X.
Then C is satisfiable if and only if there exists a linearly independent V ⊆ Cw with

|V | = rank(Cw)− 1 such that

∃e ∈ U . (e > 0 ∧ ∃α : {x1, . . . , xn} → U . α[ε 7→ e] |= Ṽ ∪ Cw).

Following this path, we end up with something analogous to Corollary 3.3.4: A
system C of linear constraints over (U , <) in variables X is satisfiable if and only if
there exists a vertex candidate Ṽ of C such that

∃e ∈ U . (e > 0 ∧ ∃α : {x1, . . . , xn} → U . α[ε 7→ e] |= Ṽ ∪ C).

Let CṼ be the system after simplifying Ṽ ∪ C via Gaussian variable elimination.
Then, the only variable in CṼ is ε, thus the above is equivalent to

∃e ∈ U . (e > 0 ∧ [ε 7→ e] |= CṼ )

Solving C ′ = CṼ ∪ {ε > 0} for ε is straight forward: The system C ′ of linear
constraints in one variable ε is unsatisfiable if and only if one of the following is true:

• There exists ε ∼u eu, ε ∼l el ∈ C ′ for eu, el ∈ U such that ∼u∈ {<,≤,=} and
∼l∈ {>,≥,=} and eu < el,

• there exists ε ∼u e, ε ∼l e ∈ C ′ for an e ∈ U such that ∼u∈ {<,≤,=} and
∼l∈ {>,≥,=} and at least one of {∼u,∼l} is strict,

• there exists ε 6= e, ε ≤ e, ε ≥ e ∈ C ′ for an e ∈ U or

• there exists ε 6= e, ε = e ∈ C ′ for an e ∈ U .

This is essentially the result of the application of the Fourier-Motzkin variable elimi-
nation method [Fou27, Mot36]) on C ′.

Originally, this method allows the elimination of a single variable xi ∈ X in a
system C of linear constraints over (U , <) in variables X containing only relations ≤
and ≥. Then, all constraints containing xi can be reformulated to be a weak lower or
upper bound on xi; let ml and mu be the number of lower respectively upper bounds
on xi and let Cl = {

∑
j∈[n]\{i} a

l
k,i ·xj − blk ≤ xi | k ∈ [ml]} be the set of lower bounds

and Cu = {xi ≤
∑
j∈[n]\{i} a

u
k,i · xj − buk | k ∈ [mu]} be the set of upper bounds on xi.

Then the sentence ∃xi. C is equivalent to∧
kl∈[ml],ku∈[mu]

∑
j∈[n]\{i}

alkl,i · xj − b
l
kl ≤

∑
j∈[n]\{i}

aukl,i · xj − b
u
kl .

Extending this for equalities and strict relations is straight forward.
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Chapter 4

Solving linear real arithmetic

In this section, we first elaborate the weaknesses of the classical embedding of the
Simplex algorithm in DPLL(T). Then we present an adaption of the Simplex algorithm
for checking the satisfiability of a vertex candidate of a system of linear constraints.
Finally, we present a novel embedding into DPLL(T).

4.1 Motivation

The obvious approach based on Corollary 3.3.4 is to enumerate all vertex candidates
Ṽ of a system C of linear constraints and check whether C ∪ Ṽ is satisfiable. It is easy
to see that this approach as in Algorithm 3 is sound and complete.

Algorithm 3: Sketch of the algorithm
1 function Check(C)

Input: A system of linear constraints
Output: SAT or UNSAT

2 foreach vertex candidate Ṽ of C do
3 compute sol(Ṽ ∪ (C \ V ))

4 if sol(Ṽ ∪ (C \ V )) 6= ∅ then
5 return SAT
6 return UNSAT

4.1.1 Weaknesses of the general Simplex algorithm

As already mentioned, the Simplex method checks vertex candidates as in Algorithm 3
with a smart heuristic.

The general Simplex method (with support for strict inequalities) is implemented in
SMT solvers such as Z3 [DDM06] and SMT-RAT [CKJ+15] as theory solver for solving
sets of linear real arithmetic constraints and performs well in practise. However, on
benchmarks with complex combinatorial respectively Boolean structure, the running
time increases steeply. The intuition is that constraints are added and removed from
the theory solver frequently, causing two issues:
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• In the general Simplex algorithm, all constraints are maintained in the tableau
- removing or adding constraints only disables or enables the corresponding
bounds on the slack variables. That means that all calculations during pivot
steps are applied to all constraints despite their relevance to the Boolean model.
But especially this is often the case for problems with complex Boolean structure.

Thus, it might be desirable to remove constraints from the tableau completely
and add them later when they become relevant again.

• The Simplex algorithm is a local search algorithm as it chooses a pivot step
based on the current tableau. Thus, it does not need to represent “dead end”
search paths explicitly - in fact, the progress of the search is purely heuristic,
as no improvement is guaranteed. However, as progress is stored implicitly,
improvement steps are relatively cheap and a wisely chosen heuristic makes the
procedure highly efficient on conjunctions.

But if constraints are added and removed often, as in case of complex Boolean
structure, some of the implicitly stored progress is lost and those “dead end”
search paths are explored more often.

Thus, it might be desirable to store the progress made by the Simplex algorithm
explicitly to avoid re-exploring known dead ends.

4.1.2 Interleaving the Simplex method with the SAT solver

In the following, we develop a procedure that addresses these problems. The idea is to
keep information across theory calls by moving the selection of the vertex candidate Ṽ
of the system C induced by the currently asserted theory constraints from the theory
to the SAT solver.

The central change is that now, the theory solver does not only receive a set
of theory constraints C whose satisfiability is to be checked, but along with C also
a (possibly partial) vertex candidate Ṽ of C. The task is now to check whether
C is satisfied at Ṽ , that is, whether (C \ V ) ∪ Ṽ is satisfiable. This corresponds to
constructing a Simplex tableau of the systems C where the slack variable corresponding
to the constraints in V are made non-basic. In Section 4.2, we will develop an algorithm
to achieve this, based on the Gaussian elimination procedure.

Subsequently, also the role of the theory lemmas changes: While in the usual
Simplex embedding, unsatisfiable subsets of the currently asserted constraints are
returned, in the new approach a conflict is caused by a constraint that is implied to
be false under the selected (partial) vertex candidate. In Section 4.3, we will examine
how the reasons for such a conflict are propagated to the SAT solver by theory lemmas
and which additional knowledge can be learned from a conflict. Moreover, as these
conflicts depend usually only on subsets of C and Ṽ , the procedure is modified to
admit incremental solving by recomputing only the changes of the input compared to
the previous theory call.

A further prerequisite is that the SAT solver is able to reason about vertex can-
didates. It is responsible to enumerate all possible vertex candidates to be conform
with Corollary 3.3.4 while cutting search paths that are already known to be unsatisfi-
able. The latter involves the ability to generalize from the lemmas learned from the
theory solver in terms of conflict resolution and Boolean propagations. The obvious
approach is to encode the semantics of a vertex candidate (or an over-approximation
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of them) eagerly in a Boolean formula and append it to the input formula; this and
an alternative approach is introduced in Section 4.4.

Albeit not immediately relevant for the understanding of this thesis, it is worth
noting that it is not a new idea to shift (parts of) mathematical reasoning to a
SAT solver. Examples for solving mathematical problems by encoding them as SAT
formulas are given in [HKM16, Heu09]; there exist also approaches combining SAT
encodings with a specialized solver, as [ZBH+17, BKHG18].

Although this method clearly introduces some overhead by explicitly encoding
the excluded vertex candidates, the method might have two advantages: First, the
theory calls get smaller and the theory and Boolean reasoning are more interleaved.
Furthermore, by minimizing the generated lemmas, a larger portion of the search
space can be excluded than in one pivot step of the Simplex method.

4.2 Checking the satisfiability at a vertex candidate

In the following, (U [ε], <) is an ordered F-vector space and X = {x1, . . . , xn} be a
set of U [ε]-valued variables. We assume all systems of linear constraints to be over
(U [ε], <) in variables X. Moreover, m refers to the number of constraints in the given
system of linear constraints from the context.

The goal is to check the consistency of C ∪ Ṽ given a system C of linear constraint
and a vertex candidate Ṽ of C. To do so, we first introduce a convenient notation for
a system of linear constraints, reminiscent of the Simplex tableau and the matrix as
in the Gaussian elimination:

Definition 4.2.1 (Extended tableau). Let ai,j , fi,j ∈ F coefficients, bi ∈ U [ε],
∼i∈ {= , < , > , ≤ , ≥ , 6=} relation symbols (w.r.t. the ordering < on U [ε]) and
pj linear F-combinations of x1, . . . ,xn for i ∈ [n], j ∈ [m], then the notation

x1 . . . xn p1 . . . pm a1,1 . . . a1,n ∼1 b1 f1,1 . . . f1,m
...

. . .
...

...
...

...
. . .

...
am,1 . . . am,n ∼m bm fm,1 . . . fm,m

is called an (extended) tableau over (U [ε], <) in X and {p1, . . . , pm}, denoted as
M = (A,∼, b, F ). The linear constraint system associated with M is defined as
CM = {ai,1 · x1 + . . .+ ai,n · xn ∼ bi | i ∈ [m]}. Thus, we can apply the same seman-
tics to M and its rows as to CM and its constraints; in particular sol(M) := sol(CM ).

Conversely, let C = {c1, . . . , cm} be a system of linear constraints over (U [ε], <)
in variables X with ci = (pi ∼i bi), pi = ai,1 · x1 + . . .+ ai,n · xn, ai,j ∈ F , bi ∈ U [ε]
and ∼i∈ {= , < , > , ≤ , ≥ , 6=}. Additionally, let F = −E be the negative
independent matrix. Then MC = (A,∼, b, F ) denotes the tableau over (U [ε], <) in X
and {p1, . . . , pm}:
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x1 . . . xn p1 . . . pi . . . pm


a1,1 . . . a1,n ∼1 b1 −1 0 . . . 0
...

. . .
...

...
...

. . . . . .
...

ai,1 . . . ai,n ∼i bi 0 −1 0
...

. . .
...

...
...

...
. . . . . .

am,1 . . . am,n ∼m bm 0 . . . 0 −1

In the following, we simplify notation when referring to a tableau M ; depending
on the context, A,∼, b, F will refer to the entries of M .

Note that the pi correspond to the slack variables in the Simplex algorithm; here,
we refer to the pi as linear F -combinations of variables directly instead of introducing
slack variables for them, because we forego maintaining an explicit assignment but
treat them symbolically as in the Gaussian elimination procedure. Still, we maintain
a similar invariant as in the Simplex algorithm:

Lemma 4.2.1. Given a system C of linear constraints, for MC it holds that∑
j∈[n]

ai,j · xj +
∑
j∈[m]

fi,j · pj = 0 ∀i = 1, . . . ,m. (4.1)

Proof. Let i ∈ [m]. By definition, fi,− is the negative of the i-th standard vector, and
thus Equation (4.1) is equivalent to

∑
j∈[n] ai,j · xj − pj = 0, which is the assumption

pi =
∑
j∈[n] ai,j · xj .

Theorem 4.2.2 (Row operation). Let M be a matrix such that Equation (4.1) holds
and let i, j ∈ [m], i 6= j be rows of M such that ∼i∈ {=} and g ∈ F . Let M ′ be the
matrix after replacing aj,− by a′j,− := aj,− + g · ai,−, bj by b′j := bj + g · bi and fj,−
by f ′j,− := fj,− + g · fi,−. Then

(i) Equation (4.1) still holds for M ′,

(ii) sol(M) = sol(M ′) and

(iii) rank(M) = rank(M ′).

We call such an operation row operation. For matrices M ′ that emerged from a
matrix M by a sequence of row operations, we write M  M ′.

Proof.

(i) Let i ∈ [m] and α : X → U [ε], then

α |= ai,−x + fi,−p = 0

⇐⇒ α |= g · ai,−x + g · fi,−p = 0 ⇐⇒ α |= a′i,−x + f ′i,−p = 0.

(ii) As α |= M ⇐⇒ ∀i ∈ [m]. α |= ai,− · x, it is sufficient to prove

sol({ai,−x ∼i bi,aj,−x ∼j bj}) = sol({ai,−x ∼i bi,a′j,−x ∼j bj}).



4.2. Checking the satisfiability at a vertex candidate 41

Let α |= ai,−x ∼i bi, then

α |= aj,−x ∼j bj
⇐⇒ α |= aj,−x + g · bi ∼j bj + g · bi
⇐⇒ α |= aj,−x + g · (ai,−x) ∼j bj + g · bi
⇐⇒ α |= a′j,−x ∼j bj .

(iii) Observe that the new row a′j,− is a linear combination of ai,− and aj,−, hence
rank(M ′) ≤ rank(M). Furthermore, note that a row operation is reversible, that
is M ′  M , and thus, rank(M) ≤ rank(M ′).

Definition 4.2.2. Let M be a matrix and i ∈ [m] a row index. The i-th row is called
redundant in M if and only if ai,− = 0.

Note that a redundant row i can be evaluated using Corollary 3.2.1. If the result
is contradictory, we call row i conflicting and satisfied otherwise.

Remark 4.2.3. If any row in M is conflicting, then sol(M) = ∅.

Obviously, the converse direction does not hold for all systems, but it holds for a
class of matrices:

Given a system of linear constraints C and a vertex candidate Ṽ of C, the idea
is to solve M(C\V )∪Ṽ by applying Gaussian elimination on V and applying all pivot
steps on the remaining constraints C \ V . I.e. for the case rank(C) = n, assume
w.l.o.g. V = {c1, . . . , cn}, the system M(C\V )∪Ṽ is transformed by row operations
(and swapping rows) to the following form, which is known as row echelon form:

x1 . . . xn p1 . . . pn pn+1 . . . pm



a′1,1 . . . a′1,n = b′1 −1 . . . 0 0 . . . 0
...

. . .
...

...
...

...
. . .

...
...

. . .
...

0 . . . a′n,n = b′n f ′n,1 . . . −1 0 . . . 0
0 . . . 0 ∼n+1 b′n+1 f ′n+1,1 . . . f ′n+1,n −1 . . . 0
...

. . .
...

...
...

...
. . .

...
...

. . . 0
0 . . . 0 ∼m b′m f ′m,1 . . . f ′m,n 0 . . . −1

This works for underdetermined systems as well, for the same reasons the Gaussian
elimination method is correct and complete, but it is tedious to show that. Thus, here
we give an outline of the proof to build our terminology; for some details and deeper
understanding, we refer to [Hef18, SR12].

Definition 4.2.3 (Pivot). Let M be a tableau. Let P = ((i1, j1), . . . , (ik, jk)) be a
k-tuple of pairs of row indices i1, . . . ,ik ∈ [m] and column indices j1, . . . ,jk ∈ [n].

Then P is called a pivot ordering on M if for every k′ ∈ [k]

• ∼ik′∈ {=},

• aik′ ,jk′ 6= 0 and
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• aik′′ ,jk′ = 0 for every k′′ ∈ [k′ − 1].

The rows ik′ for k′ ∈ [k] are called pivots of M with respect to P. Additionally,
rows that are not a pivot of M w.r.t. P are called dependent w.r.t. P. The set of
dependent rows w.r.t. P ′ is denoted by BM ′,P′ .

From now on, let C = {p1 ∼1 b1, . . . , pm ∼m bm} be a system of linear constraints
and Ṽ be a partial vertex candidate of C. During our procedure, we maintain a
tableau M ′  M(C\V )∪Ṽ together with a pivot ordering P ′ on M ′. The resulting
algorithm state is denoted as (M ′,P ′)  (M(C\V )∪Ṽ , ∅). Moreover, we maintain some
invariants for such a state (M ′,P ′):

pi,i = −1 for all i ∈ [m] and pi,j = 0 for all i ∈ [m], j ∈ BM ′,P′ \ {i} (4.2)

Thus, for a dependent row i ∈ BM ′,P′ , the column f ′−,i labelled with pi is the negative
of the i-th standard vector and by Equation (4.1), pi can be written as

pi =
∑
j∈[n]

a′i,j · xj +
∑
j∈P′

f ′i,j · pj .

and for any row i ∈ BM ′,P′ , it makes sense to associate the original constraint ci ∈ C -
what we will do implicitly from now on. Note that by the properties of row operations,
ci is equivalent to ∑

j∈[n]

a′i,j · xj +
∑
j∈P′

f ′i,j · pj ∼i
∑
j∈P′

f ′i,j · b′j .

Intuitively, this is the partial evaluation of the constraint ci under the original con-
straints in (C \ V ) ∪ Ṽ corresponding to the pivot rows w.r.t. P ′. Thus, we associate
every pivot row j w.r.t. P ′ with its corresponding constraint c̃j ∈ Ṽ . Our aim is to
choose the pivots to match Ṽ :

Definition 4.2.4 (Normalized tableau). C = {c1, . . . , cm} be a system of linear
constraints, Ṽ be a partial vertex candidate of C, M ′  M(C\V )∪Ṽ and P ′ be a pivot
ordering on M ′. (M ′,P ′) is called normalized if and only if Equation (4.2) holds and
{i | (i,j) ∈ P ′} = {i | c̃i ∈ Ṽ }, that is, the pivots of M ′ w.r.t. P ′ correspond to Ṽ .

Note that in contrast to the row echelon form in the Gaussian elimination, we do
not require the rows to be sorted nor require the rows have a 1 as leading coefficient.

Furthermore, we can normalize any such state (M ′,P ′) by forward elimination:

Lemma 4.2.4. Let C be a system of linear constraints, Ṽ be a partial vertex candidate
and M ′  M(C\V )∪Ṽ such that Equation (4.2) holds.

Then there exists a matrix M ′′  M ′ and a pivot ordering P ′′ on M ′′ such that
(M ′′,P ′′) is normalized.

Proof. W.l.o.g. let the first k rows of M ′ correspond to Ṽ (i.e. the left hand sides of
V are given as PV = {p1, . . . , pk}). Remind that as Ṽ is a partial vertex candidate,
the set V is linearly independent.

Let P ′ be a pivot ordering on M ′ such that {i | (i,j) ∈ P ′} ⊆ {i | c̃i ∈ Ṽ }, that
is, only the first k rows might be pivots w.r.t. P ′. If the first k rows of M ′ are
pivots w.r.t. P ′, then M ′ is already normalized. Otherwise, let i ∈ [k] ∩ BM ′,P′ . Let
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J = {j | (i′,j) ∈ P ′} be the columns of M ′ for which a pivot exists. By assumption,
ai,j = 0 for all j ∈ J . However, there must exist a j ∈ {1, . . . ,n} \ J such that ai,j 6= 0,
as otherwise, V would be linearly dependent. Thus, we can transform M ′ to an
equivalent tableau M ′′ such that P ′′ := (P ′, (i,j)) is a pivot ordering on M ′′ by a
sequence of row operations as in the Gaussian elimination. By iterating this, we obtain
a normalized tableau.

We can transfer some well known properties of the Gaussian elimination:

Theorem 4.2.5. Let C be a system of linear constraints, Ṽ be a partial vertex
candidate and (M ′,P ′)  (M(C\V )∪Ṽ ,∅) be normalized. Then

(i) a row ai,− in M ′ is redundant if and only if pi is linearly dependent on PV .

If V is maximal, then

(ii) a row is redundant if and only if it is dependent w.r.t. P ′ and

(iii) if no row is conflicting, then sol(M ′) = sol(Ṽ ) 6= ∅.

Proof. W.l.o.g. P ′ = ((1,1), . . . , (k,k)) with |V | = k, i.e. the first k rows are the pivots
of M ′ w.r.t. P ′, are ordered and their columns are the first k columns.

(i) Let i ∈ [m] \ [k]. If ai,− is redundant, Equation (4.1) implies that pi is linear
dependent on the left hand sides PV of V .

For the other direction, let pi be linearly dependent on V and A′′ := A′[1,...,k,i],−
be the submatrix of A′ consisting of the first k and the i-th row. Then by
Theorem 4.2.2, A′′ = rank(PV ∪ {pi}) = rank(V ).

By assumption, a′′i,j = 0 for j = 1, . . . ,k. Now assume for contradiction, that
a′′i,− is not redundant, i.e. there exists l > k such that a′′i,l 6= 0. Thus, A′′ is of
the form 


a′′1,1 6= 0 . . . a′′1,k . . . a′′1,l . . .

...
. . .

...
. . .

...
. . .

0 . . . a′′k,k 6= 0 . . . a′′k,l . . .

0 . . . 0 . . . a′′k+1,l 6= 0 . . .

and clearly, the columns a′′−,1, . . . ,a
′′
−,k,a

′′
−,l are linearly independent, thus

the column rank is greater than |V | = rank(A′′). This is a contradiction to
Theorem 2.3.2 - the row rank must be equal to its column rank.

(ii) This statement is an immediate consequence from (i) and the maximality of V .

(ii) Note that sol(M ′) = sol(CM ′) with CM ′ = {a′i,−x ∼i b′i | i = 1, . . . ,m}. Let
C ′ = {a′i,−x ∼i b′i | i = 1, . . . ,k} ⊆ CM ′ the subset of CM ′ corresponding to the
vertex candidate.

We observe that sol(CM ′ \C ′) is the set of all assignments, as all rows in CM ′ \C ′
are redundant. Thus sol(M ′) = sol(CM ′ \ C ′) ∩ sol(C ′) = sol(C ′). Furthermore,
as C ′ is linearly independent, from Theorem 3.2.3 follows sol(C ′) 6= ∅.
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Corollary 4.2.6. Let C be a system of linear constraints and Ṽ be a vertex candidate
of C.

Then there exists a normalized (M ′,P ′)  (M(C\V )∪Ṽ , ∅) such that

sol(C ∪ Ṽ ) = ∅ if and only if M ′ has a conflicting row.

4.3 Incrementality
In our application of the method presented above, neither the set of constraint nor
the vertex candidate is given a priori. Instead, these sets are received incrementally
allowing for detection of conflicts in partial systems and vertex candidates with less
effort. Also, changing the vertex candidate or changing the considered system of linear
constraints is possible without recomputing the whole matrix - only the deltas need to
be computed.

To do so, we define procedures maintaining a normalized (M ′,P ′)  (M(C\V )∪Ṽ , ∅)
for a system C and a partial vertex candidate Ṽ of C. Note that M ′ = ∅ fulfils the
mentioned properties for C = Ṽ = ∅. Then, starting from there, we can construct
such a matrix for any system of linear constraints and any vertex candidate of this
systems by methods allowing for adding/removing constraints to/from the system C
and adding/removing constraints from a partial vertex candidate Ṽ .

Algorithms 4 and 6 define procedures for extending and shrinking the current
vertex candidate. If an element c̃i is added to Ṽ , then its corresponding row i will be
altered such that is originates from c̃i instead of ci by adjusting its right hand side
and will then be made a pivot in the spirit of Lemma 4.2.4. Removing an element c̃i
from Ṽ is simply reverting the operations that were performed for adding it to Ṽ if
c̃i was the last element added to Ṽ , that is (i,j) is the greatest element w.r.t. P ′ for
some j ∈ [m]. Otherwise, pivots greater than i w.r.t. P ′ need to be reverted first and
re-pivoted again after removing c̃i. This case is quite expensive, but will not occur
frequently in practise as the embeddings presented in Section 4.4 shrink the vertex
candidate chronologically.

Furthermore, the procedures in Algorithms 5 and 7 allow adding and removing
constraints to an existing normalized tableau. Adding a constraint is done by adding
it as a row to the current tableau in the sense of Definition 4.2.1 and replaying pivot
steps according to the current pivot ordering P ′ on it. Removing a constraint (that
does not correspond to a pivot) is as simple as removing a row from the tableau.
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Algorithm 4: Adding constraints to the vertex candidate
1 function SelectVertexDefining((M ′,P ′), c̃i)

Input: normalized (M ′,P ′)  (M(C\V )∪Ṽ , ∅) such that Ṽ is a partial
vertex candidate of C, c̃i such that ci ∈ C \ V and ai,− 6= 0

Output: normalized (M ′′,P ′′)  (M(C\V ′)∪Ṽ ′ , ∅) such that Ṽ ′ = Ṽ ∪ {c̃i}
2 M ′′ ←−M ′

// set constraint tight
3 ∼′′i←−=
4 b′′i ←− b′i respectively b′i + ε or b′i − ε

// Now: M ′′  M(C\V ′)∪Ṽ ′

// make row i a pivot
5 choose j such that a′′i,j 6= 0

6 foreach i′ ∈ [m] such that i′ 6= i and i′ /∈ {i′ | (i′,j′) ∈ PM ′′} do
7 a′′i′,− ←− a′′i′,− −

a′′
i′,j
a′′i,j
· a′′i,−

8 update b′′i′ and f
′′
i′,− analogously

// Now: (P ′, (i,j)) is a pivot ordering on M ′′

9 return (M ′′, (P ′, (i,j)))

Algorithm 5: Adding constraints
1 function AddRow((M ′,P ′), c)

Input: normalized (M ′,P ′)  (M(C\V )∪Ṽ , ∅) such that Ṽ is a partial
vertex candidate, constraint c = pm+1 ∼m+1 bm+1 /∈ C

Output: normalized (M ′′,P ′)  (M(C′\V )∪Ṽ ,∅) such that
C ′ = C ∪ {pm+1 ∼m+1 bm+1}

2 Assume P ′ = ((i1,j1), . . . ,(il,jl))
3 M ′′ ←−M ′ except that M ′′ has one more row and F ′′ has one more

column
4 a′′m+1,− ←− am+1,− where am+1,− are the coefficients of pm+1

5 f ′′m+1,m+1 ←− −1, f ′′i′,m+1 ←− 0, f ′′m+1,i′ ←− 0 for i′ ∈ [m]

6 foreach k′ = 1, . . . ,l // eliminate existing pivots w.r.t.
P ′

7 do

8 a′′m+1,− ←− a′′m+1,− −
a′′m+1,j

k′
a′′i

k′ ,jk′
· a′′ik′ ,−

9 update b′′m+1 and f ′′m+1,− analogously
10 return (M ′′,P ′)
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Algorithm 6: Removing constraints from the vertex candidate
1 function ResetVertexDefining((M ′,P ′), ci)

Input: normalized (M ′,P ′)  (M(C\V )∪Ṽ , ∅) such that Ṽ is a partial
vertex candidate of C, ci ∈ V

Output: normalized (M ′′,P ′′)  (M(C\V ′)∪Ṽ ′ , ∅) such that Ṽ ′ = Ṽ \ {c̃i}
2 Assume P ′ = ((i1,j1), . . . ,(il,jl)) and i = ik
3 M ′′ ←−M ′
4 foreach k′ = l, . . . , k // revert SelectVertexDefining in

reverse order w.r.t. P ′
5 do

// remove pivot
6 foreach i′ ∈ [m] do
7 a′′i′,− ←− a′′i′,− − fi′,jk′ · a′′ik′ ,−
8 update b′′i′ and f

′′
i′,− analogously

// revert setting constraint tight
9 ∼′′ik′←− relation of cik′

10 b′′ik′ ←− b′ik′ respectively b′ik′ − ε or b′ik′ + ε

11 P ′′ ←− (i1,j1), . . . , (ik−1,jk−1)
12 foreach k′ = k + 1, . . . , l // redo pivots after k w.r.t. P ′
13 do
14 (M ′′,P ′′)←− SelectVertexDefining ((M ′′,P ′′), c̃ik′ )
15 return (M ′′,P ′′)

Algorithm 7: Removing constraints
1 function RemoveRow((M ′,P ′), ci)

Input: normalized (M ′,P ′)  (M(C\V )∪Ṽ , ∅) such that Ṽ is a partial
vertex candidate, constraint ci ∈ C \ V

Output: normalized (M ′′,P ′)  (M(C′\V )∪Ṽ , ∅) such that C ′ = C \ {ci}
2 M ′′ ←−M ′ without the i-th row and the i-th column of F
3 return (M ′′,P ′)
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4.3.1 Computing an assignment

For any consistent tableau M , a model corresponding to the selected vertex can be
generated by backward substitution on the equation system induced the pivot rows as
described in Algorithm 8.

Algorithm 8: Computing an assignment
1 function ComputeModel((M ′,P ′))

Input: normalized (M ′,P ′)  (M(C\V )∪Ṽ , ∅) such that Ṽ is a (full)
vertex candidate for a system C and M ′ does not contain a
conflicting row

Output: α : {x1, . . . , xn} → U [ε] such that α |= M ′

2 Assume P ′ = ((i1,j1), . . . ,(il,jl))
3 α←− empty assignment
4 foreach k′ = l, . . . , 1 do
5 foreach j′ such that a′ik′ ,j′ 6= 0, j′ 6= jk′ and α(xj′) undefined // set

all undetermined variables to 0
6 do
7 α(xj′)←− 0

8 α(xik′ )←−
(
b′ik′ −

∑
j′|ai

k′ ,j′ 6=0,j′ 6=jk′ a
′
ik′ ,j′ · α(xj′)

)
/a′ik′ ,jk′

9 return α

Theorem 4.3.1. Let M ′ be a valid input to Algorithm 8, then the algorithm returns
an assignment α |= M ′.

Proof. By Corollary 4.2.6, sol(M ′) = sol(Ṽ ) 6= ∅. Assume first that A′ has full rank,
i.e. no undetermined variables occur. Then it is easy to see that α encodes the
assignment obtained by backward substitution as in the Gaussian elimination method.

It remains to show that we can assign all undetermined variables to 0: Let x be an
undetermined variable. Adding the constraint x = 0 to C would not make the solution
set empty: First, it is linearly independent from Ṽ , thus Ṽ ′ := Ṽ ∪ {x = 0} is still
linearly independent. As all constraints C \ V are linearly dependent on Ṽ , they do as
well on Ṽ ′, thus sol(C ∪ {x = 0}) = sol(Ṽ ′). By Theorem 3.2.3, it follows sol(Ṽ ′) 6= ∅,
which proves the claim.

Afterwards, an assignment in U for the original problem can be computed using
Lemma 3.3.3.

4.3.2 Computing lemmas

If there is a conflicting row in a tableau, then we do not only want to continue
the search by trying the next vertex candidate, but want to generalize the current
conflict to exclude further (partial) vertex candidates and - for applications in SMT -
unsatisfiable sets of constraints.

In the following, let C be a system of linear constraints, Ṽ be a vertex candidate
of C and (M ′,P ′)  M(C\V )∪Ṽ be normalized.
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4.3.2.1 Excluding the current vertex candidate

Let i ∈ [m] be a conflicting row of M ′. Then, we define

Ki := {cj respectively c̃j ∈ (C \ V ) ∪ Ṽ | f ′i,j 6= 0}

as the origins of row i. Note that as (M ′,P ′) is normalized, ci ∈ Ki and Ki \{ci} ⊆ Ṽ .
As pi is a linear combination of the right hand sides PKi\{ci} of Ki \{ci}, Ki is already
unsatisfiable:

Lemma 4.3.2. Let (U , <) be any ordered vector space over F , p ∼ b and pi = bi, i ∈ [k]
be linear constraints over (U , <) in variables X such that there exists f1, . . . ,fk ∈ F
such that

p = f1 · p1 + . . .+ fk · pk.

Then p1 ∼1 b1 ∧ . . . ∧ pk ∼k bk ∧ p ∼ b is satisfiable if and only if
∑
i∈[k] fi · bi ∼ b is

valid (i.e. trivially true).

Proof. Let α : X → U . Then

α |= p ∼ b ⇐⇒ α |= f1 · p1 + . . .+ fk · pk ∼ b ⇐⇒ α |= f1 · b1 + . . .+ fk · bk ∼ b

In other words, by selecting Ki \ {ci} ⊆ Ṽ into the partial vertex candidate, ci is
conflicting. The following theorem proves that Ki \ {ci} is the smallest subset of Ṽ
causing ci to be conflicting:

Theorem 4.3.3. Let (U , <) be any ordered vector space over F , p and pi, i ∈ [k] be
linear F-combinations of X such that p1, . . . ,pk are linearly independent and there
exists f1, . . . ,fk ∈ F \ {0} such that

p = f1 · p1 + . . .+ fk · pk.

Then {p1, . . . ,pk} is minimal with this property.

Proof. W.l.o.g, assume we can leave out pk. Then there exist f ′1, . . . , f ′k−1 such that
p = f ′1 · p1 + . . .+ f ′k−1 · pk−1 and

f1 · p1 + . . .+ fk · pk = f ′1 · p1 + . . .+ f ′k−1 · pk−1
⇐⇒ fk · pk = (f ′1 − f1) · p1 + . . .+ (f ′k−1 − fk−1) · pk−1

But then, {p1, . . . , pk} would not be linearly independent, which is a contradiction.

This fact can be expressed as the lemma ∧
c̃j∈Ki\{ci}

c̃j

→ ¬ci.
Note that this does not only exclude the current (partial) vertex candidate, as the
sets Ki might be smaller and thus excludes all partial vertex candidates including Ki.
Furthermore, Ki only depends on {i′ | (i′,j′) ∈ P ′}, i.e. it is independent from the
order of P ′ and the selected columns.
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4.3.2.2 Equalities

Note that if the relation of cj (for c̃j ∈ Ki) is =, then c̃j = cj ; thus, in this case, the
lemma does not only state something about the current vertex candidate, but about
the original constraint as well.

4.3.2.3 Simplex-based lemmas

In the presentation of the Simplex algorithm, we introduced the notion of suitable
non-basic variables for selecting a pivot element. This is based on the observation
that pivoting with non-suitable variables obtains a conflicting tableau. We already
observed thatM ′ can be seen as Simplex tableau and thus, we can use the non-suitable
variables to exclude further vertex candidates. Unsatisfiability of sets of constraints
can be concluded similarly to Simplex as well.

Assuming weakened systems Let us first assume we execute our procedure on
the weakened version C∗w (over (U [ε], <)) of a system C of linear constraints over
(U , <) without constraints with relation 6=:

Lemma 4.3.4. Let (U , <) be any vector space over F , p ∼ b, pi ∼i bi, i = 1, . . . , k be
linear constraints over (U , <) and f1, . . . ,fk ∈ F \ {0} such that

p = f1 · p1 + . . .+ fk · pk.

Let V = {pi ∼i bi | i = 1, . . . , k} and Ṽ ∪ {p ∼ b} be conflicting. Define
V ′ = (V \ {pk ∼k bk}) ∪ {p ∼ b}. Then Ṽ ′ ∪ {pk ∼k bk} is conflicting if and only if
one of the following conditions is satisfied:

• If ∼∈ {≤}, then fk < 0 and ∼k∈ {≤} or fk > 0 and ∼k∈ {≥};

• if ∼∈ {≥}, then fk < 0 and ∼k∈ {≥} or fk > 0 and ∼k∈ {≤};

• if ∼∈ {=} and f1 · b1 + . . .+ fk · bk > b, then as in the case ∼∈ {≤};

• if ∼∈ {=} and f1 · b1 + . . .+ fk · bk < b, then as in the case ∼∈ {≥}.

Proof. Assume that ∼∈ {≤}. Then

p1 = b1 ∧ . . . ∧ pk = bk ∧ p ≤ b is conflicting
⇐⇒ f1 · b1 + . . .+ fk · bk > b

⇐⇒ f1 · b1 + . . .+ fk−1 · bk−1 − b > −fk · bk

⇐⇒ f1
−fk

· b1 + . . .+
fk−1
−fk

· bk−1 +
1

fk
· b > bk ∧ fk < 0

∨ f1
−fk

· b1 + . . .+
fk−1
−fk

· bk−1 +
1

fk
· b < bk ∧ fk > 0

⇐⇒ if fk < 0, then p1 = b1 ∧ . . . ∧ pk−1 = bk−1 ∧ p = b ∧ pk ≤ bk is conflicting;
if fk > 0, then p1 = b1 ∧ . . . ∧ pk−1 = bk−1 ∧ p = b ∧ pk ≥ bk is conflicting

∼∈ {≥} is analogous. For ∼∈ {=}, we use that p = b ⇐⇒ p ≤ b ∧ p ≥ b.
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Thus, by application of this lemma to a conflicting row i ∈ [m] of M ′ and Ki

as defined above, we obtain further partial vertex candidates that can be excluded
in the same way as for the current one: W.l.o.g. Ki = {c̃1, . . . , c̃i−1, ci} and define
Ṽk = (Ki \ {c̃k, ci}) ∪ {c̃i} for k = 1, . . . , i− 1 and Ṽi = Ki \ {ci}. Then, Ṽi ∪ {ci} is
conflicting and for all k such that the condition in Lemma 4.3.4 applies, Ṽk ∪ {ck} is
unsatisfiable. Hence, the lemmas ∧

c̃j∈Ṽj

c̃j

→ ¬ck
are valid for those k.

Furthermore, observe that by Theorem 3.2.2, there must be a satisfying vertex
candidate in Ci := {c1, . . . , ci} if this set is satisfiable. Thus, if Lemma 4.3.4 excludes
all “neighbouring” vertex candidates, that is Ṽk∪{ck} is unsatisfiable for all k = 1, . . . ,i,
we can conclude the unsatisfiability of Ci and the lemma∨

j=1,...,i

¬cj

is valid.

Extension to strict inequalities Extending these observations to the procedure
based on Corollary 3.3.4 is a bit hacky: Given a partial vertex candidate Ṽ of a system
of linear constraints C (without the relation 6=), we observe that V is a maximal
linearly independent subset of Cw, that is Ṽw = Ṽ . The idea is given a conflicting
row i ∈ [m] of M , we consider instead of M ′  M(C\V )∪Ṽ the corresponding matrix
(M ′)w  M(Cw\Vw)∪Ṽ .

Let us first see, why a conflicting row i in M ′ corresponds to a conflicting row in
(M ′)w: While this is clear for constraints with relation = and ≤ in C (as they are also
in Cw), constraints of the form (pi < bi) ∈ C might differ from their counterparts in
(pi ≤ bi − ε) ∈ Cw. We observe that for any α : {x1, . . . ,xn} → U [ε],

α |= pi ≤ bi − ε =⇒ α |= pi < bi

and can follow, that if Ṽ ∪ {pi < bi} is conflicting, then Ṽ ∪ {pi ≤ bi − ε} is as well.
Thus, the row i is conflicting in (M ′)w, the preconditions for Lemma 4.3.4 are fulfilled
and we can generate the lemmas ϕ′k for the conflicting row i in (M ′)w as defined
above.

Now, we obtain lemmas ϕk corresponding to the conflicting row i inM ′ by replacing
all cw ∈ Cw by their original constraints in c ∈ C in ϕ′k. While this might not raise
doubts in the case that ck ∈ C is of the form pk ≤ bk or pk = bk, it does for the case
pk < bk: ϕ′k encodes that Ṽk ∪ {pk ≤ bk − ε} is unsatisfiable. But this does not imply
that Ṽk ∪ {pk < bk} is unsatisfiable as well - which is encoded by ϕk. However, it
is okay to exclude this vertex candidate here as if Ci is satisfiable, then there exists
a vertex candidate Ṽk′ for (Ci)w which will also satisfy Ci. Thus, there are still be
enough vertex candidates left to prove satisfiability.

Extension to not-equal constraints If the conflicting row i in M ′ corresponds
to a constraint ci of the form (pi 6= bi), then we handle it as the cases (pi < bi) and
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(pi > bi) separately. That is checking for each ck ∈ Ki \ {ci} the sets Ṽ <k ∪ {ck} and
Ṽ >k ∪ {ck} for satisfiability, where Ṽ

<
k and Ṽ >k represent each a choice for c̃i.

If a constraint (pk 6= bk) ∈ Vi for a conflicting row i 6= k in M ′, then we extend
Lemma 4.3.4 to handle the case “pk < bk ∈ Vi or pk > bk ∈ Vi” simultaneously. That
is, Ṽk ∪ {pk 6= bk} is conflicting if and only if ci is of the form pi = bi.

4.4 Embedding into DPLL(T)

We present several variants of embedding our incremental procedure into the DPLL(T)
framework.

4.4.1 Encoding vertex candidates in a SAT formula - First
variant

Here, we encode the decisions which constraints should be added to the vertex candidate
as Boolean formula with the help of additional helper variables. This formula is eagerly
generated in a preprocessing step and passed to the SAT solver together with the
original formula. The theory solver then collects the helper variables and adapts its
current state using the procedures defined in the previous section.

4.4.1.1 Preprocessing

The preprocessing is applied before the formula is passed to the SAT solver. It extends
the formula by a Boolean formula containing variables selectc where c is a theory
constraint: selectc is assigned to be true if and only if c̃ should be added to the vertex
candidate. Additionally, it makes sure that only those constraints assigned to true can
define the vertex.

However, a priori, it is not known which constraints are linearly dependent nor
the rank of the system induced by the currently asserted constraints. Thus, these
circumstances cannot be encoded into the formula entirely. We run into two encoding-
related issues:

• First, the SAT solver might select linearly dependent constraints into the vertex
candidate. In this case, we defer handling these cases to later by adding lemmas
excluding those selections in the theory solver.

• Second, the possibilities for encoding the number of constraints that need to
be selected to define a vertex are limited. However, we know certain upper
bounds on the rank, among them the number of theory variables. Thus, our
formula uses such an upper bound to select an appropriate number of constraints.
Unluckily, this is not always possible in the case of an underdetermined system
(caused by linear dependencies or simply not enough asserted constraints): For
this reason, the formula may select artificial constraints of the form x = 0 for
any theory variable x. Note that this does not cause problems, as in case of an
underdetermined system, the remaining variables can be chosen arbitrarily (as
shown in the proof of Theorem 4.3.1).

Now, let ϕ be the original input formula, and x1, . . . , xn all (real-valued) theory
variables in ϕ.
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Each constraint that might be asserted should be eligible for selecting the vertex
candidate. That are all constraints c occurring in the formula as well as their negations
c̄, thus we define C := {c, c̄ | c ∈ Constraints(ϕ)}.

We can employ an observation to reduce the size of C: If ϕ is in CNF, then it
is particularly in negation normal form (NNF): Thus, if a constraint c occurs only
positively in the formula, and it is not asserted to be true, then its truth value does
not matter; therefore those constraints are not passed to the theory solver and need
not to be considered for selecting the vertex candidate. Thus, if ϕ is in CNF, then we
can set C = Constraints(ϕ).

We introduce for each constraint c ∈ C a selection variable selectc. According to
Definition 3.3.1, to select a vertex, for 6=-constraints we need to split: Thus, for those
constraints, we instead introduce selection variables select<c and select>c meaning that
the constraint should be treated as<-constraint respectively>-constraint. Additionally,
for the artificial constraints, we create selection variables selectxi=0 for i ∈ [n].

Our formula asserts that for every variable xi, a constraint containing xi is selected
(either original ones or of the form x = 0); for encoding this, we additionally define
selectx,c for c ∈ C, x ∈ Vars(c). If an 6=-constraint is selected, then also the decision
whether it should be treated as <-constraint or >-constraint. Furthermore, let
Cx = {c ∈ C | x ∈ Vars(C)} for x ∈ Vars(C). We add the following formulas to ϕ by
connecting them with ∧:

• Only asserted formulas can be selected; for constraints c of the form p 6= 0, at
most one of select<c and select>c can be selected.∧

c∈C
c 6=(p 6=b)

(selectc → c)

∧
∧
c∈C

c=(p 6=b)

(
(select<c → c) ∧ (select>c → c) ∧ (¬select<c ∨ ¬select

>
c )
)

• For every variable, exactly one constraint is selected:

∧
x∈Vars(C)


 ∨
c∈Cx

selectx,c

 ∨ selectx=0


∧

∧
x∈Vars(C)

at-most-one-of({selectx,c | c ∈ Cx} ∪ {selectx=0})

• Each constraint is selected at most once for a variable:∧
c∈C

at-most-one-of({selectx,c | x ∈ Vars(c)})

• A constraint is selected if it is selected for a variable:∧
c∈C,x∈Vars(c)

c 6=(p 6=b)

(selectx,c → selectc)

∧
∧

c∈C,x∈Vars(c)
c=(p 6=b)

(
selectx,c → (select<c ∨ select>c )

)
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At-most-one encoding at-most-one-of({x1, . . . , xk}) encodes that at most one of
x1, . . . , xn is selected.

A possible implementation is the pairwise encoding defined as

at-most-one-of({x1, . . . , xk}) =
∧

i=1,...,k−1

∧
j=i+1,...,k

(¬xi ∨ ¬xj).

However, there are better encodings, as described for example in [HN13]. In this
thesis, the following binary encoding was implemented.

Fresh Boolean variables b1, . . . , blog2dke are introduced. The idea is that if xi is the
variable set to true, then the model of b1, . . . , blog2dke is a binary encoding of i− 1:

at-most-one-of({x1, . . . , xk}) =
∧

i=1,...,k

∧
j=1,..., log2dke

(¬xi ∨ φ(i,j))

where φ(i,j) = bj (φ(i,j) = ¬bj) if the j-th bit of the binary encoding of i− 1 is 1 (0).

4.4.1.2 Theory solver

The theory solver is an SMT solver which also receives a model for the selectc variables.
Thus, it can update the set of asserted constraints and the partial vertex candidate
accordingly using the procedures defined in the previous section.

As mentioned before, a selected constraint might be linearly dependent to the
current partial vertex candidate. However, the corresponding row is then redundant
- that means that a minimal subset of the current partial vertex candidate can be
computed such that the given constraint is linearly dependent on this set according to
Theorem 4.3.3. Thus, the corresponding sets of selection variables can be excluded by
an infeasible subset.

If a conflict occurs, the lemmas are generated as described above. Note that the
conflict needs to be explained in terms of the selection variables, which is achieved by
replacing the elements of the partial vertex candidate by their corresponding selection
variables.

The embedding is presented in Algorithm 9.

4.4.2 Encoding vertex candidates in a SAT formula - Second
variant

As the formula size grows quickly, especially because of the at-most-one-of subformulas,
we present an evolution of the first variant.

We also observe, that if the left hand sides of two constraints are equal, then they
cannot be part of the same vertex candidate and thus should not be selected twice.
Furthermore, the linear dependencies of selected constraints are actually properties of
their left hand sides.

Thus given the input formula ϕ, let C be defined as in the first variant with
the additional constraints {x = 0 | x ∈ Vars(ϕ)} ⊆ C and Cx be defined as before.
Furthermore, let P = {p | (p ∼ b) ∈ C} and Px analogously to Cx. At this point, we
note that we assume the constraints in C to be normalized in some way such that the
leading coefficients of P are positive.
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Algorithm 9: Theory solver
1 function Check((M,P), C, S)

Input: (M,P) current state, C+,C− set of added/removed asserted
constraints, S+, S− set of added/removed asserted selection
variables

Output: SAT if the select-variables induce a satisfying vertex candidate,
UNSAT if there is a conflict or UNKNOWN otherwise

2 foreach selectc ∈ S−, select<c ∈ S−, select
>
c ∈ S− do

3 (M,P)←− ResetVertexDefining((M,P),c)
4 foreach c ∈ C− do
5 (M,P)←− RemoveRow((M,P),c)
6 foreach c ∈ C+ do
7 (M,P)←− AddRow((M,P),c)
8 foreach selectc ∈ S+, select<c ∈ S+, select>c ∈ S+ do
9 if the row of c in M is redundant then

10 K ←− ComputeOrigins((M,P),c)
11 R←− {selectc | c ∈ K, c is not 6=} ∪

{select<c respectively select>c | c ∈ K, c is 6=}
12 return (UNSAT, R)

13

14 (M,P)←− SelectVertexDefining((M,P),c̃) with c̃ according to
the active selection variable

15

16 K ←− ∅
17 foreach conflicting row d in M do
18 K ←− K∪ ComputeConflict((M,P),d)

where every c̃′ is replaced by selectc′ resp. select<c′ or select
>
c′

19 if K 6= ∅ then
20 return (UNSAT, K)

21

22 if all rows in M are either redundant or a pivot then // full vertex
selected

23 return (SAT, ComputeModel((M,P)))
24 else // only partial vertex selected
25 return UNKNOWN
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We define Boolean variables selectp for all p ∈ P and selectx,p for all p ∈ P and
x ∈ Vars(p) and append the following formulas to the input formula ϕ:

• Only asserted formulas can be selected.∧
c∈C

c 6=(p 6=b)

(selectc → c) ∧
∧
c∈C

c=(p 6=b)

(
(select<c → c) ∧ (select>c → c)

)

• For every variable, exactly one polynomial is selected:

∧
x∈Vars(P )

 ∨
p∈Px

selectx,p


∧

∧
x∈Vars(P )

at-most-one-of({selectx,p | p ∈ Px})

• Each polynomial is selected if and only if it is selected at most once for a variable:

∧
p∈P


 ∨
x∈Vars(p)

selectx,p

↔ selectp


∧
∧
p∈P

at-most-one-of({selectx,p | x ∈ Vars(p)})

• Each polynomial is selected if and only if a constraint is selected for this
polynomial:

∧
p∈P

selectp ↔

 ∨
c∈C

c=(p∼b),∼ is not 6=

selectc ∨
∨
c∈C

c=(p 6=b)

(
select<c ∨ select>c

)


∧
∧
p∈P

at-most-one-of({selectc | c ∈ C, c = (p ∼ b),∼ is not 6=}∪

{select<c , select
>
c | c ∈ C, c = (p 6= b)})

The theory solver is mostly equal the first variant. However, if a linear dependency
is detected, its reason is returned as a lemma in the selectp variables.

4.4.3 Modifying the decision heuristic of the SAT solver
Encoding the selection of a vertex in a SAT formula has some disadvantages:

• The encoding grows rapidly and might slow down the SAT solver,

• the selection of helper constraints x = 0 adds unnecessary overhead,

• and the linear dependencies between constraints are added explicitly as clauses
to the SAT solver, although the theory solver tracks these linear dependencies
already.
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A possible alternative is to enforce the selection of a vertex candidate in the
decision heuristic of the SAT solver. We again define C and the selection variables
selectc, select<c , select

>
c as described in Section 4.4.1 and append∧

c∈C
c 6=(p 6=b)

(selectc → c) ∧
∧
c∈C

c=(p 6=b)

(
(select<c → c) ∧ (select>c → c)

)
to ϕ to make sure that all constraints corresponding to the vertex candidate are also
asserted.

Now, when the SAT solver makes the next decision and picks a selection variable,
w.l.o.g. selectc for c ∈ C, c 6= (p 6= b). Also, let Ṽ be the currently selected partial
vertex candidate. Then,

• selectc is decided to be true if c is asserted and linearly independent from V ,

• selectc is decided to be false if c is asserted and linearly dependent on V ,

• and the decision is deferred to later otherwise.

The information whether an asserted constraint is linearly dependent or independent
on V is tracked in the theory solver: The maintained tableau M is always normalized,
thus a row i of M is redundant if and only if its corresponding constraint ci is linearly
dependent on V .

It is also easy to see that a complete Boolean assignment always selects exactly a
vertex candidate. However, the SAT solver does not have the information to conclude
that given a set of constraints C ′ ⊆ C, and the lemmas added by the theory solver
refute the existence of a satisfying vertex candidate, that C ′ is unsatisfiable. Thus, the
theory solver needs to add this information lazily: If the Boolean model is complete
and the given partial vertex candidate V is not a full vertex candidate of C ′, then it
returns ∨c∈C′¬c.

Another advantage of this embedding is that decisions can be more interleaved
with theory-specific heuristics. A simple observation is that if an equality is asserted
to be true, then it can safely be added to the vertex candidate: Any equality satisfied
under a vertex candidate is also tight under a vertex candidate - it is easy to see that
then, a constraint in the vertex candidate can be switched with the equality without
changing the solution set.

The disadvantage is that the SAT solver loses some information about the problem
and is limited in its decisions that can be made.

4.4.4 Theory propagations
In order to save unnecessary computations in the SAT and theory solving process, we
can combine the approaches before with generating additional theory lemmas guiding
the SAT solver and hinting the theory solver.

A simple approach is to not only generate lemmas excluding certain combinations
of constraints and selection variables that cause a conflict, but also generate positive
lemmas explaining implications: Given a vertex candidate Ṽ for a system C and a
normalized (M ′,P)′  (M(C\V )∪Ṽ ,∅), then for any satisfied row i ∈ [m] of M ′, ∧

c̃j∈Ṽi

c̃j

→ ci
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where Ṽi := {c̃j ∈ Ṽ | j 6= i, f ′i,j 6= 0} is valid and might prevent the SAT solver to
make wrong decisions on constraints that have already been seen or help to detect
conflicts.

We can go one step further: By introducing a variable satisfiedc and adding
satisfiedc → c for each constraint c ∈ Constraints(ϕ) where ϕ is the input formula, we
can write the lemma above as ∧

c̃j∈Ṽi

c̃j

→ satisfiedc.

By preventing the SAT solver from deciding upon satisfiedc, whenever satisfiedc is set
to true, then c is known to be true under the currently selected partial vertex candidate
and thus, the theory solver can safely ignore c to save unnecessary computations.
Furthermore, by adding

satisfiedc → ¬selectc respectively satisfiedc → (¬select<c ∧ ¬select
>
c )

for every c ∈ Constraints(ϕ), constraints known to be redundant are not considered
for the selection of the vertex candidate.
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Chapter 5

Discussion

5.1 Comparison with the general Simplex method

5.1.1 Similarities of the tableau representation
The tableau from Definition 4.2.1 is similar to the tableau in Equation (2.1) from the
Simplex algorithm. However, there are some differences:

• While the Simplex algorithms maintains bounds on slack variables referring to
the original system, our notation represents a transformed (equivalent) system
by maintaining the relations ∼i and bounds bi. The pi columns track how the
transformed system emerged from the original system.

This is mainly a different interpretation: In the Simplex algorithm, the bounds
could be tracked in a similar way; or our procedure could be modified to
maintain a set of bounds on the pi that are tight or evaluated as soon as the
row corresponding to pi is pivoted respectively becomes redundant.

• Furthermore, Simplex maintains a full assignment for all variables, while our
procedure defers computing the assignment to later. This has the advantage that
in case of an underdetermined system, our procedure can compute all satisfying
assignments; the Simplex method sets all undetermined original variables to 0,
instead of handling them symbolically.

• In the Simplex algorithm, slack variables and original variables are treated
equally, thus every row can be pivoted with any column. In our method, every
row is associated with a constraint of the original system and can only be pivoted
with a column corresponding to an original variable once.

• In the Simplex algorithm, the notion of a pivot step is slightly different from our
method: In the Simplex method, a pivot element is chosen and made the only
non-zero entry in its column; we define an ordering on the pivot elements and
do not change the rows of smaller pivot elements during a pivot step. This idea
originates from the forward direction of the Gaussian elimination method.

With some effort, we could lift this restriction together with the previous one.
However, our embedding into DPLL(T) would not be able to exploit this possi-
bility.
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Thus, a single non-incremental theory call in our procedure with a system C and
vertex candidate Ṽ as input could be viewed as an instance of the Simplex algorithm:
From the initial tableau (corresponding to MC), we choose pivot elements such that
all slack variables corresponding to Ṽ become non-basic (the result is corresponding
to a normalized (M ′,P ′) such that M(C\V )∪Ṽ  M ′).

5.1.2 Heuristic similarities

In Section 4.1.1, we already discussed how the general Simplex method behaves on
conjunctions as well as its embedding into DPLL(T).

Let us deliberate how our implementation acts on conjunctions: First, observe
that by learning the Simplex-based lemmas as described in Section 4.3.2, we exclude
the same “neighbouring” tableaus as the Simplex algorithm does. Observe further
that Simplex also guarantees an improvement in every step by choosing a suitable
“neighbouring” tableau by a pivot step; at first sight, this seems to be a clear advantage
over our proposed adaption. However, the activity-based scheme implemented by
Minisat to schedule decisions (as described in Section 2.1.1.2) resembles this kind
of locality by some degree. Still, there is only a rough correspondence, and our
implementation does not exploit improvements achieved by pivot heuristics from the
Simplex algorithm.

While it is unlikely to be competitive on purely conjunctive problems, the hope is
that our procedure has advantages in case of highly combinatorial problems due to
the interleaving with the Boolean reasoning.

5.1.3 Differences in the notion of a decision

In the Simplex method, a non-basic variable can be pivoted with any basic variable
without the need to touch the other non-basic variables, even if they were made
non-basic afterwards. In fact, the order in which variables are made non-basic does
not have an influence on the result. Thus, one can say that the decisions on which
variables are made non-basic are non-chronological.

In contrast, in our current approach, we do not make use of this observation
despite the heuristic similarities: Decisions in DPLL are chronological and all Boolean
propagations may depend on all previous decisions. If the decision for a variable
is reverted and its value is switched, all propagations and decisions made after this
decision need to be backtracked - this applies to the selection variables as well. Thus,
when we just exchange a constraint in the vertex candidate with another, we need to
backtrack and recompute the selection of the partial vertex candidate entirely.

5.2 Implementation

5.2.1 SMT-RAT

SMT-RAT [CKJ+15] is a modular SMT framework implementing modules for prepro-
cessing and SAT solving as well as theory solvers for various logics. It is written in
C++ and maintained as open source project at the Theory of Hybrid Systems group
at RWTH Aachen University.
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The SAT solver module is an adaption of the Minisat SAT solver for less-lazy
SMT solving. Moreover, the SAT module is modified such that custom variable
ordering heuristics can be implemented, in particular theory specific orderings.

While its main focus is on non-linear real arithmetic problems, SMT-RAT also
implements a Simplex-based LRA solver.

5.2.2 The NewLRA module

Our procedure is implemented by two SMT-RAT modules: a preprocessing module
and a theory solver module. The preprocessing module passes the extended formula
to the SAT solver, which in turn passes SMT-compliant subformulas to the theory
solver module during SAT solving.

The implementation of the theory solver in its simplest form is straight forward from
the presentation of the incremental methods presented in Chapter 4. For representing
rational numbers with arbitrary precision, GNU-MP library [Fre00] is used.

The data structure for a tableau M is implemented as a two-dimensional array
of rationals using 2n columns: This is possible as at any time, at most n columns of
F differ from a standard vector; thus, only the columns in A and the columns in F
differing from a standard vector need to be stored, the other columns can be stored
implicitly. Moreover, many optimizations for efficiency are thinkable, e.g. A and F
are mostly sparse and thus, maintaining only non-zero cells might safe some overhead;
however, this optimizations have not been implemented for this thesis.

As already mentioned, Minisat assigns decision variables to false if they have
never been assigned before. This might not be desired for selection variables as it
counteracts the selection of a vertex candidate. Thus, the decision heuristic is altered
to set the default initial value to true for the selection variables (while for the remaining
variables, we stick to false as the default initial value).

5.3 Experimental results

The following variants of our procedure were tested:

NewLRA A less lazy solver based on the first version of the eager encoding described
in Section 4.4.1 implementing all theory lemmas described in Section 4.3.2.

NewLRA-NewEnc As NewLRA, but based on the second version of the eager en-
coding described in Section 4.4.2.

This variant aimed to reduce combinatorial overhead in the vertex candidate
selection by encoding more specific information, but introduces more variables.

NewLRA-PairwiseAtM As NewLRA, but using the pairwise encoding for at-most-
one-of (see Section 4.4.1).

As the at-most-one-of is usually large and the pairwise encoding introduced
more clauses than the binary encoding, this variant is expected to be inferior to
NewLRA.

NewLRA-NoEnc As NewLRA, but instead of the eager encoding, the variant de-
scribed in Section 4.4.3 is implemented, moving the responsibility for the vertex
candidate selection to the decision heuristic of the SAT solver.
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The aim of this variant is to reduce the overhead introduced by the large eager
encodings.

NewLRA-NegSelVars As NewLRA, but the default initial value for selection vari-
ables is false (as for any other variable).

The aim is to illustrate the influence of small tweaks of the solver.

NewLRA-NoLemmas As NewLRA, but without the Simplex-based lemmas, thus
only excluding the current (partial) vertex candidate on conflict.

This variant should illustrate the importance of extracting information from the
current theory solver state.

NewLRA-TheoryProp As NewLRA with the theory propagations as described in
Section 4.4.4.

The theory propagations are additional lemmas generated by the theory solver
directing the SAT solver to avoid unnecessary conflicts in the theory.

NewLRA-FullLazy A full lazy version of NewLRA.

Full lazy means that the theory solver is called only when the SAT solver
constructed a full Boolean model, in contrast to the less lazy variant where
theory checks are performed after each completed Boolean constraint propagation.

NewLRA-EpsLowerBounds A basic variant based on the approach described in
Section 3.4.2 where we also admit lower bounds on ε.

This variant is tested non-competitively for showing that this alternative approach
also works correctly.

The solvers were executed on the QF_LRA benchmark set from SMT-LIB on a
2.1 GHz AMD Opteron CPU with a time limit of 5 minutes and a memory limit of
4 gigabytes. For comparison, we included the Simplex implementations in Z3 and
SMT-RAT (the latter is denoted by Simplex in the following); all NewLRA* and
Simplex were executed without preprocessing.

A run can have the outcomes

• sat (correctly solved satisfiable instance),

• unsat (correctly solved unsatisfiable instance),

• wrong (wrong solver result),

• timeout (computation took longer than 5 minutes) and

• memout (computation exceeded 4 gigabytes of memory).

The outcomes are shown in Figure 5.1 and Table 5.1. None of the variants produced
any wrong outputs and thus, there is strong evidence that the implementations are
correct.
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Figure 5.1: Performance profile.

NewLRA NewLRA-LowerBounds NewLRA-FullLazy NewLRA-NegSelVars

sat 372 361 365 372
unsat 273 242 259 270
wrong 0 0 0 0
timeout 924 965 944 932
memout 79 80 80 74

NewLRA-NewEnc NewLRA-NoEnc NewLRA-NoLemmas NewLRA-PairwiseAtM

sat 366 353 370 370
unsat 266 266 256 270
wrong 0 0 0 0
timeout 1012 1009 946 762
memout 4 20 76 246

NewLRA-TheoryProp Simplex Z3

sat 367 499 885
unsat 259 368 609
wrong 0 0 0
timeout 951 776 151
memout 71 5 3

Table 5.1: Number of instances by outcome.
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5.3.1 Performance of NewLRA compared to Simplex
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Figure 5.2: Comparison of running times on instances solved by both solvers.

For about the first 520 examples, NewLRA can compete with the Simplex solver -
these instances are solved in less than 100 milliseconds and can be assumed to be
almost trivial. From there, the running times are rapidly growing such that only 125
additional instances are solved, which are mostly trivial for the Simplex solver, as
seen in Figure 5.2.

Type Simplex NewLRA
sat unsat sat unsat sat unsat

set

2017-Heizmann-UltimateInvariantSynthesis 3 50 0 0 0 0
DTP-Scheduling 91 0 82 0 28 0
LassoRanker 267 143 0 1 0 0
TM 24 1 11 1 1 1
check 1 1 1 1 1 1
clock_synchro 0 36 0 23 0 9
keymaera 0 21 0 21 0 21
latendresse 16 2 0 0 0 0
meti-tarski 338 150 338 150 338 150
miplib 22 20 2 3 0 1
sal 11 96 10 84 4 58
sc 108 36 46 9 0 0
spider_benchmarks 0 42 0 42 0 24
tropical-matrix 5 0 0 0 0 0
tta_startup 24 48 3 28 0 8
uart 36 37 6 5 0 0

Table 5.2: Number of solved instances from the SMT-LIB’s QF_LRA benchmark
collection by set and type.
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Furthermore, with the given data, it is hard to measure a certain structural property
on which NewLRA performs better or disproportionately worse than Simplex given
the number of solved instances by test set in Table 5.2. Similarly, drawing conclusions
from single measures like density (the ratio of number of variable occurrences to n ·m),
the ratio of constraints to variables, the average or maximal size of clauses as measures
for Boolean structure and the number of vertex candidates (m choose n where m is
the number of constraints and n the number of theory variables) is like reading future
off coffee ground - the performance relies heavily on the test set and its structure.
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Figure 5.3: Comparison of running times on the SAL/windowreal/windowreal-
no_t_deadlock-* benchmarks.

However, almost all instances where NewLRA is superior to Simplex stem from a
single class of instances from the SAL benchmark suite, and the performance seems
not to be accidental, as Figure 5.3 shows. Similar to the other sets meti-tarski,
DTP-Scheduling and spider_benchmarks for which NewLRA solves a good amount of
instances, the number of theory variables n is relatively small. However, a relatively
small n is not a sufficient condition but seemingly a necessary one for benchmarks to
be solved; the reason is most likely the combinatorial blow up - remember that the
number of possible vertex candidates is the binomial coefficient

(
m
n

)
. Apart from that,

it is not clear why NewLRA performs better than Simplex on these instances.
More insights could be gained by systematic testing on sets with an isolated property.

Especially the influence of a complex Boolean structure needs to be investigated, as
this was the main motivation for the new procedure.

5.3.2 Analysis of NewLRA

Theory vs SAT running times Compared to the Simplex solver, NewLRA shifts
complexity to the SAT solver, as the relative running time of the theory solver tends
to be smaller compared to the Simplex solver, see Figure 5.4.
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Figure 5.4: Ratio of theory solver to running time without parsing and encoding on
all instances.

Encoding size It should be mentioned that the eager encoding of the selection
variable semantic grows rapidly and for large instances, its generation can take several
minutes (though the latter could be mitigated technically to some extend) and dominate
the set of clauses by far (compared to original and learned clauses). All instances
solved by NewLRA have a relatively small encoding, with few exceptions as the family
of instances from the SAL benchmark suite, see Figure 5.5.
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Figure 5.5: Running time on solved instances by number of initial (original and
encoding) clauses.
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Figure 5.6: Learned lemmas by type on solved instances.

Learned lemmas Figure 5.6 shows the number of lemmas learned: add. lemmas
are the additional Simplex-based lemmas excluding “neighbouring” tableaus, conflicts
are constraints implied to be conflicting by a partial vertex candidate, inf. constraints
are the Simplex-based lemmas excluding a set of constraints and lin. dep. are the
learned linear dependencies between selection variables. Note that lemmas of the
latter type are only generated if no other conflict occurred - otherwise, this number
would overtop the other types.
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Figure 5.7: Number of Simplex lemmas vs constraint conflicts in NewLRA on instances
solved by both solvers.
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Note that the inf. constraints lemmas correspond to the Simplex lemmas. Thus,
as Simplex needs less lemmas to solve the instance, the Simplex algorithm seems also
to be heuristically more successful. Interestingly, this picture is completely different
for the family of instances where NewLRA outplays Simplex, as shown in Figure 5.7.

Furthermore, the size of the lemmas generated by NewLRA are small: For the half
of all instances, the number of literals in a lemma divided by the number of asserted
constraints (excluding selection variables) is below 0.014; and for 75% of the instances,
this value is below 0.15. Thus, these lemmas generalize well.
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Figure 5.8: Performance of some instances dependent on learntsize_factor.

SAT solver internals Given the high number of clauses which lead to higher load
on the SAT solver, the clause deletion feature could help to make the number of clauses
tractable. The impact of this feature relies heavily on the limit of learned clauses. As
this limit is the initial number of clauses (including the eager encoding) passed to
the SAT solver times some factor learntsize_factor, this feature is essentially disabled
for the default setting learntsize_factor = 1. Due to the disproportionate differences
in the size of the encoding, it is impossible to find an optimal learntsize_factor, as
indicated in Figure 5.8.

5.3.3 Performance of NewLRA-NoEnc compared to NewLRA

Given the large encoding of the semantics of the selection variables and the observation
that a large portion of the running time of NewLRA is spent in the SAT solver, one
would expect that NewLRA-NoEnc performs better. While this is true regarding
memory consumption, as indicated by the lower number of memouts (see Table 5.1),
the contrary is the case for the running times and the number of solved instances.
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Figure 5.9: Comparison of running time on instances solved by both solvers.

First, the solvers seem to behave completely different on the given instances,
regarding relative theory time or overall running time (see Figure 5.9). Conspicuously,
the promising instance class from the SAL benchmarks got disproportionately slower.
This might be a hint that the structural information that was eagerly encoded in
NewLRA is missing in NewLRA-NoEnc or the restriction of the decision heuristic makes
it inferior. However, drawing a conclusion is hard as the search for a justification was
unsuccessful.
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Figure 5.10: Lemmas learned on instances solved by both solvers, excluding linear
dependencies.
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Interestingly, NewLRA-NoEnc tends to need less lemmas (see Figure 5.10) than
NewLRA on the instances that it solved. The obvious conclusion would be that
NewLRA-NoEnc is more efficient than NewLRA - but reality is different. Also, imple-
mentation specific slowdown cannot justify the worse performance.

5.3.4 Further variants of NewLRA

The differences in the performance between the solver variants are not huge; sometimes
they differ in a handful of solved instances - which could well be caused one solver
luckily guessing right. Thus, these results should be interpreted carefully. However,
we gain a few insights from Figure 5.1 and Table 5.1:

• The encoding could indeed make a difference, as shown by the differences in
the performance of NewLRA, NewLRA-NewEnc, NewLRA-PairwiseAtM and
NewLRA-NoEnc. Still, drawing a conclusion beyond the aspects already dis-
cussed is hardly possible.

• Incremental solving performs better than full lazy solving, as NewLRA outplays
NewLRA-FullLazy. The incremental approach interleaves Boolean and theory
solving by propagating knowledge from the theory during the Boolean model
construction, which seems to be worth it.

• Also, the additional Simplex-inspired lemmas pay off, as leaving them out in
NewLRA-NoLemmas is slower.

• The theory propagations in NewLRA-TheoryProp are not worth the effort. A
possible reason could be that they cannot be applied that often by the SAT
solver as they are only generated for constraints that are already asserted by the
SAT solver.

• The result of NewLRA-NegSelVars does not allow drawing a conclusion of the
influence of the altered decision heuristic regarding the selection variables.

• The variant NewLRA-LowerBounds stems from a by-product of our extension
of vertex candidates to systems with strict inequalities. Although it works
correctly, it needs more effort to detect conflicts and does not allow learning the
Simplex-like lemmas; this is why this path has not been followed further.

5.3.5 Summary

As outlined multiple times, drawing a conclusion is hard. However, the fact that
there is a specific class of instances where the new algorithm is systematically superior
to the Simplex algorithm could be an indication that our algorithm is able to learn
and generalize more knowledge than the Simplex procedure. Nonetheless, given the
large number of learned lemmas, especially regarding the constraint conflicts with a
correspondence to the Simplex procedure, the heuristic defining the ordering in which
the tableaus are checked might be inferior to the Simplex.

Also, it turned out that learned lemmas and the eager encoding do add valuable
knowledge to speed up the solving process, as replacing the eager encoding or disabling
the Simplex-inspired lemmas performed worse. Also, it is worth noting that an
incremental consistency check helps directing the solving process.
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It is also likely that the large number of learned clauses is intractable for the SAT
solver, as indicated by the portion of running time spent on the SAT solver and the
role of the clause deletion heuristic. The Simplex procedure has the major advantage
that it tracks progress implicitly - while the new procedure progresses by learning
lemmas explicitly. Managing them is technically hard and is a major hurdle for a
competitive implementation.

5.4 Future work

5.4.1 Altering the decision heuristic
Figure 5.7 indicates that the decision heuristic in the new procedure is inferior to the
Simplex heuristic regarding reducing the number of necessary lemmas to conclude
satisfiability respectively unsatisfiability.

As discussed, the employed activity-based decision heuristic resembles vaguely the
Simplex heuristic by making a compromise between local search and a more dynamic
exploration. It is be arguable that for the selection variables, local search might be
more efficient as it is closer to the Simplex heuristic. Thus, a separate ordering for
original and selection variables might be desirable.

Moreover, having separate heuristics, pivot rules from the Simplex algorithm could
be adapted for the decision heuristic.

5.4.2 Learning from redundant rows
So far, only lemmas excluding “neighbouring” tableaus that were generated based on
conflicting rows. However, symmetric lemmas from redundant rows can be learned:
Restricting the relation to ≤ for simplicity, Lemma 4.3.4 can be extended in the sense
that if Ṽ ∪{p ∼ b} is satisfiable, then Ṽ ′∪{pk ∼ bk} is conflicting if and only if fk > 0.

Moreover, if any dependent row i is tight (that is, b′i = 0), then swapping the
corresponding constraint ci with any constraint cj ∈ V being an origin of row i (that
is, f ′i,j 6= 0) leads to essentially the same solution - known as degenerate solution.
Formally, if Ṽ ∪ {pi = bi} is satisfiable, then for V ′ = (V \ {pj ∼j bj}) ∪ {pi ∼i bi} it
holds C ∪ Ṽ ≡ C ∪ Ṽ ′. Thus, one of these vertex candidates can safely be excluded.

5.4.3 Specializations of the SAT solver
As we move a huge amount of information to the SAT solver, it needs to manage its
clause set efficiently.

First, our experiments have shown that, by varying learntsize_factor, on long
running examples, the clause set is never reduced, while on some others, it happens
frequently; on the latter examples, the clause deletion heuristic does influence the
performance of an instance positively or negatively. Currently, the initial upper limit
on the number of learned clauses depends on the number of original and encoding
clauses. An obvious idea is to make it depend only on the original clauses, or on
another property.

Second, observe that our procedure learns different kinds of clauses: Lemmas
excluding linear dependent sets of constraints (for selecting a linear independent vertex
candidate), lemmas implying the (un-)satisfiability of a single constraint together with
a partial vertex candidate or lemmas excluding sets of original constraints. Depending
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on its type, a lemma has a different importance for the solving process: While the
lemmas excluding sets of constraints are the most valuable, linear dependence could
be more of local importance. Hence, introducing separate conditions for removing
lemmas from the clause set might help to keep the SAT solving process fast while
retaining relevant information.

5.4.4 Theory propagations
Theory propagations are additional lemmas generated by the theory solver to pass
information to the SAT solver. This could prevent wrong decisions, as theory lemmas
allow for more propagations during SAT solving. Especially for the NewLRA-NoEnc
variant, additional lemmas could compensate the missing information that the other
variants receive by the eager encoding of the selection variable semantics.

5.4.4.1 Propagating truth values of constraints

A possible way is to extend the approach from Section 4.4.4. There, we add lemmas
implying constraints to be satisfied by a partial vertex candidate. However, we only
consider the currently asserted constraints for generating such lemmas; an extension for
considering all constraints occurring in the input formula allows propagations of truth
values for a constraint without waiting until the SAT solver decided or propagated
the constraint. Clearly, it causes additional effort to evaluate all constraints in the
theory solver, which is why we forwent this approach in our implementation. However,
experiments have shown that the theory solver is not the bottleneck and the additional
effort might pay off.

5.4.4.2 Look-ahead for extending a partial vertex candidate

So far, we detect the unsatisfiability of a system C at a partial vertex candidate Ṽ only
after the normalized tableau corresponding (C \ V ) ∪ Ṽ has already been computed.
The idea is now, to allow extending a non-conflicting partial vertex candidate by a
constraint only if the corresponding extension is still a non-conflicting partial vertex
candidate. To determine the set of those extensions, we make use of the following
observation:

Remark 5.4.1. Let C be a weak system of linear constraints over (U , <) and Ṽ a
partial vertex candidate of Cw. Consider a normalized M ′  M(Cw\V )∪Ṽ . Given
two non-redundant dependent rows i,j ∈ [m] in M ′, we define Ṽ ′ = Ṽ ∪ {c̃i} and let
M ′′  M(Cw\V ′)∪Ṽ ′ be normalized. Then a′′j,− = 0 ⇐⇒ ∃h ∈ F . a′j,− = h · a′i,−.

Simply speaking, whenever we extend a partial vertex candidate Ṽ of a system C
by a constraint c̃i, the rows j that will be redundant after making row i a pivot are
exactly the ones for which a′j,− = h · a′i,− for some h. Furthermore, such a row j will
be satisfied after pivoting row i if and only if 0 ∼j b′′j respectively 0 ∼j b′j − h · b′i is
fulfilled. Thus, we got a condition for constraints ci that cause an immediate conflict
of a row j after adding it to the partial vertex candidate. We could exclude those
selections by generating the lemma ∧

c̃k∈Ṽi∪Ṽj

c̃k ∧ c̃i

→ ¬cj
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where Ṽi := {c̃k ∈ Ṽ | k 6= i, f ′i,k 6= 0} and Ṽj defined analogously.
We got even further: We partition the dependent non-redundant rows of M ′ into

sets G′p where p are a linear F-combinations of X such that for each row i ∈ G′p,
a′i,− · x is a multiple of p. Then, each row i ∈ G′p induces a bound on p and by
pairwise comparison of all bounds, we can compute all pairs causing a conflict of the
kind described above.

Furthermore, observe that whenever Ṽ is extended, for the corresponding tableau
M ′′, i,j ∈ G′p =⇒ i,j ∈ G′′p′ for some p,p′; in other words by extending a vertex
candidate, groups might be merged, but never split. Thus, once two rows are a multiple
of each other, they will remain multiple of each other for any extension of the current
vertex candidate. It can be shown that for two i,j ∈ G′p with conflicting lower and
upper bounds, we can generate the lemma ∧

c̃k∈Ṽi∪Ṽj

c̃k

→ ¬(ci ∧ cj).

5.4.5 Exploiting non-chronological decisions
In Section 5.1.3, we already discussed a downside of our approach - that DPLL needs
chronological decision while the Simplex allows changing decisions non-chronologically.
A possible improvement would be to change our tableau data structure to match more
with the one of the Simplex algorithm as discussed in Section 5.1.1; this would allow
the direct exchange of a constraint in the vertex candidate with a dependent constraint.
While mapping the notion of exchanging a non-basic with a basic variable in Simplex
to the notion of a decision in DPLL would require the SAT solver to maintain complete
implication graph - which is possibly practically infeasible - we propose the following
compromise, which we call lazy backtracking :

The theory solver (as in Algorithm 9) is adapted such that the constraints c ∈ C−
removed by the SAT solver are not removed from the tableau. Instead, they remain in
the tableau until its negation ¬c is in the set C+ of added constraints. Similarly, we
proceed with the selection variables in S− and S+ respectively.

To be conform with the DPLL(T) framework, for each occurring conflict in the
tableau, it needs to be checked if its origins are currently asserted by the SAT solver:
If the conflict stems from the set of currently asserted constraints and the selected
vertex candidate, it is returned as infeasible subset. Otherwise, if the conflict depends
on assertions that were already removed by the SAT solver, the conflict is added as a
theory propagation, which is inserted into the clause set of the SAT solver.

5.4.6 An alternative embedding into MCSAT
Throughout working on this approach, it turned out that some ideas fit better into
another solving framework, the model-constructing satisfiability calculus (MCSAT)
[DMJ13].

5.4.6.1 MCSAT

In contrast to the DPLL(T) framework where the SAT solving and theory solving are
done in a separated and alternating fashion, the MCSAT framework aims to solve
both the Boolean and the theory level simultaneously.
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In MCSAT, Boolean reasoning is done as in DPLL. In addition to Boolean decisions,
also values of theory variables can be decided that are consistent with the Boolean
abstraction, that is, the value of a constraint under the theory assignment does not
contradict with the truth value of its abstraction. As a theory assignment might
imply truth values on the constraints, the Boolean reasoning is directed by the theory
assignment in the sense that the implied truth values are propagated to the Boolean
level.

Whenever the current theory assignment α should be extended by a variable x, a
method assign is invoked which either returns a value for x such that the extended
assignment is consistent with the Boolean abstraction or returns a set of constraints C
for which α cannot be extended for x. This conflict is passed to the explain function
which returns a lemma that is conflicting under α. This lemma is then backtracked
analogously to a conflict clause in the Boolean reasoning.

Note that the explain function is allowed to introduce new constraints; however,
to ensure termination, it needs to fulfil the so called finite basis property that all
constraints must stem from a finite set dependent on the set of initial constraints.

MCSAT is mainly used for solving non-linear real arithmetic, the logic with
constraints over polynomials, and is the basis for the most successful LRA solvers,
most prominently Z3 [JDM12].

5.4.6.2 Embedding Simplex into MCSAT

Our method already feels similar to MCSAT, especially the encoding-less variant as
described in Section 4.4.3 and gets even more similar by combining it with the theory
propagations described in Section 5.4.4. However, MCSAT seems to define a more
suitable framework as it defines explicit interfaces that allow avoiding the creation of
lemmas expressing simple facts like theory propagations.

For our purposes, we generalize the theory assignments in MCSAT such that
instead of theory variables, linear F-combinations of X are assigned to values in
U [ε]. The assign function produces an assignment corresponding to a partial vertex
candidate of the set of currently asserted constraints while maintaining consistency
using the look-ahead described in Section 5.4.4.2. The direction by the theory, that
is propagating truth values from the theory to the Boolean level, is analogous to the
theory propagations described in Section 5.4.4.1. The explain function can be chosen
trivially by returning the set of conflicting constraints together with the relevant
subset of the current assignment; for the latter, special literals need to be introduced
representing a theory assignment. Note that the finite basis property still holds by the
choice of the assign function, which selects a vertex candidate of which only finitely
many exist.

Advantages of this approach over the current one would be that the solver does
not chose unsatisfying vertex candidates while being able to extract possibly more
information about unsatisfying partial vertex candidates thanks to the look-ahead
described in Section 5.4.4.2. Furthermore, a lot of knowledge can be propagated
implicitly to the SAT solver without the need of generating lemmas, which relieves the
SAT solver. It should be noted that the value, assign and explain functions can share
information by maintaining a tableau in parallel to the SAT solver. However, again,
the performance will be highly dependent on the decision heuristic (see Section 5.4.1).
Moreover, there might be ways to exploit the non-chronological nature of the Simplex
algorithm (see Section 5.4.5).



Chapter 6

Conclusion

This thesis gave another view on the Simplex method unfastened from usual presen-
tations and applications. The reformulation of the fundamental theorem of linear
programming in Theorem 2.3.1 allowed us to extend the theory behind the Simplex
algorithm for strict inequalities, leading to an appealing analogous formulation in
Corollary 3.3.4.

From there, a similar procedure - a tribute to the Gaussian elimination procedure -
has been developed that allows “jumping” to a specific vertex candidate in Section 4.2
respectively Section 4.3 and extracting information about the original problem from
the results. Several embeddings into the DPLL(T) framework were presented in
Section 4.4, which base on the idea of encoding some information from the Simplex
algorithm in SAT formulas to retain information throughout the solving process that
gets otherwise lost in the usual embedding of the Simplex algorithm into DPLL(T).

The procedure was compared to the usual Simplex adaption for DPLL(T) in
Section 5.1 and all its variations developed along this thesis were evaluated in Sec-
tion 5.3. Although it turned out that the developed procedure does not scale well,
there were some indications of some structural advantages for some cases; however,
more investigations are needed before drawing a conclusion.

Finally, unexplored ideas were presented in Section 5.4 - among it another novel
approach based on MCSAT developed from the ideas of this thesis.

Although the experimental results were below expectations, the ideas were worth
trying out, not least because of the insights gained during the work on this thesis. It is
thinkable that some of these ideas lead to another impartial attempt or can be reused
for improving existing solvers.

To come back to the sentences that started this thesis, let me cite a well known
adage that I find appropriate in this context:

“There ain’t no such thing as a free lunch.” [Key07]
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